黃子果 王善銘 孫宇光 曹海翔 楊占錄,2
(1.電力系統(tǒng)及發(fā)電設(shè)備控制和仿真國(guó)家重點(diǎn)實(shí)驗(yàn)室(清華大學(xué)電機(jī)系) 北京 100084 2.海軍潛艇學(xué)院 青島 266100)
開槽實(shí)心轉(zhuǎn)子電機(jī)轉(zhuǎn)子端部系數(shù)的計(jì)算與比較
黃子果1王善銘1孫宇光1曹海翔1楊占錄1,2
(1.電力系統(tǒng)及發(fā)電設(shè)備控制和仿真國(guó)家重點(diǎn)實(shí)驗(yàn)室(清華大學(xué)電機(jī)系) 北京 100084 2.海軍潛艇學(xué)院 青島 266100)
開槽實(shí)心轉(zhuǎn)子異步電機(jī)轉(zhuǎn)子的三維非線性渦流場(chǎng)計(jì)算量大,常采用二維有限元結(jié)合光滑實(shí)心轉(zhuǎn)子端部系數(shù)的方法簡(jiǎn)化計(jì)算。但在轉(zhuǎn)差率增大時(shí),采用光滑轉(zhuǎn)子端部系數(shù)仿真計(jì)算的誤差明顯增大。根據(jù)開槽實(shí)心轉(zhuǎn)子渦流分布隨轉(zhuǎn)差率變化的規(guī)律,提出適用于全轉(zhuǎn)差率范圍的開槽轉(zhuǎn)子端部系數(shù)。依據(jù)該端部系數(shù)修正轉(zhuǎn)子電阻率,并采用非線性有限元計(jì)算開槽實(shí)心轉(zhuǎn)子電機(jī)電磁場(chǎng),可考慮轉(zhuǎn)子端部效應(yīng)以及定、轉(zhuǎn)子鐵心磁路飽和的影響。在不同工況下,對(duì)兩臺(tái)不同轉(zhuǎn)子槽數(shù)的開槽實(shí)心轉(zhuǎn)子樣機(jī)分別采用不同轉(zhuǎn)子端部系數(shù)進(jìn)行仿真計(jì)算,并與實(shí)驗(yàn)結(jié)果比較。該文提出的開槽轉(zhuǎn)子端部系數(shù)的仿真與實(shí)驗(yàn)結(jié)果較吻合,且在轉(zhuǎn)差率較大時(shí),開槽轉(zhuǎn)子端部系數(shù)隨轉(zhuǎn)子槽數(shù)增多而增大??蔀闇?zhǔn)確計(jì)算開槽實(shí)心轉(zhuǎn)子電機(jī)參數(shù)及其設(shè)計(jì)優(yōu)化提供依據(jù)。
開槽實(shí)心轉(zhuǎn)子 端部系數(shù) 二維有限元
高速電機(jī)轉(zhuǎn)速高、體積小、功率密度高,可節(jié)約電機(jī)制造材料。普通疊片轉(zhuǎn)子的異步電機(jī),轉(zhuǎn)子表面的線速度上限約為200 m/s,而實(shí)心轉(zhuǎn)子異步電機(jī)的轉(zhuǎn)子表面線速度最大可達(dá)約400 m/s[1,2]。實(shí)心轉(zhuǎn)子異步電機(jī)具有結(jié)構(gòu)簡(jiǎn)單、耐腐蝕、機(jī)械強(qiáng)度高、動(dòng)平衡性能好、可靠性高等優(yōu)點(diǎn),特別適用于氣體壓縮機(jī)、離心機(jī)、分子泵等高速領(lǐng)域[1-4]。采用高速電機(jī)直接驅(qū)動(dòng)的系統(tǒng)可省去傳動(dòng)帶、齒輪變速箱等傳統(tǒng)調(diào)速機(jī)械裝置,有利于降低系統(tǒng)噪聲,減小系統(tǒng)體積,提高系統(tǒng)效率和可靠性[4]。
早期有學(xué)者提出了光滑實(shí)心轉(zhuǎn)子異步電機(jī)結(jié)構(gòu)[5],但光滑實(shí)心轉(zhuǎn)子電機(jī)功率因數(shù)低,效率低。為此,國(guó)內(nèi)外學(xué)者通過(guò)轉(zhuǎn)子軸向開槽、表面覆銅、開槽焊銅、加導(dǎo)電端環(huán)等方式改善實(shí)心轉(zhuǎn)子電機(jī)的電磁性能[1,2]。
實(shí)心轉(zhuǎn)子表面軸向開槽,結(jié)構(gòu)如圖1所示,開槽影響轉(zhuǎn)子表面渦流的分布,改變轉(zhuǎn)子等效阻抗從而增大轉(zhuǎn)矩[6]。開槽實(shí)心轉(zhuǎn)子中的渦流分布計(jì)算較復(fù)雜,不僅與定子電流頻率、轉(zhuǎn)差率相關(guān),還與轉(zhuǎn)子的電阻率、磁化曲線密切相關(guān)。另外,實(shí)心轉(zhuǎn)子端部效應(yīng)對(duì)轉(zhuǎn)子渦流分布的影響較大。
圖1 開槽實(shí)心轉(zhuǎn)子Fig.1 Solid rotor with axial silts
轉(zhuǎn)子開槽使實(shí)心轉(zhuǎn)子磁場(chǎng)的邊界復(fù)雜,二維線性解析解難以求得。轉(zhuǎn)子電磁場(chǎng)求解區(qū)域可以將一個(gè)齒槽區(qū)作為求解單元[7]或?qū)⒄麄€(gè)開槽轉(zhuǎn)子進(jìn)行等效[5,8],并采用解析法或磁路法計(jì)算轉(zhuǎn)子等效阻抗參數(shù)。開槽實(shí)心轉(zhuǎn)子磁場(chǎng)的解析計(jì)算法通常不能計(jì)及轉(zhuǎn)子磁路的非線性,僅用飽和修正系數(shù)予以粗略考慮。而二維有限元法可建立實(shí)際轉(zhuǎn)子開槽模型并考慮定、轉(zhuǎn)子鐵心磁路非線性。二維解析法和有限元法均假設(shè)轉(zhuǎn)子磁場(chǎng)在軸向上的分布規(guī)律一致。為考慮開槽實(shí)心轉(zhuǎn)子電機(jī)磁場(chǎng)的端部效應(yīng),常用端部系數(shù)折算二維解析計(jì)算的等效轉(zhuǎn)子阻抗。許多文獻(xiàn)直接使用光滑實(shí)心轉(zhuǎn)子的端部系數(shù)近似修正二維計(jì)算時(shí)的開槽實(shí)心轉(zhuǎn)子電阻率[9-11],從而考慮端部效應(yīng)。
文獻(xiàn)[11]采用三維有限元法,假設(shè)轉(zhuǎn)子鐵心線性且氣隙磁通密度的邊界給定,計(jì)算開槽實(shí)心轉(zhuǎn)子電機(jī)的端部系數(shù),指出了開槽轉(zhuǎn)子電機(jī)的端部系數(shù)與光滑實(shí)心轉(zhuǎn)子電機(jī)的端部系數(shù)并不相同。但對(duì)于實(shí)心轉(zhuǎn)子電機(jī)完整的三維非線性有限元模型,網(wǎng)格單元數(shù)量、矢量場(chǎng)計(jì)算量龐大,不適用于電機(jī)設(shè)計(jì)環(huán)節(jié)。
本文依據(jù)開槽實(shí)心轉(zhuǎn)子渦流分布隨轉(zhuǎn)差率變化的規(guī)律,計(jì)算開槽實(shí)心轉(zhuǎn)子等效極距,并提出適用于開槽轉(zhuǎn)子的端部系數(shù)。采用有限元諧波場(chǎng)分別結(jié)合提出的開槽實(shí)心轉(zhuǎn)子端部系數(shù)和現(xiàn)有的不同光滑實(shí)心轉(zhuǎn)子端部系數(shù),計(jì)算兩臺(tái)不同轉(zhuǎn)子槽數(shù)的開槽實(shí)心轉(zhuǎn)子電機(jī)磁場(chǎng)分布,可考慮定、轉(zhuǎn)子鐵心磁路飽和以及轉(zhuǎn)子端部效應(yīng)的影響。采用提出的開槽端部系數(shù)的計(jì)算結(jié)果與實(shí)驗(yàn)結(jié)果較吻合,說(shuō)明了其有效性。
考慮開槽實(shí)心轉(zhuǎn)子電機(jī)定、轉(zhuǎn)子鐵心飽和時(shí),需采用有限元法計(jì)算。開槽實(shí)心轉(zhuǎn)子電機(jī)的三維非線性有限元計(jì)算量龐大,不適用于電機(jī)設(shè)計(jì)。許多文獻(xiàn)直接使用光滑實(shí)心轉(zhuǎn)子的端部系數(shù)修正轉(zhuǎn)子電阻率的方法近似考慮實(shí)心轉(zhuǎn)子端部效應(yīng)[9-11]。常用的光滑實(shí)心轉(zhuǎn)子電機(jī)端部系數(shù)為D.O′Kelly[12]、W.J.Gibbs[13]、R.L.Russel等[14]、H.Yee[15]、傅豐禮[16]提出的端部系數(shù)。
D.O′Kelly提出的光滑轉(zhuǎn)子經(jīng)驗(yàn)端部系數(shù)[12]為
(1)
W.J.Gibbs假設(shè)轉(zhuǎn)子的渦流只在鐵心長(zhǎng)度以外的端部區(qū)域閉合,且氣隙徑向磁通密度沿轉(zhuǎn)子軸向均勻分布,得到光滑實(shí)心轉(zhuǎn)子的端部系數(shù)[13]為
(2)
傅豐禮[16]忽略光滑轉(zhuǎn)子徑向電流,將定子電流、矢量磁位沿軸向奇延拓并分解為各次諧波,依據(jù)轉(zhuǎn)子三維線性解析求解結(jié)果得到轉(zhuǎn)子端部系數(shù)為
(3)
R.L.Russel等提出的光滑轉(zhuǎn)子端部系數(shù)[14]為
(4)
H.Yee分別求解3種不同磁場(chǎng)約束條件的轉(zhuǎn)子磁場(chǎng)的解,并疊加后得到電機(jī)矢量磁位的三維線性解,求得轉(zhuǎn)子線性條件下的端部系數(shù)[15]為
(5)
為研究不同轉(zhuǎn)子槽數(shù)的開槽實(shí)心轉(zhuǎn)子端部系數(shù),本文設(shè)計(jì)了兩臺(tái)不同轉(zhuǎn)子槽數(shù)的開槽實(shí)心轉(zhuǎn)子樣機(jī),其主要參數(shù)見表1。電機(jī)轉(zhuǎn)子材料為45號(hào)鋼,在 15 ℃ 下的電阻率為0.217 8Ω·mm2/m[16],其磁化曲線參考文獻(xiàn)[17]。
表1 開槽實(shí)心轉(zhuǎn)子樣機(jī)主要參數(shù)Tab.1 Main parameters of the slit solid rotor motor
二維計(jì)算開槽實(shí)心轉(zhuǎn)子電磁場(chǎng)時(shí),若直接使用光滑實(shí)心轉(zhuǎn)子端部系數(shù),根據(jù)表1中實(shí)驗(yàn)樣機(jī)參數(shù),可計(jì)算出式(1)~式(5)五個(gè)光滑實(shí)心轉(zhuǎn)子端部系數(shù)。繪制這些端部系數(shù)隨轉(zhuǎn)差率變化的曲線如圖2所示。
圖2 光滑實(shí)心轉(zhuǎn)子端部系數(shù)比較Fig.2 Comparison of different rotor end factors for smooth solid rotor
從圖2中可以看出,端部系數(shù)KYee和KRussel的計(jì)算結(jié)果相等,且在五個(gè)端部系數(shù)中最小。端部系數(shù)KO′Kelly最大,端部系數(shù)KGibbs和KFu較接近。僅KFu與轉(zhuǎn)差率相關(guān),其余端部系數(shù)均為常數(shù)。而采用式(2)中W.J.Gibbs提出的光滑實(shí)心轉(zhuǎn)子端部系數(shù)對(duì)光滑實(shí)心轉(zhuǎn)子電機(jī)進(jìn)行計(jì)算,仿真與實(shí)驗(yàn)結(jié)果較吻合[18]。
光滑實(shí)心轉(zhuǎn)子的端部系數(shù)在轉(zhuǎn)差率較大時(shí)不適用于開槽實(shí)心轉(zhuǎn)子電機(jī)[11]。開槽實(shí)心轉(zhuǎn)子中的渦流迫于轉(zhuǎn)子開槽形狀,在轉(zhuǎn)子齒上和槽底都有渦流分布。這些沿轉(zhuǎn)子齒壁分布的渦流增大了轉(zhuǎn)子渦流通路的面積,且渦流分布將隨轉(zhuǎn)子開槽數(shù)量和轉(zhuǎn)差率的變化而改變。
文獻(xiàn)[5]依據(jù)轉(zhuǎn)子渦流的等效透入深度修正開槽實(shí)心轉(zhuǎn)子的極距,將開槽實(shí)心轉(zhuǎn)子等效為光滑實(shí)心轉(zhuǎn)子,并計(jì)算轉(zhuǎn)子等效阻抗。但該等效方法假設(shè)開槽轉(zhuǎn)子阻抗角為常數(shù),且等效透入深度的折算與實(shí)際情況有較大偏差。本文考慮轉(zhuǎn)子開槽后渦流沿齒槽分布的規(guī)律,計(jì)算開槽轉(zhuǎn)子等效極距,修正常用的式(2)中光滑實(shí)心轉(zhuǎn)子的端部系數(shù)KGibbs,得到開槽轉(zhuǎn)子端部系數(shù)Kslit。依舊結(jié)合二維有限元仿真計(jì)算,可考慮開槽后轉(zhuǎn)子阻抗角的變化。開槽轉(zhuǎn)子端部系數(shù)Kslit可表示為
(6)
當(dāng)轉(zhuǎn)差率較大、渦流等效透入深度小于齒寬度的一半時(shí),轉(zhuǎn)子渦流沿齒槽分布如圖3所示,齒壁和槽底的渦流呈現(xiàn)波浪形分布,渦流分布面積較光滑轉(zhuǎn)子有所增大,使開槽轉(zhuǎn)子的等效極距增大。此時(shí)轉(zhuǎn)子渦流分布示意圖如圖4所示,沿齒壁的渦流厚度從Δ衰減為Δ1,槽底渦流透入深度厚度近似為Δ1。Δ為由光滑轉(zhuǎn)子計(jì)算的透入深度,Δ1可參考文獻(xiàn)[7],根據(jù)有限元計(jì)算結(jié)果中轉(zhuǎn)子齒部和轉(zhuǎn)子槽底磁力線數(shù)量的比例估算槽底渦流透入深度Δ1,如式(7)所示。
(7)
圖3 轉(zhuǎn)差率較大時(shí)開槽實(shí)心轉(zhuǎn)子渦流分布Fig.3 Eddy current distribution in slit solid rotor under large slip condition
圖4 轉(zhuǎn)差率較大時(shí)開槽實(shí)心轉(zhuǎn)子渦流分布示意圖Fig.4 Schematic diagram of eddy current distribution in slit solid rotor under large slip condition
通常,實(shí)心轉(zhuǎn)子的開槽深度都大于轉(zhuǎn)子齒寬的一半。假設(shè)透入深度層內(nèi)電流密度均勻分布且相同,將齒壁渦流折算到轉(zhuǎn)子表面等效透入深度層渦流,從而將轉(zhuǎn)子極距τ修正為等效極距τ′,如式(8)所示。
τ′=Nslit[bt+bs+(Δ1+Δ)(h-Δ)/Δ]
Δ≤0.5btΔ≤h
(8)
式中,Nslit為轉(zhuǎn)子每極槽數(shù)。
當(dāng)轉(zhuǎn)差率較小、渦流等效透入深度大于齒寬度的一半且小于槽深時(shí),轉(zhuǎn)子渦流在齒部被擠壓到齒底,沿齒槽分布如圖5a所示。此時(shí),轉(zhuǎn)子渦流分布示意圖如圖6所示,同樣將齒壁渦流折算至轉(zhuǎn)子表面渦流,得到轉(zhuǎn)子等效極距τ′的表達(dá)式為
τ′=Nslit[bt+bs+(0.5bt+Δ1)(h-Δ)/Δ]
Δ>0.5btΔ≤h
(9)
當(dāng)轉(zhuǎn)差率較小、渦流等效透入深度大于齒寬度的一半且大于槽深時(shí),渦流分布形式類似光滑轉(zhuǎn)子的渦流分布,如圖5b所示。此時(shí),轉(zhuǎn)子等效極距τ′的表達(dá)式為
τ′=Nslit(bt+bs)Δ>0.5btΔ>h
(10)
根據(jù)表1中不同槽數(shù)的開槽實(shí)驗(yàn)樣機(jī)參數(shù),可計(jì)算式(6)中不同槽數(shù)的開槽轉(zhuǎn)子端部系數(shù)K36slits和K72slits。繪制式(1)~式(5)以及開槽轉(zhuǎn)子端部系數(shù)隨轉(zhuǎn)差率變化的曲線,如圖7所示。從圖7中可看出開槽轉(zhuǎn)子端部系數(shù)不再是常數(shù),隨轉(zhuǎn)差率增大而增大。且轉(zhuǎn)子槽數(shù)越多,開槽轉(zhuǎn)子端部系數(shù)增大得越大。
圖5 轉(zhuǎn)差率較小時(shí)開槽實(shí)心轉(zhuǎn)子渦流分布Fig.5 Eddy current distribution in slit solid rotor under small slip condition
圖6 轉(zhuǎn)差率較小時(shí)開槽實(shí)心轉(zhuǎn)子渦流分布示意圖Fig.6 Schematic diagram of eddy current distribution in slit solid rotor under small slip condition
圖7 端部系數(shù)隨轉(zhuǎn)差率變化曲線Fig.7 Rotor end factor curves change with slip
實(shí)心轉(zhuǎn)子開槽數(shù)量變化將影響轉(zhuǎn)子渦流分布規(guī)律,進(jìn)而影響轉(zhuǎn)子等效阻抗。為檢驗(yàn)第2節(jié)中提出的開槽實(shí)心轉(zhuǎn)子端部系數(shù)的準(zhǔn)確性,本節(jié)制造了兩臺(tái)定子相同,轉(zhuǎn)子槽數(shù)分別為36和72的開槽實(shí)心轉(zhuǎn)子試驗(yàn)樣機(jī),其轉(zhuǎn)子結(jié)構(gòu)如圖8所示,其余主要參數(shù)見表1。
圖8 開槽實(shí)心轉(zhuǎn)子Fig.8 Experimental slit solid rotors
有限元軟件和計(jì)算機(jī)硬件的發(fā)展為考慮電機(jī)鐵心磁路飽和提供了手段和工具。當(dāng)考慮開槽實(shí)心轉(zhuǎn)子中的渦流效應(yīng)時(shí),只能采用諧波場(chǎng)或瞬態(tài)場(chǎng)計(jì)算。雖然瞬態(tài)場(chǎng)計(jì)算能更全面地考慮空間諧波磁場(chǎng),但耗時(shí)長(zhǎng),本文采用二維非線性諧波場(chǎng)近似計(jì)算。
采用諧波場(chǎng)計(jì)算時(shí),定、轉(zhuǎn)子都靜止??紤]速度效應(yīng)的二維諧波場(chǎng)無(wú)法計(jì)算磁路非線性的工況,因此必須對(duì)轉(zhuǎn)子運(yùn)動(dòng)進(jìn)行頻率折算。而開槽實(shí)心轉(zhuǎn)子等效阻抗參數(shù)隨著轉(zhuǎn)差率變化,且與透入深度密切相關(guān)。若折算至定子頻率計(jì)算,轉(zhuǎn)子不動(dòng),依據(jù)轉(zhuǎn)差率線性修改轉(zhuǎn)子電阻率,相當(dāng)于改變了實(shí)際的透入深度,即改變了轉(zhuǎn)子的等效阻抗,與實(shí)際不符。
因此,本文采用折算到轉(zhuǎn)差頻率的非線性諧波場(chǎng),將輸入電壓以及定子繞組電阻率分別乘以轉(zhuǎn)差率,避免了由轉(zhuǎn)差率修改轉(zhuǎn)子電阻率時(shí)引起透入深度的改變。由第2節(jié)中提出的開槽轉(zhuǎn)子端部系數(shù)和五個(gè)光滑轉(zhuǎn)子端部系數(shù)分別修正轉(zhuǎn)子電阻率,近似考慮轉(zhuǎn)子端部效應(yīng),計(jì)算開槽實(shí)心轉(zhuǎn)子樣機(jī)的輸出轉(zhuǎn)矩。
定子線電壓有效值為220 V和140 V,電壓頻率為50 Hz,在不同轉(zhuǎn)差率工況下,進(jìn)行電機(jī)負(fù)載實(shí)驗(yàn)。對(duì)比采用不同端部系數(shù)計(jì)算36槽實(shí)心轉(zhuǎn)子電機(jī)轉(zhuǎn)矩與實(shí)驗(yàn)測(cè)量轉(zhuǎn)矩,如圖9所示。
在不同工況下,由36槽實(shí)心轉(zhuǎn)子電機(jī)計(jì)算轉(zhuǎn)矩的相對(duì)誤差取絕對(duì)值并做出柱狀圖,如圖10所示。
從圖9和圖10可看出,在轉(zhuǎn)差率較小時(shí),電機(jī)輸出轉(zhuǎn)矩本身較小,且采用有限元法計(jì)算電機(jī)轉(zhuǎn)矩時(shí)忽略了電機(jī)的機(jī)械損耗,因此多數(shù)計(jì)算轉(zhuǎn)矩都大于實(shí)際測(cè)量轉(zhuǎn)矩。如圖9所示,采用光滑轉(zhuǎn)子端部系數(shù)KGibbs的計(jì)算結(jié)果在轉(zhuǎn)差率較小時(shí)與實(shí)驗(yàn)較接近,但隨著轉(zhuǎn)差率增大,其計(jì)算結(jié)果與實(shí)驗(yàn)結(jié)果的絕對(duì)誤差增大。從圖10也可看出,采用光滑實(shí)心轉(zhuǎn)子常用的端部系數(shù)KGibbs的計(jì)算結(jié)果在轉(zhuǎn)差率增大時(shí),其誤差仍大于10%。在轉(zhuǎn)差率較大時(shí),透入深度效應(yīng)顯著,轉(zhuǎn)子開槽對(duì)渦流分布影響的作用也更為顯著。而轉(zhuǎn)差率增大時(shí),采用開槽實(shí)心轉(zhuǎn)子端部系數(shù)K36slits的計(jì)算結(jié)果與實(shí)驗(yàn)結(jié)果較吻合。另外,采用光滑轉(zhuǎn)子端部系數(shù)KO′Kelly的計(jì)算結(jié)果與實(shí)驗(yàn)結(jié)果也較為接近。從圖9中也可看到,36槽實(shí)心轉(zhuǎn)子端部系數(shù)K36slits隨轉(zhuǎn)差率增大,且很快趨近于光滑端部系數(shù)KO′Kelly。
圖9 36槽實(shí)心轉(zhuǎn)子電機(jī)不同工況端部系數(shù)計(jì)算轉(zhuǎn)矩與實(shí)驗(yàn)轉(zhuǎn)矩比較Fig.9 Comparison of simulation results and experiment results for slit solid rotor machine with 36 slits under different conditions
圖10 36槽實(shí)心轉(zhuǎn)子電機(jī)不同工況轉(zhuǎn)矩計(jì)算誤差比較Fig.10 Comparison of torque calculation errors for slit solid rotor machine with 36 slits under different conditions
定子線電壓有效值為220 V和140 V,電壓頻率為50 Hz,在不同轉(zhuǎn)差率工況下,進(jìn)行電機(jī)負(fù)載實(shí)驗(yàn)。對(duì)比采用不同端部系數(shù)計(jì)算72槽實(shí)心轉(zhuǎn)子電機(jī)轉(zhuǎn)矩與實(shí)驗(yàn)測(cè)量轉(zhuǎn)矩,如圖11所示。
在不同工況下,根據(jù)72槽實(shí)心轉(zhuǎn)子電機(jī)計(jì)算轉(zhuǎn)矩的相對(duì)誤差取絕對(duì)值并做出柱狀圖,如圖12所示。
從圖11和圖12可看出,對(duì)于72槽實(shí)心轉(zhuǎn)子電機(jī),采用光滑轉(zhuǎn)子端部系數(shù)計(jì)算的電機(jī)轉(zhuǎn)矩與實(shí)驗(yàn)測(cè)量轉(zhuǎn)矩的誤差多在20%以上,甚至更大。如圖12b所示,采用光滑轉(zhuǎn)子端部系數(shù)KO′Kelly計(jì)算轉(zhuǎn)矩的誤差也非常明顯,因此端部系數(shù)KO′kelly不再適用于72槽的開槽實(shí)心轉(zhuǎn)子電機(jī)。而采用開槽實(shí)心轉(zhuǎn)子端部系數(shù)K72slits的計(jì)算結(jié)果與實(shí)驗(yàn)結(jié)果吻合較好,充分說(shuō)明本文提出的開槽實(shí)心轉(zhuǎn)子端部系數(shù)的通用性與有效性。
圖11 72槽實(shí)心轉(zhuǎn)子電機(jī)不同工況端部系數(shù)計(jì)算轉(zhuǎn)矩與實(shí)驗(yàn)轉(zhuǎn)矩比較Fig.11 Comparison of experiment results and simulation results for slit solid rotor machine with 72 slits under different conditions
圖12 72槽實(shí)心轉(zhuǎn)子電機(jī)不同工況端部系數(shù)計(jì)算轉(zhuǎn)矩與實(shí)驗(yàn)轉(zhuǎn)矩比較Fig.12 Comparison of torque calculation errors for slit solid rotor machine with 72 slits under different conditions
本文依據(jù)開槽實(shí)心轉(zhuǎn)子渦流分布隨轉(zhuǎn)差率變化的規(guī)律,計(jì)算開槽實(shí)心轉(zhuǎn)子等效極距,并提出適用于開槽轉(zhuǎn)子的端部系數(shù)。該開槽實(shí)心轉(zhuǎn)子端部系數(shù)隨轉(zhuǎn)差率增大而增大,且轉(zhuǎn)子槽數(shù)越多,端部系數(shù)增大得越多。本文建立了兩臺(tái)不同槽數(shù)開槽實(shí)心轉(zhuǎn)子樣機(jī)的有限元諧波場(chǎng)模型,可考慮定、轉(zhuǎn)子鐵心磁路飽和。結(jié)合現(xiàn)有的不同光滑轉(zhuǎn)子端部系數(shù)和提出的開槽轉(zhuǎn)子端部系數(shù)修正轉(zhuǎn)子電阻率,近似考慮轉(zhuǎn)子端部效應(yīng)的作用。在不同工況下,比較了實(shí)驗(yàn)樣機(jī)轉(zhuǎn)矩的仿真計(jì)算和實(shí)驗(yàn)結(jié)果,說(shuō)明了現(xiàn)有的光滑實(shí)心轉(zhuǎn)子端部系數(shù)不適用于開槽實(shí)心轉(zhuǎn)子電機(jī),尤其在轉(zhuǎn)差率較大工況下。驗(yàn)證了本文提出的開槽實(shí)心轉(zhuǎn)子端部系數(shù)在全轉(zhuǎn)差率范圍的有效性,可以用于開槽實(shí)心轉(zhuǎn)子電機(jī)的參數(shù)計(jì)算與優(yōu)化設(shè)計(jì)。
[1] Gerada D,Mebarki A,Brown N L,et al.High-speed electrical machines:technologies,trends,and developments[J].IEEE Transactions on Industrial Electronics,2014,61(6):2946-2959.
[2] 張鳳閣,杜光輝,王天煜,等.高速電機(jī)發(fā)展與設(shè)計(jì)綜述[J].電工技術(shù)學(xué)報(bào),2016,31(7):1-18. Zhang Fengge,Du Guanghui,Wang Tianyu,et al.Review on development and design of high speed machines[J].Transactions of China Electrotechnical Society,2016,31(7):1-18.
[3] Arkkio A,Jokinen T,Lantto E.Induction and permanent-magnet synchronous machines for high-speed applications[C]//Proceedings of the Eighth International Conference on Electrical Machines and Systems,2005,2:871-876.
[4] Pyrhonen J,Nerg J,Kurronen P,et al.High-speed high-output solid-rotor induction-motor technology for gas compression[J].IEEE Transactions on Industrial Electr-onics,2010,57(1):272-280.
[5] 馮爾健.鐵磁體實(shí)心轉(zhuǎn)子異步電機(jī)理論與計(jì)算[M].北京:科學(xué)出版社,1980.
[6] Aho T,Nerg J,Pyrhonen J.The effect of the number of rotor slits on the performance characteristics of medium-speed solid rotor induction motor[C]//The 3rd IET International Conference on Power Electronics,Machines and Drives,2006:515-519.
[7] 唐孝鎬.實(shí)心轉(zhuǎn)子異步電機(jī)及其應(yīng)用[M].北京:機(jī)械工業(yè)出版社,1991.
[8] Dorairaj K R,Krishnamurthy M R.Polyphase induction machine with a slitted ferromagnetic rotor:II-analysis[J].IEEE Transactions on Power Apparatus & Systems,1967,PAS-86(7):844-855.
[9] Zaim M E.Non-linear models for the design of solid rotor induction machines[J].IEEE Transactions on Magnetics,1999,35(3):1310-1313.
[10]Gessese Y,Binder A.Axially slitted,high-speed solid-rotor induction motor technology with copper end-rings[C]//International Conference on Electrical Machines and Systems,2009:1-6.
[11]Jagiela M,Garbiec T.Evaluation of rotor-end factors in solid-rotor induction motors[J].IEEE Transactions on Magnetics,2012,48(1):137-142.
[12]O′Kelly D.Theory and performance of solid-rotor induction and hysteresis machines[J].Proceedings of the Institution of Electrical Engineers,1976,123(5):421-428.
[13]Gibbs W J.Induction and synchronous motors with unlaminated rotors[J].Journal of the Institution of Electrical Engineers-Part II:Power Engineering,1948,95(46):411-420.
[14]Russel R L,Norsworthy K H.Eddy currents and wall losses in screened-rotor induction motors[J].Procee-dings of the IEE-Part A:Power Engineering,1958,105(20):163-175.
[15]Yee H.Effects of finite length in solid-rotor induction machines[J].Proceedings of the Institution of Electrical Engineers,1971,118(8):1025-1033.
[16]傅豐禮.異步電動(dòng)機(jī)設(shè)計(jì)手冊(cè)[M].北京:機(jī)械工業(yè)出版社,2002.
[17]兵器工業(yè)無(wú)損檢測(cè)人員技術(shù)資格鑒定考核委員會(huì).常用鋼材磁特性曲線速查手冊(cè)[M].北京:機(jī)械工業(yè)出版社,2003.
[18]黃子果,王善銘,倪守輝.光滑實(shí)心轉(zhuǎn)子異步電機(jī)等效電路參數(shù)的二維計(jì)算方法[J].中國(guó)電機(jī)工程學(xué)報(bào),2016,36(9):2505-2512. Huang Ziguo,Wang Shanming,Ni Shouhui.2D calcul-ation methods of equivalent-circuit parameters in smooth solid rotor induction machines[J].Proceedings of the CSEE,2016,36(9):2505-2512.
(編輯 于玲玲)
Calculation and Comparison of Rotor End Factors of Solid Rotor Induction Machines with Axial Slits
HuangZiguo1WangShanming1SunYuguang1CaoHaixiang1YangZhanlu1,2
(1.State Key Laboratory of Control and Simulation of Power System and Generation Equipments Department of Electrical Engineering Tsinghua University Beijing 100084 China 2.Navy Submarine Academy Qingdao 266100 China)
When the nonlinearity of rotor magnetic circuit is taken into account,the huge computation of 3D finite element calculation of slitted solid rotor magnetic field is unavoidable.To simplify the calculation,the 2D FEM combined with end factors of smooth solid rotor is adopted generally.However,the calculation error increases along with the increase of slip when applying end factors of smooth solid rotor for the slitted rotor.This paper puts forward a new rotor end factor for slitted solid rotor using an approximate calculation method due to the eddy current distribution in the slitted rotor.With the 2D FEM and the raised end factor,the effect of saturation in both stator and rotor core and the axial finite length of rotor are taken into account.The calculation results using different smooth rotor end factors and the raised slitted rotor end factor are compared with each other.And the simulation results using slitted rotor end factor agree well with the experimental test results on model machines with different number of rotor slitted.This indicates the raised slitted rotor end factor is suitable for the parameter calculation and optimal design of slitted solid-rotor induction machine.
Slitted solid rotor,rotor end factor,2D FEM
國(guó)家自然科學(xué)基金項(xiàng)目(51177077)和國(guó)家科技支撐計(jì)劃項(xiàng)目(2014BAA04B02)資助。
2016-08-19 改稿日期2016-12-21
10.19595/j.cnki.1000-6753.tces.L70314
TM346
黃子果 男,1990年生,博士研究生,研究方向?yàn)閷?shí)心轉(zhuǎn)子電機(jī)設(shè)計(jì)和多相電機(jī)內(nèi)部短路故障分析。
E-mail:huangzg.2007@163.com(通信作者)
王善銘 男,1972年生,副教授,研究方向?yàn)樘厥怆姍C(jī)設(shè)計(jì)分析、發(fā)電機(jī)內(nèi)部故障分析和電機(jī)電磁場(chǎng)分析。
E-mail:wangsm96@mails.tsinghua.edu.cn