趙小偉,楊永新,齊云霞,黃冬維,程廣龍,趙輝玲
(安徽省農(nóng)業(yè)科學(xué)院畜牧獸醫(yī)研究所,合肥 230031)
綜述與專(zhuān)論
幼畜腸道m(xù)iRNAs鑒定及其調(diào)控功能的研究進(jìn)展
趙小偉,楊永新,齊云霞,黃冬維,程廣龍,趙輝玲
(安徽省農(nóng)業(yè)科學(xué)院畜牧獸醫(yī)研究所,合肥 230031)
新生幼畜腸道是吸收初乳中免疫球蛋白等營(yíng)養(yǎng)物質(zhì)的主要器官,了解幼畜腸道發(fā)育的分子調(diào)控機(jī)制,對(duì)于改善幼畜腸道營(yíng)養(yǎng)物質(zhì)吸收和保障腸道生長(zhǎng)、發(fā)育及健康等具有極其重要的意義。文章綜述了幼畜腸道m(xù)iRNAs的研究進(jìn)展,特別關(guān)注了與幼畜腸道發(fā)育、免疫功能以及與腸道微生物間關(guān)系方面相關(guān)miRNAs的研究現(xiàn)狀,以期為今后幼畜腸道m(xù)iRNAs的研究和早期培育提供參考。
新生幼畜;腸道;miRNAs;免疫;微生物
新生幼畜在出生后的最初幾天,胃腸道環(huán)境發(fā)生了劇烈變化。處于母體內(nèi)的胎兒從無(wú)菌環(huán)境轉(zhuǎn)變?yōu)楸┞队谧匀唤绲挠芯h(huán)境,從胎盤(pán)營(yíng)養(yǎng)轉(zhuǎn)變?yōu)槲改c道營(yíng)養(yǎng)。腸道是動(dòng)物最大的消化器官,也是體內(nèi)營(yíng)養(yǎng)物質(zhì)吸收的主要部位,其發(fā)育水平將直接影響家畜的生長(zhǎng)發(fā)育、健康狀況及其成年后生產(chǎn)性能的發(fā)揮。以犢牛為例,犢牛生長(zhǎng)早期發(fā)病率高達(dá)46%,死亡率甚至可達(dá)50%以上[1],而因胃腸道問(wèn)題造成的死淘率可占到30.4%[2]。因此,全面了解幼畜腸道發(fā)育、消化吸收的分子調(diào)控機(jī)制,對(duì)于畜牧生產(chǎn)經(jīng)濟(jì)效益的提高以及腸道疾病的防治具有重要意義。miRNAs是一類(lèi)長(zhǎng)度約22 nt的內(nèi)源小分子RNAs,廣泛存在于真核生物細(xì)胞中,可通過(guò)靶向作用于3’-非翻譯區(qū)[3]和編碼區(qū)[4],在轉(zhuǎn)錄后水平上參與調(diào)控基因的表達(dá),在細(xì)胞增值、分化、凋亡和代謝等一系列生物過(guò)程中發(fā)揮著重要的調(diào)控作用[5]。近年來(lái),多項(xiàng)研究結(jié)果表明,miRNAs這種小的調(diào)節(jié)分子廣泛參與動(dòng)物腸道發(fā)育、免疫系統(tǒng)建立和疾病發(fā)生發(fā)展等過(guò)程[6-8]。因此,對(duì)腸道m(xù)iRNAs的鑒定及其功能的探索已成為生命科學(xué)研究的熱點(diǎn)。本文綜述了近年來(lái)幼畜腸道m(xù)iRNAs的表達(dá)譜鑒定,并重點(diǎn)關(guān)注了miRNAs在新生幼畜腸道發(fā)育與免疫以及miRNAs與腸道微生物間關(guān)系方面的相關(guān)研究進(jìn)展。
miRNAs是一類(lèi)可調(diào)控基因表達(dá)的內(nèi)源性非編碼蛋白質(zhì)的RNA單鏈分子,一般位于基因間區(qū)域或編碼蛋白質(zhì)的基因內(nèi)含子區(qū)域[9]。非編碼蛋白質(zhì)基因在RNA聚合酶II作用下轉(zhuǎn)錄出miRNAs初級(jí)轉(zhuǎn)錄物(pri-miRNAs),其在核糖核酸酶III(RNase III)作用下,加工成長(zhǎng)度約70 nt的核苷酸前體miRNAs(pre-miRNAs),其特點(diǎn)是擁有發(fā)夾結(jié)構(gòu)[10-11],pre-miRNAs在轉(zhuǎn)運(yùn)蛋白5(Exportin-5)與G蛋白協(xié)同下從細(xì)胞核內(nèi)轉(zhuǎn)運(yùn)至細(xì)胞質(zhì)。在細(xì)胞質(zhì)中pre-miRNAs被RNase IIIDicer識(shí)別和切割成長(zhǎng)度約22 nt的雙鏈RNAs[12-13]。最后,雙鏈RNAs中的一條鏈與Argonaute1(AGO1)蛋白結(jié)合,形成RNA誘導(dǎo)沉默復(fù)合體,這條鏈即是成熟的miRNAs,具有基因沉默的功能,降解靶mRNA或者阻遏靶mRNA的翻譯[14]。
miRNAs普遍存在于哺乳動(dòng)物消化道的組織細(xì)胞中。一般而言,miRNAs的表達(dá)模式和調(diào)控功能具有物種和組織特異性[15-17]。Sharbati-Tehrani等[18]首先通過(guò)多聯(lián)體克隆的方法在31日齡仔豬空腸和回腸組織鑒定了11種miRNAs。Sharbati-Tehrani等[19]利用miR-Q方法驗(yàn)證了miR-21、miR-24、miR-181a、miR-326、miR-423-3p、miR-484和miR-143等在豬腸道組織中的表達(dá)。Sharbati等[20]采用高通量測(cè)序技術(shù)分析了仔豬腸道(十二指腸、空腸、回腸、結(jié)腸)miRNAs表達(dá)譜,共發(fā)現(xiàn)332個(gè)腸道m(xù)iRNAs,其中201個(gè)為新發(fā)現(xiàn)miRNAs。Coutinho[21]采用高通量測(cè)序技術(shù)在30日齡犢牛小腸上共鑒定到559個(gè)miRNAs序列,結(jié)果發(fā)現(xiàn)其中的187個(gè)miRNAs在小腸組織中呈特異性表達(dá)。Liang等[8]對(duì)不同生長(zhǎng)時(shí)期犢牛(30 min、7 d、21 d和42 d)腸道m(xù)iRNAs的表達(dá)進(jìn)行了測(cè)序鑒定,在中段空腸鑒定了360個(gè)已知miRNAs和82個(gè)新miRNAs,在中段回腸鑒定了338個(gè)已知miRNAs和65個(gè)新miRNAs,發(fā)現(xiàn)在不同生長(zhǎng)時(shí)期,miR-143在中段空腸和回腸中表達(dá)豐度較高。同時(shí)發(fā)現(xiàn),miR-146、miR-191和miR-211等表達(dá)呈時(shí)空特異性,而miR-192/215、miR-194和miR-196等表達(dá)呈組織特異性。McKenna等[22]采用高通量測(cè)序技術(shù)在模型動(dòng)物小鼠腸上皮鑒定到1 094個(gè)成熟miRNAs序列,得到證實(shí)的miRNAs家族有453個(gè),其中miR-192和let-7在小腸上皮中表達(dá)最高。
以上研究通過(guò)多種方法鑒定了幾種動(dòng)物腸道組織miRNAs的表達(dá)譜,并發(fā)現(xiàn)高表達(dá)量的miRNAs在動(dòng)物腸道中有重疊性,特別是在相同腸段具有一定的覆蓋性(表1),這些研究將有助于人們對(duì)動(dòng)物miRNAs的表達(dá)譜有一定的了解。但是,目前關(guān)于幼畜腸道m(xù)iRNAs表達(dá)譜鑒定方面研究較少,更多地還是集中在功能研究方面,如腸道免疫、疾病等方面。今后需更多地在幼畜中開(kāi)展miRNAs相關(guān)研究,以便為幼畜腸道早期發(fā)育的分子調(diào)控提供基礎(chǔ)。
表1 腸道組織高表達(dá)miRNAs
新生幼畜腸道組織發(fā)育得益于母源初乳中豐富的營(yíng)養(yǎng)物質(zhì)和生物活性物質(zhì)[23-24]。miRNAs作為一類(lèi)生物功能調(diào)節(jié)分子,可調(diào)控腸道細(xì)胞相關(guān)基因的表達(dá),對(duì)腸道組織的發(fā)育進(jìn)程、免疫功能發(fā)揮等起著重要調(diào)控作用。
3.1 miRNAs調(diào)節(jié)腸道組織發(fā)育的研究
研究表明,miRNAs與幼畜腸道組織相關(guān)細(xì)胞發(fā)育密切相關(guān)。Liang等[8]發(fā)現(xiàn),新生犢牛(0~42 d)中段空腸、回腸miRNAs表達(dá)具有時(shí)空性和組織特異性,鑒定獲得了差異表達(dá)miRNAs,其中miR-7靶基因可調(diào)控腸道肌細(xì)胞增殖與分化,這與犢牛早期腸道肌肉層的快速生長(zhǎng)有關(guān)。同時(shí)發(fā)現(xiàn),miR-486靶基因可調(diào)控成纖維細(xì)胞發(fā)育。成纖維細(xì)胞是消化道結(jié)締組織最常見(jiàn)的細(xì)胞。MiR-143可通過(guò)靶基因調(diào)控腸道結(jié)締組織細(xì)胞的增殖與分化,而結(jié)締組織是消化道的主要組成成分[25],另外,miR-143可通過(guò)靶向轉(zhuǎn)錄因子如血清應(yīng)答因子、Kruppel樣因子4等調(diào)控平滑肌細(xì)胞增殖和分化[26-27],平滑肌也是消化道的主要組成成分[25]。另有研究發(fā)現(xiàn),miR-194和miR-215在仔豬近端十二指腸和空腸高表達(dá),通路分析發(fā)現(xiàn)其靶基因主要參與轉(zhuǎn)化生子因子β、表皮生長(zhǎng)因子受體、胰島素和雷帕霉素靶蛋白(mTOR)等信號(hào)通路,這些通路主要參與細(xì)胞增殖、分化等生物過(guò)程[20]。由此可見(jiàn),miRNAs通過(guò)各種方式調(diào)控幼畜腸道相關(guān)細(xì)胞的增值與分化,進(jìn)而影響幼畜腸道組織的發(fā)育及功能發(fā)揮。而在其他模型動(dòng)物小鼠上,McKenna等[22]發(fā)現(xiàn)在Dicer1基因缺陷模型鼠腸道腸上皮細(xì)胞生長(zhǎng)紊亂,表現(xiàn)為空腸和結(jié)腸樹(shù)狀細(xì)胞降低,隱窩細(xì)胞凋亡顯著增加,同時(shí)加速了空腸細(xì)胞的遷移,此研究結(jié)果進(jìn)一步證實(shí)了miRNAs在動(dòng)物腸上皮細(xì)胞的分化及功能上具有重要的調(diào)節(jié)功能。此外,有些miRNAs對(duì)腸道的發(fā)育也有負(fù)面調(diào)節(jié)作用,如miR-103可促進(jìn)小鼠機(jī)體組織脂肪的形成[28],加速腸道脂肪細(xì)胞增殖與分化,使腸道組織脂肪沉積而影響正常腸組織發(fā)育及功能發(fā)揮。體外培養(yǎng)小鼠腸隱窩細(xì)胞的試驗(yàn)表明,IGF-1可抑制miR-103基因的表達(dá),雖然miR-103是細(xì)胞周期G1/S調(diào)控網(wǎng)絡(luò)的一部分,但可抑制細(xì)胞周期蛋白E1(CCNE1)、細(xì)胞周期素依賴(lài)性激酶2(CDK2)和環(huán)磷腺苷效應(yīng)元件結(jié)合蛋白1(CREB1)基因的表達(dá),CCNE1、CDK2和CREB1是細(xì)胞周期中的關(guān)鍵基因,因此,可通過(guò)下調(diào)miR-103的表達(dá)水平,促進(jìn)小腸隱窩細(xì)胞的增殖[29]。
3.2 miRNAs調(diào)節(jié)腸道組織免疫的研究
miRNAs是免疫系統(tǒng)復(fù)雜調(diào)控網(wǎng)絡(luò)的一部分,可在免疫相關(guān)細(xì)胞發(fā)育和感受器功能上扮演著中樞調(diào)控角色,從而影響動(dòng)物腸道免疫系統(tǒng)的功能發(fā)揮。研究顯示,犢牛早期小腸黏膜免疫細(xì)胞的數(shù)量及結(jié)構(gòu)隨著日齡的增長(zhǎng)而發(fā)生顯著變化[30-31],這說(shuō)明在幼畜生長(zhǎng)早期腸道免疫系統(tǒng)經(jīng)歷著一系列變化,以完善免疫應(yīng)答功能,抵抗外來(lái)病原微生物的入侵,保障腸道的生長(zhǎng)與發(fā)育。Liang等[28]研究認(rèn)為,新生犢牛各腸段時(shí)空差異表達(dá)的miRNAs在免疫功能中具有潛在的調(diào)控作用,大多數(shù)差異表達(dá)的miRNA出現(xiàn)在犢牛出生后的第一周,表明黏膜免疫發(fā)育在出生后第一周是動(dòng)態(tài)變化階段。并發(fā)現(xiàn)miR-191、miR-33、miR-99/100和miR-145靶基因參與白細(xì)胞和淋巴細(xì)胞分化。此外,研究發(fā)現(xiàn)miR-146靶基因參與T細(xì)胞免疫反應(yīng)和樹(shù)狀細(xì)胞的功能[8],miR-146的表達(dá)也可誘導(dǎo)激活Toll樣受體(TLRs),調(diào)控TLRs信號(hào)通路,識(shí)別微生物相關(guān)分子模式(MAMPs),這在先天性免疫反應(yīng)中扮演著重要作用[32]。另外,miR-192/ miR-215家族在犢??漳c、回腸[8]以及miR-192、miR-215在小鼠腸上皮組織[22]中表達(dá)水平均較高,這些高表達(dá)的miRNAs被證實(shí)具有調(diào)節(jié)白細(xì)胞和淋巴組織發(fā)育的作用[33]??梢?jiàn)miR-192/miR-215家族在調(diào)控小腸免疫系統(tǒng)發(fā)育過(guò)程中扮演著重要角色。同樣在Liang等[8]的研究中發(fā)現(xiàn),小腸miR-194表達(dá)量較高,其靶基因具有阻礙肥大細(xì)胞生成的功能,而肥大細(xì)胞在腸線蟲(chóng)感染過(guò)程中可擾亂腸道屏障功能[34],因此,可以推測(cè),犢牛生長(zhǎng)早期小腸高表達(dá)miR-194可以阻止腸道黏膜免疫屏障功能失調(diào),維持腸道正常免疫功能。在模型動(dòng)物小鼠的研究中發(fā)現(xiàn),抵抗素樣分子β(RELMβ)作為一種腸源性分泌蛋白,在腸道增生及局部免疫中起到十分重要的作用。Biton等[35]的研究發(fā)現(xiàn),miR-375可調(diào)控RELMβ蛋白的表達(dá),而miR-375基因缺陷小鼠的腸道RELMβ的含量顯著降低,并認(rèn)為腸上皮miRNAs是粘膜免疫的關(guān)鍵調(diào)控因子。類(lèi)似的在Dicer1基因缺陷小鼠的研究中發(fā)現(xiàn),Dicer1缺陷將破壞腸道屏障功能,導(dǎo)致淋巴細(xì)胞和中性粒細(xì)胞浸潤(rùn),引起炎癥反應(yīng)[22]。以上研究表明,miRNAs在幼畜早期腸道免疫建立及功能發(fā)揮過(guò)程中起重要的調(diào)控作用。但也有研究表明,有些miRNAs的表達(dá)對(duì)動(dòng)物免疫細(xì)胞有負(fù)面影響,如miR-99/100可靶向調(diào)控哺乳動(dòng)物雷帕霉素蛋白[36],雷帕霉素能夠阻礙調(diào)節(jié)T細(xì)胞的發(fā)育及功能[37],從而影響調(diào)節(jié)T細(xì)胞功能的正常發(fā)揮。另外,miR-21[38]和miR-122a[39]可增加腸道上皮緊密連接的滲透性,引起腸道炎癥反應(yīng),特別是對(duì)處于生長(zhǎng)早期的幼畜,在腸道免疫功能尚未發(fā)育完善的情況下,這種情況可增加病原微生物入侵的風(fēng)險(xiǎn),造成炎癥反應(yīng),危害幼畜健康。
3.3 miRNAs與腸道微生物之間關(guān)系的研究
哺乳動(dòng)物腸道存在大量的、多種多樣的微生物群落,它們對(duì)維持動(dòng)物的健康至關(guān)重要。研究顯示,腸道微生物可調(diào)節(jié)宿主腸道m(xù)iRNAs的表達(dá)[40-43],而腸道微生物對(duì)腸道黏膜上皮細(xì)胞的分化以及免疫系統(tǒng)的建立具有重要影響[44-45]。Liang等[8]在犢牛試驗(yàn)中發(fā)現(xiàn),腸道細(xì)菌定植可影響miR-211的表達(dá),認(rèn)為miR-211可能是腸道菌群和黏膜免疫系統(tǒng)發(fā)育之間的關(guān)鍵分子,同時(shí)也發(fā)現(xiàn),腸道微生物定植可觸發(fā)免疫系統(tǒng)的發(fā)育,且認(rèn)為miR-146可能是這個(gè)過(guò)程的關(guān)鍵調(diào)節(jié)分子。目前,在其他家畜腸道m(xù)iRNA和微生物互作之間的報(bào)道較少,而在模式動(dòng)物小鼠上,Singh等[46]比較了正常和無(wú)菌環(huán)境飼養(yǎng)下小鼠盲腸的miRNAs表達(dá),發(fā)現(xiàn)差異表達(dá)的miRNAs占4.8%,差異表達(dá)的miRNAs靶基因通過(guò)編碼連接和黏膜層蛋白調(diào)控腸道屏障功能,并參與調(diào)控MHC I和II蛋白的表達(dá),說(shuō)明通過(guò)腸道菌群和miRNAs的互作具有調(diào)控腸道屏障和免疫系統(tǒng)發(fā)育的作用。另有學(xué)者研究發(fā)現(xiàn),miR-211靶基因可參與IL-6和IL-17細(xì)胞因子通路,IL-6可刺激Th17 T細(xì)胞分化[47],無(wú)菌飼養(yǎng)條件下小鼠腸道移植分段絲狀細(xì)菌可增加Th 17細(xì)胞的數(shù)量[48-49],其產(chǎn)生的IL-17和IL-22可參與調(diào)控腸道微生物菌群[50]。還有研究顯示,miR-10a主要在鼠科腸道上皮及固有層表達(dá),其在無(wú)菌小鼠腸道中的表達(dá)顯著高于無(wú)特定病原(SPF)小鼠,用TLRs配體誘導(dǎo)骨髓來(lái)源的樹(shù)突細(xì)胞將會(huì)下調(diào)miR-10a的表達(dá),而在敲除髓樣分化因子(MyD88)的SPF小鼠腸道定植微生物后miR-10a表達(dá)水平?jīng)]有發(fā)生變化,MyD88是TLRs信號(hào)通路中的一個(gè)關(guān)鍵接頭分子。因而,通過(guò)TLRs識(shí)別微生物可能在調(diào)控miR-10a表達(dá)上起關(guān)鍵作用。MiR-10a參與調(diào)控IL 12和IL 23的產(chǎn)生,提供腸道微生物和宿主免疫反應(yīng)調(diào)節(jié)以及腸道內(nèi)穩(wěn)態(tài)之間的直接聯(lián)系[51]。腸道微生物和腸道m(xù)iRNAs存在直接或間接的相互作用,從而影響宿主免疫系統(tǒng)發(fā)育和應(yīng)答,但目前關(guān)于miRNAs與幼畜腸道微生物之間關(guān)系的研究尚未較多的開(kāi)展。因此,今后需要有更多的研究來(lái)闡明新生幼畜腸道m(xù)iRNAs表達(dá)與微生物之間的關(guān)系及其對(duì)幼畜健康的影響。
動(dòng)物腸道m(xù)iRNAs不僅在腸道發(fā)育及免疫相關(guān)細(xì)胞增殖、分化等方面起著重要的調(diào)控作用,且miRNAs與腸道微生物之間有著密切聯(lián)系,但目前對(duì)具體的調(diào)節(jié)網(wǎng)絡(luò)和機(jī)制還知之甚少,特別是miRNAs的表達(dá)如何調(diào)節(jié)宿主與腸道微生物之間的關(guān)系。同時(shí),家畜出生初期攝取的初乳中含有大量免疫相關(guān)的miRNAs[52-54],這些miRNAs在幼畜早期腸道發(fā)育及免疫系統(tǒng)建立過(guò)程中的重要性還有待于進(jìn)一步的揭示。今后隨著科學(xué)研究的不斷深入,將為了解家畜腸道發(fā)育和免疫的分子調(diào)控機(jī)制奠定基礎(chǔ),這對(duì)于提高畜牧生產(chǎn)的經(jīng)濟(jì)效益具有潛在的重要意義。更重要的是,相關(guān)miRNAs的調(diào)控作用及機(jī)制也可在新生家畜的分子營(yíng)養(yǎng)調(diào)控及早期培育上具有重要的參考價(jià)值。
[1] Priestley D,Bittar J H,Ibarbia L,et al.Effect of feeding maternal colostrum or plasma-derived or colostrum-derived colostrum replacer on passive transfer of immunity,health,and performance of preweaning heifer calves[J].Journal of Dairy Science,2013,96(5):3247-3256.
[2] USDA.Cattle and calves nonpredator death loss in the United States[M].USDA-APHIS-VS,CEAH,F(xiàn)ort Collins.2010.
[3] Krutzfeldt J,Stoffel M.MicroRNAs:a new class of regulatory genes affecting metabolism[J].CellMetabolism,2006,4(1):9-12.
[4] Hausser J,Syed A P,Bilen B,etal.Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation[J]. Genome Research,2013,23(4):604-615.
[5] Song L,Tuan R S.MicroRNAs and cell differentiation in mammalian development[J].Birth Defects Research Part C Embryo Today Reviews,2006,78(2):140-149.
[6] Baltimore D,Boldin M P,O'Connell R M,et al.MicroRNAs:new regulators of immune cell development and function[J].Nature I-mmunology,2008,9(8):839-845.
[7] Olaru A V,Selaru F M,Mori Y,et al.Dynamic changes in the expression of MicroRNA-31 during inflammatory bowel disease-associated neoplastic transformation[J].Inflammatory Bowel Diseases,2011,17(1):221-231.
[8] Liang G X,Malmuthuge N,McFadden T B,et al.Potential regulatory role of MicroRNAs in the development of bovine gastrointestinal tract during early life[J].PLoS One,2014,9(3):e92592.
[9] Bartel D P,Chen C Z.Micromanagers of gene expression:the potentially widespread influence of metazoan microRNAs[J].Nature Reviews Genetics,2004,5(5):396-400.
[10]Lee Y,Ahn C,Han J,et al.The nuclear RNase III Drosha initiates microRNAprocessing[J].Nature,2003,425(6956):415-419.
[11]Kim V N.MicroRNA biogenesis:coordinated cropping and dicing[J]. Nature Reviews Molecular Cell Biology,2005,6(5):376-385.
[12]Hutvagner G,McLachlan J,Pasquinelli A E,etal.A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 smalltemporal RNA[J].Science,2001,293(5531):834-838.
[13]Lund E,Guttinger S,Calado A,et al.Nuclear export of microRNA precursors[J].Science,2004,303(5654):95-98.
[14] Khvorova A,Reynolds A,Jayasena S D.Functional siRNAs and miRNAs exhibitstrand bias[J].Cell,2003,115(2):209-216.
[15]Lagos-Quintana M,Rauhut R,Yalcin A,et al.Identification of tissue-specific microRNAs from mouse[J].Current Biology,2002,12(9):735-739.
[16]Liang Y,Ridzon D,Wong L,et al.Characterization of microRNA expression profiles in normal human tissues[J].BMC Genomics,2007,8(1):1-20.
[17]Landgraf P,Rusu M,Sheridan R,etal.A mammalian microRNA expression atlas based on small RNA library sequencing[J].Cell,2007,129(7):1401-1414.
[18]Sharbati-Tehrani S,Kutz-Lohroff B,Scholven J,et al.Concatameric cloning ofporcine microRNA molecules after assembly PCR[J].Biochemical and Biophysical Research Communications,2008a,375(3):484-489.
[19]Sharbati-Tehrani S,Kutz-Lohroff B,Bergauer R,et al.miR-Q:a novel quantitative RT-PCR approach for the expression profiling of small RNAmolecules such as miRNAs in a complex sample[J].BMC Molecular Biology,2008b,9(1):34.
[20]Sharbati S,F(xiàn)riedl?nder MR,Sharbati J,etal.Deciphering the porcine intestinal microRNA transcriptome[J].BMC Genomics,2010,11(1):275.
[21]Coutinho L L,Matukumalli L K,Sonstegard T S,et al.Discovery and profiling of bovine microRNAs from immune-related and embryonic tissues[J].Physiological Genomics,2007,29(1):35-43.
[22]McKenna L B,Schug J,Vourekas A,et al.MicroRNAs control intestinal epithelial differentiation,architecture,and barrier function[J].Gastroenterology,2010,139(5):1654-1664.
[23]Blum J W,Hammon H.Colostrum effects on the gastrointestinaltract,and on nutritional,endocrine and metabolic parameters in neonatal calves[J].Livestock Production Science,2000,66(2):151-159.
[24]USDA.Colostrum feeding and management on U S dairy operations 1991-2007[R].USDA-APHIS-VS,CEAH,F(xiàn)ort Collins,CO.2008.
[25]Chew R,Long MS.Gastrointestinal system[M].3rd edition.Mosby:Crash Course,2008.
[26]Cordes K R,Sheehy N T,White MP,et al.miR-145 and miR-143 regulate smooth muscle cell fate and plasticity[J].Nature,2009,460(7256):705-710.
[27]Wang X,Hu G,Zhou J.Repression of versican expression by microRNA-143[J].Journal of Biological Chemistry,2010,285(30):23241-23250.
[28]Xie H,Lim B,Lodish H F.MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity[J]. Diabetes,2009,58(5):1050-1057.
[29]Liao Y,L?nnerdal B.Global MicroRNA characterization reveals that miR-103 is involved in IGF-1 stimulated mouse intestinalcellproliferation[J].PLoS One,2010,5(9):e12976.
[30]陳付菊,陳耀星,王子旭,等.新生犢牛小腸黏膜結(jié)構(gòu)的早期發(fā)育及上皮內(nèi)淋巴細(xì)胞和杯狀細(xì)胞的數(shù)量變化[J].中國(guó)獸醫(yī)科學(xué),2007,37(6):519-523.
[31]Fries P,Popowych Y,Guan L,et al.Mucosal dendritic cell subpopulations in the small intestine of newborn calves[J].Developmental and Comparative Immunology,2011,35(10):1040-1051.
[32]O’Neill L A,Sheedy F J,McCoy C E.MicroRNAs:the fine-tuners of Toll-like receptor signalling[J].Nature Reviews Immunology,2011,11(3):163-175.
[33]Ooi A G,Sahoo D,Adorno M,et al.MicroRNA-125b expands hematopoietic stem cells and enriches for the lymphoid-balanced and lymphoid-biased subsets[J].Proceedings of the National Academy of Sciences,2010,107(50):21505-21510.
[34]Groschwitz K R,Ahrens R,Osterfeld H,et al.Mast cells regulate homeostatic intestinal epithelial migration and barrier function by a chymase/Mcpt4-dependent mechanism[J].Proceedings of the National Academy of Sciences,2009,106(52):22381-22386.
[35]Biton M,Levin A,Slyper M,et al.Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk[J].Nature I-mmunology,2011,12(3):239-246.
[36]Nagaraja A K,Creighton C J,Yu Z,et al.A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer[J].Molecular Endocrinology,2010,24(2):447-463.
[37]Liu G,Burns S,Huang G,et al.The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt-mTOR[J]. Nature Immunology,2009,10(7):769-777.
[38]Zhang L,Shen J,Cheng J,et al.MicroRNA-21 regulates intestinal epithelial tight junction permeability[J].Cell Biochemistry and Function,2015,33(4):235-240.
[39]Ye D,Guo S,Alsadi R,et al.MicroRNA regulation of intestinal epithelial tight junction permeability[J].Gastroenterology,2011,141(4):1323-1333.
[40]He W,Wang ML,Jiang H Q,etal.Bacterialcolonization leads to the colon ic secretion of RELMbeta/FIZZ2,a novel goblet cell-specific protein[J].Gastroenterology,2003,125(5):1388-1397.
[41]Dalmasso G,Nguyen H T,Yan Y,etal.Microbiota modulate hostgene expression via microRNAs[J].Gastroenterology,2011,6(4):e19293.
[42]Masotti A.Interplays between gut microbiota and gene expression regulation by miRNAs[J].Frontiers in Cellular and Infection Microbiology,2012,2(6):137.
[43]Archambaud C,Sismeiro O,Toedling J,et al.The intestinal microbiota interferes with the microRNA response upon oral Listeria infection[J].Mbio,2013,4(6):e00707.
[44]Sommer F,B?ckhed F.The gut microbiota-masters of host developmentand physiology[J].Nature Reviews Microbiology,2013,11(4):227-238.
[45]Malmuthuge N,Griebel P J,Guan L L.The gut microbiome and its potential role in the development and function of newborn calf gastrointestinaltract[J].Frontiers in Veterinary Science,2015,2(4814):459-460.
[46]Singh N,Shirdel E A,Waldron L,et al.The murine caecal Micro RNAsignaturedependson thepresenceoftheendogenousmicrobiota[J]. International Journalof Biological Sciences,2012,8(2):171-186.
[47]Korn T,Mitsdoerffer M,Croxford A L,et al.IL-6 controls Th17 immunity in vivo by inhibiting the conversion ofconventional T cells into Foxp3+regulatory T cells[J].Proceedings ofthe National Academy of Sciences of the United States of America,2008,105(47):18460-18465.
[48]Gaboriaurouthiau V,Rakotobe S,Lécuyer E,et al.The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cellresponses[J].Immunity,2009,31(4):677-689.
[49]Ivanov I I,Atarashi K,Manel N,et al.Induction of intestinal Th17 cells by segmented filamentous bacteria[J].Cell,2009,139:485-498.
[50]Kamada N,Seo S U,Chen G Y,et al.Role of the gut microbiota in immunity and inflammatory disease[J].Nature Reviews Immunology,2013,13(5):321-335.
[51]Xue X,F(xiàn)eng T,Yao S,et al.Microbiota downregulates dendritic cell expression of miR-10a,which targets IL-12/IL-23p40[J].Journal of Immunology,2011,187(11):5879-5886.
[52] Kosaka N,Izumi H,Sekine K,et al.MicroRNA as a new immune-regulatory agentin breastmilk[J].Science,2010,1(1):7-7.
[53]Zhou Q,Li M,Wang X,et al.Immune-related MicroRNAs are abundant in breast milk exosomes[J].International Journal of Biological Sciences,2012,8(1):118-123.
[54]Na R S,Gx E,Sun W,etal.Expressionalanalysis ofimmune-related miRNAs in breastmilk[J].Genetics and Molecular Research:GMR,2015,14(3):11371-11376.
Progress in the Expression Profile and Regulatory Function ofMicroRNAs in the Intestinalof NeonatalAnimals
Zhao Xiaowei,Yang Yongxin,Cheng Guanglong,etal
(Institute ofAnimalSciences and Veterinary Medicine,AnhuiAcademy ofAgriculturalSciences,Hefei230031,China)
Absorption of immunoglobulins and other nutrients from colostrum is traditionally performed in the small intestine of neonates.It is important to explore the molecular mechanism of intestinal development that contribute to improving nutrients uptake and further for sustaining newborn animals growth,development and health.In this paper,the advance in intestinal tract miRNAs,especially related with intestinal development,immune function,and the relationship between miRNAs and intestinal microbiota were summarized,in orderto provide references for miRNAs researches and breeding in neonatalanimals.
neonatalanimal;intestinal;miRNAs;immune;microbiota
S811
A
2095-3887(2017)05-0051-05
10.3969/j.issn.2095-3887.2017.05.013
2017-06-05
國(guó)家自然科學(xué)基金(31572434);安徽省農(nóng)業(yè)科學(xué)院院長(zhǎng)青年基金(16B0408)
趙小偉(1985-),男,助理研究員。研究方向:奶牛營(yíng)養(yǎng)。
程廣龍(1964-),男,研究員。研究方向:奶牛健康養(yǎng)殖。