蘇良銀白曉虎陸紅軍黃婷吳華正達(dá)引朋
1.中國(guó)石油長(zhǎng)慶油田分公司油氣工藝研究院;2.低滲透油氣田開發(fā)國(guó)家工程重點(diǎn)實(shí)驗(yàn)室;3.中國(guó)石油長(zhǎng)慶油田分公司第十采油廠
長(zhǎng)慶超低滲透油藏低產(chǎn)水平井重復(fù)改造技術(shù)研究及應(yīng)用
蘇良銀1,2白曉虎1,2陸紅軍1,2黃婷1,2吳華正3達(dá)引朋1,2
1.中國(guó)石油長(zhǎng)慶油田分公司油氣工藝研究院;2.低滲透油氣田開發(fā)國(guó)家工程重點(diǎn)實(shí)驗(yàn)室;3.中國(guó)石油長(zhǎng)慶油田分公司第十采油廠
受儲(chǔ)層致密低壓、完井改造程度低、長(zhǎng)期注采驅(qū)替難以建立等因素影響,鄂爾多斯盆地部分水平井產(chǎn)量遞減大而低產(chǎn)。通過對(duì)水平井典型注采井網(wǎng)的生產(chǎn)動(dòng)態(tài)進(jìn)行歷史擬合,研究了油藏壓力和剩余油分布特征。以擴(kuò)大儲(chǔ)層改造體積、增加裂縫復(fù)雜程度、恢復(fù)縫網(wǎng)導(dǎo)流、解除深部堵塞和提升地層能量為目的,集成體積壓裂與補(bǔ)充能量為一體進(jìn)行重復(fù)改造設(shè)計(jì),形成了水平井“高排量注入、兩級(jí)暫堵升壓、多功能壓裂液、壓后關(guān)井?dāng)U壓”的分段補(bǔ)能體積復(fù)壓工藝模式和配套的壓縮式雙封單卡組合管柱。優(yōu)化施工排量為4~6 m3/min,縫口縫內(nèi)兩級(jí)暫堵轉(zhuǎn)向,單段液量為800~1 000 m3,單段壓后關(guān)井1~2 d。在鄂爾多斯盆地超低滲透油藏開展了5口水平井現(xiàn)場(chǎng)試驗(yàn),單井補(bǔ)能體積復(fù)壓5~6段,井均日產(chǎn)油量由1.6 t提高至6.2 t,達(dá)到了本井投產(chǎn)初期產(chǎn)量,與同區(qū)塊常規(guī)復(fù)壓井相比日增油提高了1倍。井組地層能量上升2~4 MPa,1年累計(jì)增油量超過1 200 t,與本井初次壓裂投產(chǎn)相比年遞減率降低38%。該技術(shù)對(duì)其他非常規(guī)儲(chǔ)層提高水平井老井產(chǎn)量及最終采出程度有一定的借鑒。
鄂爾多斯盆地;低滲透油藏;水平井;重復(fù)改造;體積壓裂;補(bǔ)充地層能量;長(zhǎng)慶油田
鄂爾多斯盆地超低滲透油藏基質(zhì)滲透率低(<1.0 mD),地層壓力系數(shù)低(<0.8),采用常規(guī)直井壓裂開發(fā)效益差。隨著水平井鉆井+分段壓裂技術(shù)進(jìn)步與規(guī)模應(yīng)用,大幅提高了該類油藏的單井產(chǎn)量,初期產(chǎn)量 8~10 t,達(dá)到周圍直井的 4~5 倍[1]。然而,隨著生產(chǎn)時(shí)間的延長(zhǎng),受儲(chǔ)層物性致密、初次完井改造不充分及面積井網(wǎng)注水驅(qū)替系統(tǒng)難以建立等因素影響,部分壓裂水平井產(chǎn)量遞減較大[2],1年遞減30%~50%,2年遞減60%~80%,油藏壓力保持水平不足80%。對(duì)該類低產(chǎn)水平井如何進(jìn)行重復(fù)改造來(lái)提高單井產(chǎn)量是面臨的現(xiàn)實(shí)問題。近年來(lái),以北美頁(yè)巖氣、致密油為代表的非常規(guī)油氣田重點(diǎn)針對(duì)初次改造不充分的水平井開展了重復(fù)壓裂探索試驗(yàn),主要針對(duì)初次改造不充分的井段,通過段間或簇間補(bǔ)孔,考慮施工效率和作業(yè)成本,主體工藝采用光套管多級(jí)暫堵壓裂工藝重復(fù)改造[3-5],取得了較好的增產(chǎn)效果,但該技術(shù)是籠統(tǒng)壓裂,不能定點(diǎn)壓裂,且分段壓裂規(guī)模不能確定。國(guó)內(nèi)針對(duì)非常規(guī)油藏低產(chǎn)水平井重復(fù)壓裂也開展了探索試驗(yàn),主要針對(duì)初次改造程度較低的水平井,采用雙封單卡拖動(dòng)[5]或套內(nèi)封隔器滑套分段壓裂工藝[6-7]定點(diǎn)改造,但也存在管柱復(fù)雜、作業(yè)效率較低等問題。筆者以鄂爾多斯盆地超低滲透油藏水平井為研究對(duì)象,在剖析遞減原因和剩余油分布特征的基礎(chǔ)上,提出通過增加儲(chǔ)層改造體積兼顧補(bǔ)充地層能量來(lái)提高單井產(chǎn)量、改善開發(fā)效果,最終形成了一種適合該類儲(chǔ)層水平井的重復(fù)壓裂方法。
Reservoir characteristics and horizontal well development summary
以華慶長(zhǎng)X層系為代表的超低滲透油藏儲(chǔ)層致密,基質(zhì)滲透率0.3 mD,孔隙度10%~12%,孔喉中值半徑 0.1~0.2 μm,油藏埋深 2 000~2 200 m,地層壓力系數(shù)0.7~0.8[8]。該類油藏初次采用水平井五點(diǎn)注采井網(wǎng)開發(fā),1口水平采油井對(duì)應(yīng)4口直井注水井,水平段長(zhǎng)度600~800 m,井距600 m,排距150 m。水平井井眼垂直于最大主應(yīng)力方位,通過水力噴砂分段壓裂工藝改造,形成多條單一橫切裂縫,采用“紡錘型”布縫方式,半縫長(zhǎng)依次為 120、140、160、180、180、180、160、140、120 m(見 圖 1)。 裂 縫 段 間 距60~80 m,單井平均改造8~10段。投產(chǎn)初期單井產(chǎn)量8~10 t/d,但整體表現(xiàn)為遞減較大的特征,1年后遞減至 4~6 t/d,2 年后遞減至 2~4 t/d。
圖1 五點(diǎn)井網(wǎng)及布縫示意圖Fig. 1 Five-spot pattern and fracture distribution sketch
通過對(duì)比分析同區(qū)塊水平井生產(chǎn)動(dòng)態(tài),其遞減原因主要包括3個(gè)方面:一是初次改造裂縫間距大,不能完全控制儲(chǔ)量;二是單段改造規(guī)模小,橫向、縱向上儲(chǔ)層改造體積有限;三是致密儲(chǔ)層存在啟動(dòng)壓力梯度[9-10],面積井網(wǎng)注水難以建立有效驅(qū)替,特別是水平段中部地層能量補(bǔ)充困難,導(dǎo)致地層流體有效滲流距離(油藏任意點(diǎn)與人工裂縫或井筒的距離)大幅減?。ㄒ娛?)。以基質(zhì)滲透率0.3 mD、初始地層壓力16 MPa油藏為例,其初始有效滲流距離為36 m,段間距60~80 m可滿足滲流要求,但地層壓力下降至10 MPa時(shí)有效距離僅16 m(見圖2),人工裂縫已不能完全控制段間與縫端的流體流動(dòng)。
式中,L為有效滲流距離,m;p為地層壓力,MPa;pe為井底流壓,MPa;G為啟動(dòng)壓力梯度,MPa/m。
圖2 不同地層壓力下有效滲流距離Fig. 2 Effective seepage distance under different formation pressure
The pressure field of horizontal well and the distribution of remaining oil
綜合儲(chǔ)層物性參數(shù)、注采井網(wǎng)形式及布縫方式,建立了五點(diǎn)注采井網(wǎng)數(shù)值模型,對(duì)生產(chǎn)動(dòng)態(tài)歷史擬合,模擬其生產(chǎn)2.5年后壓力場(chǎng)及剩余油分布規(guī)律。模擬結(jié)果表明,距離水井越遠(yuǎn),地層壓力越低,水平段中部為明顯的低壓區(qū)域,且儲(chǔ)量動(dòng)用集中于近裂縫地帶,剩余油富集于裂縫之間(見圖3),整體動(dòng)用程度較低,重復(fù)改造的增產(chǎn)潛力較大。
圖3 QP水平井壓力場(chǎng)與剩余油場(chǎng)分布Fig. 3 The pressure feld of horizontal Well QP and the distribution of remaining oil
Design of repeated volumetric fracturing stimulation of low-yield horizontal well
國(guó)內(nèi)外非常規(guī)儲(chǔ)層水平井開發(fā)實(shí)踐表明,其增產(chǎn)效果與儲(chǔ)層泄流體積[11-12]、地層能量保持水平[13]相關(guān)性強(qiáng),因此實(shí)現(xiàn)致密油藏水平井增產(chǎn)的核心在于增加油藏泄流體積,同時(shí)兼顧改造區(qū)域內(nèi)的地層能量的補(bǔ)充?;诔蜐B透油藏五點(diǎn)井網(wǎng)水平井遞減原因、壓力場(chǎng)和剩余油場(chǎng)分布特征,提出了對(duì)距離水線較遠(yuǎn)的水平段中部的裂縫實(shí)施分段體積壓裂重復(fù)改造的思路,在提高單井產(chǎn)量的同時(shí)規(guī)避見水風(fēng)險(xiǎn)。該方法將體積壓裂與補(bǔ)充能量集為一體,一是通過高排量和多級(jí)暫堵進(jìn)一步增加儲(chǔ)層改造體積和裂縫復(fù)雜程度,縮短流體滲流距離,動(dòng)用縫間和井間剩余油,二是借助壓裂將大量多功能液體高排量注入地層,并在施工結(jié)束后關(guān)井,充分發(fā)揮滲析平衡作用實(shí)現(xiàn)油水置換,同時(shí)擴(kuò)散壓力進(jìn)一步補(bǔ)充油藏深部地層能量,形成水平井“高排量注入、兩級(jí)暫堵升壓、多功能壓裂液、壓后關(guān)井?dāng)U壓”的分段體積復(fù)壓工藝模式。
Staged repeated volumetric fracturing
非常規(guī)油氣藏儲(chǔ)層改造體積(SRV)越大,單井產(chǎn)量越高[13-14]。為獲得較大的油藏泄流體積,可通過高排量泵注和多級(jí)暫堵,提高縫內(nèi)凈壓力,開啟天然微裂縫,形成復(fù)雜的裂縫網(wǎng)絡(luò)。
3.1.1 施工排量?jī)?yōu)化 鄂爾多斯盆地超低滲透油藏水平兩向應(yīng)力差較?。ㄋ絻上驊?yīng)力差4~6 MPa,非均質(zhì)系數(shù)小于 0.12~0.20),天然微裂縫發(fā)育(0.12~0.35條 /m),巖石脆性指數(shù)較高(40%~50%),具備體積壓裂形成復(fù)雜裂縫網(wǎng)絡(luò)的條件[15-18]。根據(jù)Warpinski和 Teufel提出的破裂準(zhǔn)則[19],當(dāng)天然裂縫發(fā)生張性斷裂時(shí),所需的縫內(nèi)凈壓力為
式中,pn為凈壓力,MPa;σH為最大水平主應(yīng)力,MPa;σh為最小水平主應(yīng)力,MPa;θ為天然裂縫與水平最大主應(yīng)力方位夾角,°。
以華慶長(zhǎng)X超低滲透油藏為例,其初始水平兩向應(yīng)力差 5~6 MPa,當(dāng)式(2)中 θ為 90°,即天然裂縫與水平最大主應(yīng)力方位夾角垂直時(shí),天然裂縫張開所需的縫內(nèi)凈壓力為5~6 MPa。且水平井生產(chǎn)2年孔隙壓力下降導(dǎo)致兩向應(yīng)力差降低1~2 MPa[20],更有助于張開微裂縫、增加儲(chǔ)層改造體積。研究表明,裂縫縫內(nèi)凈壓力與施工排量正相關(guān)、與儲(chǔ)層厚度負(fù)相關(guān)(見式 3)[21-22],其中 KIC/H4值較小,可忽略不計(jì)。華慶長(zhǎng)X一口油層厚度為20 m的定向井新井在2.0 m3/min排量下實(shí)測(cè)凈壓力為3.5 MPa,將該儲(chǔ)層厚度、施工排量下實(shí)測(cè)的凈壓力與式(3)聯(lián)合計(jì)算(式4),即可獲得不同儲(chǔ)層厚度、施工排量下的凈壓力圖版(圖4),從而反算體積壓裂所需排量。按華慶長(zhǎng)X油層厚度20 m、水平井老井的兩向應(yīng)力差4~5 MPa計(jì)算,實(shí)現(xiàn)地層天然微裂縫張開的排量為4~6 m3/min。
式中,E為彈性模量,MPa;H為裂縫高度,m;Q為施工排量,m3/min;μ為液體黏度,mPa·s;L為裂縫半長(zhǎng),m;KIC為巖石斷裂韌性,MPa。
圖4 不同儲(chǔ)層厚度下凈壓力與施工排量關(guān)系曲線Fig. 4 Relationship between net pressure and construction displacement for different reservoir thickness
3.1.2 多級(jí)暫堵優(yōu)化 在獲得較大儲(chǔ)層改造體積的同時(shí),為進(jìn)一步增加裂縫與油藏接觸面積,在施工過程中加入不同尺度的暫堵劑促使裂縫復(fù)雜化。一是在施工初期加入大尺度的暫堵劑(4~6 mm油溶性暫堵劑、8~16目石英砂及自降解纖維)在近井筒及縫口堆積,封堵原始裂縫孔眼,增加井底凈壓力,將裂縫轉(zhuǎn)至未起裂的孔眼開啟新簇;二是在施工中后期加入小尺度暫堵劑(1~3 mm油溶性暫堵劑、20~40目石英砂)在裂縫內(nèi)部橋堵,通過增加縫內(nèi)凈壓力開啟天然微裂縫,從而使裂縫向側(cè)向擴(kuò)展,更大程度上動(dòng)用縫間剩余油。暫堵劑濃度及加入用量根據(jù)現(xiàn)場(chǎng)壓力反映實(shí)時(shí)調(diào)整。
圖5是QP水平井第2段重復(fù)壓裂施工的實(shí)測(cè)凈壓力曲線,該曲線由縫內(nèi)凈壓力、泵注排量和支撐劑濃度組成,兩級(jí)暫堵劑皆由較高濃度的支撐劑攜帶加入。各參數(shù)變化范圍是排量4.5~6.0 m3/min,支撐劑濃度 120~700 kg/m3,凈壓力 3~5.5 MPa。從圖中可以看出,施工早期縫內(nèi)凈壓力為3.0~5 MPa,但受裂縫擴(kuò)展影響,凈壓力呈下降趨勢(shì)。在加入第1級(jí)近井筒暫堵劑后凈壓力升高2 MPa,在施工中后期加入第2級(jí)縫端暫堵劑后凈壓力又上升2 MPa。2次暫堵劑進(jìn)入地層后都有明顯的破裂壓力顯示,開啟新縫的可能性較大。從暫堵前后凈壓力曲線形態(tài)來(lái)看,凈壓力明顯提升并穩(wěn)定在5~6 MPa,滿足了地層所需凈壓力要求,而且呈鋸齒狀波動(dòng),表明形成的裂縫復(fù)雜程度較高。
圖5 QP水平井第2段兩級(jí)暫堵施工實(shí)測(cè)凈壓力曲線Fig. 5 Measured net pressure during the two-stage temporary plugging in the second section of horizontal Well QP
Formation energy complement
低壓油藏水平段中部區(qū)域地層能量快速下降是遞減的原因之一。近年來(lái)國(guó)內(nèi)外致密油儲(chǔ)層礦場(chǎng)實(shí)踐探索了注水吞吐采油的開發(fā)方式,即水平井分段壓裂后衰竭式開采,待地層能量不足通過注水悶井來(lái)提高本井和鄰井產(chǎn)量[22]。其增產(chǎn)機(jī)理一方面是滲析平衡,即在毛細(xì)管力作用下水與原油置換實(shí)現(xiàn)本井增產(chǎn),另一方面是對(duì)低壓油藏的能量補(bǔ)充實(shí)現(xiàn)鄰井增產(chǎn)。以此為借鑒,將水平井重復(fù)壓裂與補(bǔ)充地層能量相結(jié)合,一方面利用壓裂液的造縫、攜砂,另一方面采用多功能壓裂液分階段泵注施工,并在壓后實(shí)施關(guān)井?dāng)U壓,兼顧了地層能量的有效補(bǔ)充。
3.2.1 壓裂液組合及液量?jī)?yōu)化 具體分3個(gè)階段泵注3種類型液體:首先小排量擠入弱酸性的解堵液預(yù)處理,清洗井筒孔眼、近井筒地帶、深部裂縫壁面及微裂縫通道;其次高排量注入大量的低摩阻表面活性劑類的驅(qū)油型壓裂液,補(bǔ)充深部地層能量,實(shí)現(xiàn)井組內(nèi)本井段裂縫注入,而鄰井相應(yīng)裂縫段受效的目的;最后泵注攜帶組合粒徑支撐劑的交聯(lián)壓裂液,用于獲得滿足油藏長(zhǎng)期導(dǎo)流能力的主支裂縫網(wǎng)絡(luò)系統(tǒng)。
入地液量參照單段累計(jì)虧空液量、基質(zhì)滲透率和超前注水地層能量保持水平計(jì)算[9]
式中,V為單段壓裂液量,m3;Vk為單段虧空液量,m3;k0為基質(zhì)滲透率,mD。
單段液量?jī)?yōu)化為800~1 000 m3,從微地震監(jiān)測(cè)結(jié)果來(lái)看,裂縫半長(zhǎng)245~275 m(圖6),基本覆蓋了水平井井距600 m左右的控制區(qū)域。
圖6 華慶長(zhǎng)X區(qū)塊Y297-61井體積壓裂重復(fù)改造井下微地震監(jiān)測(cè)圖Fig. 6 Downhole micro seismic monitoring diagram of repeated volumetric fracturing stimulation in Well Y297-61 in Chang X block of Huaqing
3.2.2 壓后關(guān)井?dāng)U散壓力時(shí)間優(yōu)化 施工結(jié)束后通過井口關(guān)井強(qiáng)制擴(kuò)散地層壓力進(jìn)一步提高補(bǔ)充地層能量效率。井底壓力、溫度監(jiān)測(cè)結(jié)果表明(見圖7),在關(guān)井0.5~1.0 d后壓力、溫度導(dǎo)數(shù)接近于0(見圖8)。同時(shí)圖9的壓力-時(shí)間雙對(duì)數(shù)曲線中1/2和-1/2切線的交點(diǎn)表明,在0.5~1.0 d內(nèi)流體流態(tài)由裂縫線性流轉(zhuǎn)為地層線性流,受啟動(dòng)壓力梯度影響,基質(zhì)滲流阻力增大,壓力基本不再擴(kuò)散,此時(shí)可結(jié)束關(guān)井。
圖7 QP水平井第2段壓后關(guān)井壓力降落曲線Fig. 7 Shut-in pressure decline after the fracturing of the second section in horizontal Well QP
圖8 QP水平井第2段關(guān)井壓力與時(shí)間雙對(duì)數(shù)曲線Fig. 8 Log-log plot of shut-in pressure and time of the second section in horizontal Well QP
Support construction string
因水平井老井初次改造井筒射開程度高,需對(duì)目的重復(fù)改造井段與其他井段進(jìn)行隔離。擴(kuò)張式雙封單卡管柱是水平井拖動(dòng)分段作業(yè)常用的工具[5],但該管柱需一定的施工排量才能保持坐封,停泵后易解封,不能實(shí)現(xiàn)定點(diǎn)關(guān)井?dāng)U散壓力。為此設(shè)計(jì)了不依賴排量坐封的壓縮式(Y211+Y111)雙封單卡管柱,管柱組合由上而下為:油管至井口+安全接頭+油管+反洗閥+水力錨+Y111封隔器+調(diào)整油管+噴砂器+單流閥+伸縮補(bǔ)償器+Y211封隔器。該管柱操作步驟為:首先預(yù)置在目的重復(fù)壓裂井段,通過井口上提管柱1.5~2.0 m將底部Y211封隔器變換軌道,然后下放管柱壓縮膠筒實(shí)現(xiàn)坐封;Y211封隔器坐封后,對(duì)上部管柱提供錨定支撐,管柱繼續(xù)下放壓縮Y111封隔器膠筒使其坐封。該壓縮式雙封單卡管柱坐封后可實(shí)現(xiàn)任意排量注入,且在停泵后保持坐封,在井口關(guān)井可實(shí)現(xiàn)定點(diǎn)擴(kuò)散壓力。完成目的井段重復(fù)壓裂后上提管柱即可解封,拖動(dòng)至下一井段重復(fù)上述工序來(lái)完成多段壓裂和關(guān)井測(cè)壓降作業(yè)。該管柱耐壓70 MPa,耐溫120 ℃,滿足鄂爾多斯盆地超低滲透油藏儲(chǔ)層水平井重復(fù)壓裂要求。同時(shí)通過增加直井段油管內(nèi)徑(直井段77.9 mm+水平段62 mm)和應(yīng)用低摩阻壓裂液,該管柱可以實(shí)現(xiàn)分段中高排量泵注,現(xiàn)場(chǎng)最高施工排量達(dá)到了6 m3/min(圖 5)。
Field test
在鄂爾多斯盆地超低滲透油藏開展了5口水平井體積壓裂重復(fù)改造試驗(yàn),井均體積復(fù)壓5~6段,單段支撐劑量 50~60 m3,排量 4~6 m3/min,液量 800~1 000 m3,同時(shí)采用組合粒徑支撐劑、縫口縫內(nèi)兩級(jí)暫堵,單段壓后關(guān)井?dāng)U壓1~2 d。措施后平均單井日產(chǎn)油量由1.6 t/d提高至6.2 t/d,達(dá)到了本井投產(chǎn)初期產(chǎn)量,井組地層能量上升2~4 MPa,1年累計(jì)增油量達(dá)1 200 t。其中1口試驗(yàn)井的相鄰水平井受油藏壓力恢復(fù)影響,也見到了增產(chǎn)效果,日產(chǎn)油量由1.5 t/d上升到3.0 t/d,累計(jì)增油量達(dá)100 t。
長(zhǎng)期跟蹤發(fā)現(xiàn),5口體積復(fù)壓水平井與同區(qū)塊常規(guī)復(fù)壓水平井相比,井均日增油由2.3 t提高至4.6 t(見圖9)。圖10為體積復(fù)壓復(fù)產(chǎn)與本井初次壓裂投產(chǎn)的月產(chǎn)油量對(duì)比曲線,可以看出復(fù)壓后1年產(chǎn)量遞減率30%,明顯小于初次壓裂后的產(chǎn)量遞減率68%?,F(xiàn)場(chǎng)試驗(yàn)結(jié)果表明,體積壓裂重復(fù)改造技術(shù)改善了超低滲透油藏低產(chǎn)水平井的開發(fā)效果。
圖9 水平井體積復(fù)壓與常規(guī)復(fù)壓生產(chǎn)曲線對(duì)比Fig. 9 Comparison of production curve between repeated volumetric fracturing and conventional repeated fracturing of horizontal well
圖10 水平井體積復(fù)壓與初次壓裂生產(chǎn)曲線對(duì)比Fig. 10 Comparison of production curve between repeated volumetric fracturing and initial fracturing of horizontal well
Conclusions
(1)長(zhǎng)慶油田超低滲透油藏水平井產(chǎn)量遞減大,主要受儲(chǔ)層致密、初次完井工藝不充分、注水驅(qū)替系統(tǒng)難以建立等因素影響。
(2)水平井體積壓裂重復(fù)改造集成體積壓裂與補(bǔ)充能量為一體,通過體積壓裂增加儲(chǔ)層改造體積和裂縫復(fù)雜程度,同時(shí)實(shí)現(xiàn)了油藏深部能量有效補(bǔ)充,可以達(dá)到縮短流體滲流距離、降低地層滲流阻力的目的。
(3)“中高排量注入、多級(jí)暫堵、多功能壓裂液、壓后關(guān)井?dāng)U壓”的分段體積復(fù)壓工藝對(duì)改善超低滲透油藏低產(chǎn)水平井開發(fā)效果具有較好的適應(yīng)性。
[1] 白曉虎,齊銀,陸紅軍,段鵬輝,顧燕凌,吳甫讓 .鄂爾多斯盆地致密油水平井體積壓裂優(yōu)化設(shè)計(jì)研究[J].石油鉆采工藝,2015,37(4):83-86.BAI Xiaohu, QI Yin, LU Hongjun, DUAN Penghui, GU Yanling, WU Furang. Optimization design for volume fracturing of horizontal wells in tight oil reservoir of Ordos Basin[J]. Oil Drilling & Production Technology,2015, 37(4): 83-86.
[2] 劉雄,王磊,王方,鄧曉梅,彭成敏.致密油藏水平井體積壓裂產(chǎn)能影響因素分析[J].特種油氣藏,2016,23(2):85-88.LIU Xiong, WANG Lei, WANG Fang, DENG Xiaomei,PENG Chengmin. Sensitivity analysis of volume-fractured horizontal well productivity in tight reservoir[J].Special Oil & Gas Reservoirs, 2016, 23(2): 85-88.
[3] DIAKHATE M, GAZAWI A, ROBERT B B, COSSIO M,TINNIN B, McDONALD B, BARZOLA G. Refracturing on horizontal wells in the Eagle Ford Shale in South Texas-one operator’s perspective[R]. SPE 173333,2015.
[4] KRENGER J T, FRASER J, GIBSON A J, WHITSETT A, MELCHER J, PERSAC S. Refracturing design for underperforming unconventional horizontal reservoirs[R].SPE 177306, 2015.
[5] 張春輝. 連續(xù)油管結(jié)合雙封單卡壓裂技術(shù)應(yīng)用[J].石油礦場(chǎng)機(jī)械,2014,43(5):60-61.ZHANG Chunhui. Application of coiled tubing frac technique using double-sealing and single-stick[J]. Oil Field Equipment, 2014, 43(5): 60-61.
[6] 柴國(guó)興,劉松,王慧莉,李繼志. 新型水平井不動(dòng)管柱封隔器分段壓裂技術(shù)[J]. 中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2010,34(4):142.CHAI Guoxing, LIU Song, WANG Huili, LI Jizhi. New single-trip staged fracturing technology with packer isolation in horizontal well[J]. Journal of China University of Petroleum(Edition of Natural Science),,2010, 34(4): 142.
[7] 李梅,劉志斌,路輝,程智遠(yuǎn),王慶菊,鄭偉姣 . 連續(xù)管無(wú)限極滑套分段壓裂技術(shù)在蘇里格的應(yīng)用[J] .石油機(jī)械,2015,43(2):40-43.LI Mei, LIU Zhibin, LU Hui, CHENG Zhiyuan, WANG Qingju, ZHENG Weijiao. Application of CT stepless sliding sleeve staged fracturing technique in sulige[J].China Petroleum Machinery, 2015, 43(2): 40-43.
[8] QI Yin, WU Zongfu, BAI Xiaohu, LI Chuan, JI Zhenning,LU Ling, WANG Jianhui, DUAN Penghui. Fracture design optimization of horizontal wells targeting the Chang 6 Formation in the Huaqing Oilfield[R]. SPE 167008, 2013.
[9] 王道富,李忠興,趙繼勇,何永宏,郝斐. 低滲透油藏超前注水理論及其應(yīng)用[J].石油學(xué)報(bào),2007,28 (6):79-82.WANG Daofu, LI Zhongxing, ZHAO Jiyong, HE Yonghong, HAO Fei. Advance water-fooding theory for low-permeability reservoirs and its application[J]. Acta Petrolei Sinica, 2007, 28 (6): 79-82.
[10] 薛婷,王選茹,鄭光輝,劉萬(wàn)濤 . L1區(qū)水平井開發(fā)效果影響因素分析[J]. 石油鉆采工藝,2016,38(2):221-225.XUE Ting, WANG Xuanru, ZHENG Guanghui, LIU Wantao. Analysis on affecting factors of development effect of horizontal well in Block L1 [J]. Oil Drilling& Production Technology, 2016, 38(2): 221-225.
[11] 吳奇,胥云,張守良,王騰飛,管保山,吳國(guó)濤,王曉泉.非常規(guī)油氣藏體積改造技術(shù)核心理論與優(yōu)化設(shè)計(jì)關(guān)鍵[J]. 石油學(xué)報(bào),2014,35(4): 706-714.WU Qi, XU Yun, ZHANG Shouliang, WANG Tengfei,GUAN Baoshan, WU Guotao, WANG Xiaoquan. The core theories and key optimization designs of volume stimulation ttechnology for unconventional reservoirs[J].Acta Petrolei Sinica, 2014, 35(4): 706-714.
[12] 吳奇,胥云,王曉泉,王騰飛,張守良. 非常規(guī)油氣藏體積改造技術(shù)——內(nèi)涵、優(yōu)化設(shè)計(jì)與實(shí)現(xiàn)[J]. 石油勘探與開發(fā),2012,39(3): 353-357.WU Qi, XU Yun, WANG Xiaoquan, WANG Tengfei,ZHANG Shouliang. Volume fracturing technology of unconventional reservoirs: connotation, optimization design and implementation[J]. Petroleum Exploration and development, 2012, 39(3): 353-357.
[13] 張礦生,王文雄,徐晨,李曉慧,王文東,蘇玉亮. 體積壓裂水平井增產(chǎn)潛力及產(chǎn)能影響因素分析[J]. 科學(xué)技術(shù)與工程,2013,13(35):10477-10478.ZHANG Kuangsheng, WANG Wenxiong, XU Chen,LI Xiaohui, WANG Wendong, SU Yuliang. Analysis on stimulation potential and productivity infuencing factors of network fractured horizontal well [J]. Science Technology and Engineering, 2013, 13(35): 10477-10478.
[14] 王文東,蘇玉亮,慕立俊,唐梅榮,高麗.致密油藏直井體積壓裂儲(chǔ)層改造體積的影響因素[J]. 中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,37 (3):93-97.WANG Wendong, SU Yuliang, MU Lijun, TANG Meirong, GAO Li. Influencing factors of stimulated reservoir volume of vertical wells in tight oil reservoirs[J]. Journal of China University of Petroleum(Edition of Natural Science), 2013, 37 (3): 93-97.
[15] OLSON J E. Multi-fracture propagation modeling:Applications to hydraulic fracturing in shales and tight gas sands [C]. The 42nd U.S. Rock Mechanics Symposium (USRMS), 2008.
[16] BEUGELSDIJK L J L, PATER C J D, SATO K.Experimental hydraulic fracture propagation in a multifractured medium [R]. SPE 59419, 2000.
[17] RICKMAN R, MULLEN M J, PETRE J E, GRIESER W V, KUNDERT D. A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale[R]. SPE 115258, 2008.
[18] 李憲文,樊鳳玲,李曉慧,王文東,徐晨,蘇玉亮.體積壓裂縫網(wǎng)系統(tǒng)模擬及縫網(wǎng)形態(tài)優(yōu)化研究[J].西安石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,29(1):71-75.LI Xianwen, FAN Fengling, LI Xiaohui, WANG Wendong, XU Chen, SU Yuliang. Study on the fracture network system simulation and shape optimization of volume fracturing[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2014, 29(1): 71-75.
[19] WARPINSKI N R, MAYERHOFER M J, VINCENT M C, CIPOLLA C L, LOLON E. Stimulating unconventional reservoirs: Maximizing network growth while optimizing fracture conductivity [R]. SPE 114173,2008.
[20] LI Peichao. Theoritical study on reoritntation mechanism of hydraulic fractures[R]. SPE 105724, 2007.
[21] 翁定為,雷群,胥云.縫網(wǎng)壓裂技術(shù)及其現(xiàn)場(chǎng)應(yīng)用[J].石油學(xué)報(bào),2011,32(2):280-284.WENG Dingwei, LEI Qun, XU Yun, LI Yang, LI Deqi,WANG Weixu. Network fracturing techniques and its application in the feld[J]. Acta Petrolei Sinica, 2011,32(2):280-284.
[22] 李忠興,屈雪峰,劉萬(wàn)濤,雷啟鴻,孫華嶺,何右安.鄂爾多斯盆地三疊系延長(zhǎng)組長(zhǎng)7段致密油合理開發(fā)方探討[J].石油勘探與開發(fā),2015,42(2):1-5.LI Zhongxing, QU Xuefeng, LIU Wantao, LEI Qihong,SUM Hualing, HE Youan. Development modes of triassic yanchang formation Chang 7 member tight oil in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(2): 1-5.
(修改稿收到日期 2017-06-11)
〔編輯 朱 偉〕
Study on repeated stimulation technology and its application to in low-yield horizontal wells in ultra low permeability oil reservoirs, Changqing Oil field
SU Liangyin1,2, BAI Xiaohu1,2, LU Hongjun1,2, HUANG Ting1,2, WU Huazheng3, DA Yinpeng1,2
1. Oil and Gas Technology Institute, CNPC Changqing Oil field Company, Xi’an 710018, Shaanxi, China;2. National Engineering Laboratory of Low-Permeability Oil & Gas Exploration and Development, Xi’an 710018, Shaanxi, China;3. No.10 Oil Production Plant, CNPC Changqing Oil field Company, Qingyang 745000, Gansu, China
In the Ordos Basin, the production rate of some horizontal wells declines signifcantly to the low value for the reservoirs are tight with low pressure, the completed wells are less stimulated and long-term injection and production displacement cannot be established easily. In this paper, history match was performed on the production performance of typical injection-production pattern of horizontal well to investigate the oil reservoir pressure and remaining oil distribution characteristics. Volumetric fracturing and energy complement was integrated for repeated stimulation design so as to enlarge reservoir stimulation volume, increase fracture complexity,recover fracture network diversion, remove deep blockage and improve formation energy. Then, the technological model for the stagedenergy complement and repeated volumetric fracturing of horizontal well was established, i.e., “high fow rate injection, two-stage temporary plugging for boosting, multi-functional fracturing fuid, and post-fracturing shut in for diffusion”, and its support compression string with twin packer and single slip was developed. The optimized fow rate is 4-6 m3/min, there is two-stage temporary plugging for diversion at the opening and inside of fracture, the fuid volume in each section is 800-1 000 m3and shut in period after fracturing of each section is 1-2 d. It was tested on site in 5 horizontal wells in ultra low permeability oil reservoirs in the Ordos Basin. Energy complement and repeated fracturing is carried out at 5-6 sections in each well, and average daily oil production of each well is increased from 1.6 t to 6.2 t, which is equal to its production rate at the early stage of commissioning. And its oil increment is 100% higher than that of the wells which are treated with the conventional repeated fracturing in the same block. The formation energy of the well group rises by 2-4 MPa, the cumulative oil increment is over 1 200 t one year, and yearly decline rate is 38% lower than that after the initial fracturing of this well. This technology can be used as the reference for increasing the production rate and ultimate recovery factor of old horizontal wells in unconventional reservoirs.
Ordos Basin; low-permeability oil reservoir; horizontal well; repeated stimulation; volumetric fracturing; formation energy complement; Changqing Oilfeld
蘇良銀,白曉虎,陸紅軍,黃婷,吳華正,達(dá)引朋.長(zhǎng)慶超低滲透油藏低產(chǎn)水平井重復(fù)改造技術(shù)研究及應(yīng)用[J].石油鉆采工藝,2017,39(4):521-527.
TE357.1
B
1000 – 7393( 2017 ) 04 – 0521 – 07
10.13639/j.odpt.2017.04.022
:SU Liangyin, BAI Xiaohu, LU Hongjun, HUANG Ting, WU Huazheng, DA Yinpeng. Study on repeated stimulation technology and its application to in low-yield horizontal wells in ultra low permeability oil reservoirs, Changqing Oilfeld[J]. Oil Drilling &Production Technology, 2017, 39(4): 521-527.
國(guó)家科技重大專項(xiàng)“超低滲透油藏有效開采技術(shù)”(編號(hào):2011ZX05013-004);中石油科技項(xiàng)目“油氣藏儲(chǔ)層改造技術(shù)持續(xù)攻關(guān)專項(xiàng)”(編號(hào):2015CGCGZ004)。
蘇良銀(1984-),2008年畢業(yè)于中國(guó)石油大學(xué)(北京)石油工程,現(xiàn)從事壓裂酸化技術(shù)研究與應(yīng)用工作,工程師。通訊地址:(710018)陜西省西安市未央?yún)^(qū)明光路長(zhǎng)慶油田分公司油氣工藝研究院。電話:029-86590771。Email: slyin_cq@petrochina.com.cn