• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      黃土高原高糖黑麥草的產(chǎn)量和品質(zhì)預(yù)測(cè)

      2017-09-29 06:52:54王永嘉EunJoongKimNigelScollan常生華侯扶江
      草業(yè)科學(xué) 2017年9期
      關(guān)鍵詞:輪牧產(chǎn)草量草業(yè)

      王永嘉,成 慧,Eun Joong Kim,Nigel Scollan,常生華,侯扶江

      (1.蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院,草地農(nóng)業(yè)生態(tài)系統(tǒng)國家重點(diǎn)實(shí)驗(yàn)室,甘肅蘭州 730020;2.農(nóng)業(yè)部草牧業(yè)創(chuàng)新重點(diǎn)實(shí)驗(yàn)室,甘肅 蘭州 730020;3.Department of Animal Science, Kyungpook National University, Sangju, South Korea;4.Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK)

      黃土高原高糖黑麥草的產(chǎn)量和品質(zhì)預(yù)測(cè)

      王永嘉1,2,成 慧1,Eun Joong Kim3,Nigel Scollan4,常生華1,2,侯扶江1,2

      (1.蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院,草地農(nóng)業(yè)生態(tài)系統(tǒng)國家重點(diǎn)實(shí)驗(yàn)室,甘肅蘭州 730020;2.農(nóng)業(yè)部草牧業(yè)創(chuàng)新重點(diǎn)實(shí)驗(yàn)室,甘肅 蘭州 730020;3.Department of Animal Science, Kyungpook National University, Sangju, South Korea;4.Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK)

      為探明黃土高原高糖黑麥草(Loliumperenne)粗蛋白、粗脂肪、中性洗滌纖維、酸性洗滌纖維、粗灰分、可溶性碳水化合物等指標(biāo)及產(chǎn)草量與其生長時(shí)間、株高、分蘗之間的關(guān)系,本研究采用田間試驗(yàn)結(jié)合預(yù)測(cè)模型的方法,利用生長時(shí)間、株高、分蘗對(duì)高糖黑麥草在模擬輪牧和收獲干草兩種利用方式下的牧草產(chǎn)量及品質(zhì)進(jìn)行預(yù)測(cè)。結(jié)果表明,收獲干草的Aberavon、Aberstar、Premium和Abermagic黑麥草生長時(shí)間、株高和分蘗均與各營養(yǎng)指標(biāo)顯著相關(guān)(P<0.05);模擬輪牧的Aberavon、Aberstar、Premium和Abermagic黑麥草株高與各營養(yǎng)指標(biāo)均不相關(guān)(P>0.05),生長時(shí)間、分蘗與粗蛋白、粗灰分之外的其它品質(zhì)指標(biāo)均顯著相關(guān)(P<0.05)。利用生長時(shí)間、株高、分蘗對(duì)4個(gè)黑麥草品種的產(chǎn)草量和飼用成分建立一元回歸預(yù)測(cè)和多元回歸預(yù)測(cè)模型,經(jīng)預(yù)測(cè)值與實(shí)測(cè)值對(duì)比,預(yù)測(cè)結(jié)果準(zhǔn)確度均較高,可為高糖黑麥草在黃土高原栽培和利用提供科學(xué)依據(jù)。

      放牧;分蘗;株高;粗蛋白;粗脂肪;粗纖維;可溶性碳水化合物

      多年生黑麥草(Loliumperenne)是全世界種植面積最廣的多年生禾本科作物,廣泛適應(yīng)于降水充沛地區(qū),或具有灌溉條件的干旱、半干旱地區(qū),它產(chǎn)草量和品質(zhì)俱佳,主要用作放牧,或刈牧兼用,是全球、尤其是發(fā)達(dá)國家栽培草地-家畜放牧系統(tǒng)的重要組分[1-2]。隨著農(nóng)業(yè)現(xiàn)代化加速,我國多年生黑麥草種植面積迅猛擴(kuò)展[2]。南方巖溶地區(qū),相對(duì)于傳統(tǒng)奶牛飼養(yǎng)系統(tǒng),黑麥草-奶牛系統(tǒng)日產(chǎn)奶量、牛奶乳蛋白率提高,經(jīng)濟(jì)收益增加[3]。四川盆地實(shí)行了飼用玉米(Zeamays)-黑麥草輪作,水、熱、光等利用率提升,作物產(chǎn)量增加,是傳統(tǒng)水稻(Oryzasativa)、小麥(Triticumaestivum)輪作系統(tǒng)籽實(shí)產(chǎn)量的3.95倍,干物質(zhì)生產(chǎn)成本是同期種植籽用玉米的38.1%,有效降低了家畜飼養(yǎng)成本[4-7]。高糖黑麥草(high sugar ryegrass,HSR)可顯著提高家畜的氮素利用率、降低反芻農(nóng)業(yè)系統(tǒng)的溫室氣體排放[7-8],目前,英國、美國等發(fā)達(dá)國家培育了多個(gè)新品種并用于生產(chǎn)實(shí)踐,然而在我國剛剛引起重視,黃土高原和西北內(nèi)陸干旱區(qū)等地區(qū)已開始引種、栽培和利用試驗(yàn)[9-10]。

      國內(nèi)外對(duì)多年生黑麥草研究較多,以黑麥草-家畜可持續(xù)放牧管理的理論、模式與技術(shù)為主[11-14];還包括牧草種質(zhì)資源評(píng)價(jià)[15-18]、高糖黑麥草育種[19]、牧草抗逆高產(chǎn)栽培[20]、黑麥草+豆禾牧草混播草地建植與管理[11,21],以及干草與青貯調(diào)制[21]、混合日糧配制[22]、體內(nèi)和體外消化代謝等[23-24]。根據(jù)土壤積溫和水分積溫糾正值、出苗時(shí)間、播種時(shí)間等,提出了地中海氣候區(qū)旱作條件下黑麥草生長的預(yù)測(cè)模型[7]。在高原地區(qū)建立了黑麥草生育期光照、降水、溫度等主要?dú)夂蛞蜃优c產(chǎn)草量的關(guān)系模型[25]。我國對(duì)黑麥草產(chǎn)草量和營養(yǎng)品質(zhì)的預(yù)測(cè)鮮見報(bào)道,而且國內(nèi)外對(duì)于HSR的產(chǎn)量和品質(zhì)預(yù)測(cè)研究較少。為此,在黃土高原探討HSR的生產(chǎn)性能和營養(yǎng)成分的相關(guān)性,建立其產(chǎn)量和營養(yǎng)成分的預(yù)測(cè)模型,以期為HSR的利用與管理、區(qū)域糧改飼和三元種植結(jié)構(gòu)提供科學(xué)依據(jù)。

      1 材料與方法

      1.1研究區(qū)域概況

      研究區(qū)設(shè)在蘭州大學(xué)榆中草地農(nóng)業(yè)綜合試驗(yàn)站,屬大陸季風(fēng)型氣候,海拔1 900 m,年平均氣溫6.57 ℃,1 月平均氣溫-8 ℃,7月平均氣溫19 ℃。年均降水量381.8 mm,相對(duì)濕度63%,年均蒸發(fā)量1 406.8 mm,無霜期120 d,全年日照時(shí)數(shù)2 607.2 h左右?!? ℃年積溫3 052.7 ℃·d,草原類型為微溫微潤草甸草原類[26],草地農(nóng)業(yè)系統(tǒng)優(yōu)勢(shì)類型為作物/天然草地-家畜綜合生產(chǎn)系統(tǒng)[27]。

      1.2試驗(yàn)區(qū)管理

      黑麥草試驗(yàn)品種均由Aberystwyth大學(xué),生物、環(huán)境和鄉(xiāng)村科學(xué)研究所[Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University]提供。其中阿旺(Aberavon)、明星(Aberstar)、神奇(Abermagic)為HSR品種,對(duì)照品種普通(Premium)是我國西北地區(qū)廣泛種植的品種,也引自IBERS。試驗(yàn)區(qū)地勢(shì)平坦,采用完全隨機(jī)區(qū)組設(shè)計(jì),小區(qū)面積4 m ×10 m,4次重復(fù),區(qū)組間距2 m,小區(qū)間距0.5 m。

      2010年4月下旬播種,行距40 cm。播種時(shí)施尿素 55 kg·hm-2、P2O555 kg·hm-2, K2O 74 kg·hm-2。播種后20 d灌水200 m3·hm-2。每小區(qū)均分為兩個(gè)裂區(qū),一個(gè)裂區(qū)每3周模擬輪牧(simulated grazing,SG)一次,2010年6月12日牧草株高30 cm時(shí)首次刈割,留茬8 cm,共刈割6次,于2010年10月22日結(jié)束[10],每次刈割后灌溉和追肥,每次灌水量800 m3·hm-2,噴灌10次,共8 000 m3·hm-2。另一個(gè)裂區(qū)在10月22日收獲干草(making hay,MH),灌水、施肥的時(shí)間和量同另一裂區(qū)。

      1.3植被特征測(cè)定

      刈割前測(cè)定產(chǎn)草量和30株牧草的株高(cm)、分蘗密度(個(gè)·m-2)[28]。牧草鮮樣在105 ℃恒溫箱中烘至恒重,測(cè)定干物質(zhì)產(chǎn)量(t·hm-2);另取一份鮮樣在60 ℃下烘48 h,粉碎后測(cè)定牧草品質(zhì)。

      利用Ankom A200i半自動(dòng)纖維分析儀測(cè)定中性洗滌纖維(NDF)、酸性洗滌纖維(ADF)和粗纖維(CF);采用GB/T6432-94,微量凱氏定氮法測(cè)定粗蛋白(CP);Ankom XT15i全自動(dòng)脂肪分析儀測(cè)定粗脂肪(EE);流動(dòng)分析儀測(cè)定可溶性碳水化合物(WSC);TM-0910P型馬弗爐測(cè)定粗灰分(Ash)[9-10]。

      1.4統(tǒng)計(jì)分析

      用Microsoft Excel 2016繪圖,運(yùn)用SPSS 19.0相關(guān)性分析模塊對(duì)高糖黑麥草的產(chǎn)草量、生長時(shí)間、分蘗、株高、CP、EE、NDF、ADF、Ash、WSC進(jìn)行相關(guān)性統(tǒng)計(jì)分析。以產(chǎn)草量、生長時(shí)間、分蘗和株高為自變量,利用一般線性模型模塊模擬高糖黑麥草飼用成分預(yù)測(cè)方程,并分別對(duì)各品種黑麥草利用協(xié)方差分析比較回歸方程斜率和截距的差異顯著性,若無顯著差異(P>0.05),將4種黑麥草的數(shù)據(jù)合并后擬合;若差異顯著(P<0.05),則對(duì)各品種黑麥草分別擬合。

      2 結(jié)果與分析

      2.1生長時(shí)間、株高、分蘗和各飼用成分之間的相關(guān)性

      收獲干草的Aberavon,NDF、ADF和CP、ADF和EE以及WSC和CP、EE、NDF、ADF的相關(guān)性均不顯著(P>0.05),其它指標(biāo)兩兩之間顯著相關(guān)(P<0.05)。在具有顯著相關(guān)的各指標(biāo)中,CP、EE和其它指標(biāo)均呈負(fù)相關(guān)關(guān)系,其它指標(biāo)兩兩之間均呈正相關(guān)關(guān)系(表1)。模擬輪牧的Aberavon黑麥草,生長時(shí)間和分蘗分別與產(chǎn)草量、EE、NDF、ADF、WSC顯著(P<0.05)或極顯著(P<0.01)相關(guān)(表1)。在具有顯著相關(guān)的各指標(biāo)中,模擬輪牧下除PH和WSC呈負(fù)相關(guān)關(guān)系外,F(xiàn)Y、TD、GT、NDF、ADF、Ash、WSC和在收獲干草條件下結(jié)果相似,均呈正相關(guān)關(guān)系,CP、EE和其它指標(biāo)均呈負(fù)相關(guān)關(guān)系。

      Aberstar黑麥草收獲干草條件下,分蘗和EE、WSC和EE、NDF、ADF、Ash、EE和ADF以及Ash和CP、EE的相關(guān)性不顯著(P>0.05)(表2),其它兩兩指標(biāo)顯著相關(guān)(P<0.05)。在各飼用成分顯著相關(guān)的指標(biāo)中,CP和EE之間呈正相關(guān)關(guān)系;除CP、EE與其它指標(biāo)之間呈負(fù)相關(guān)外,F(xiàn)Y、TD、GT、NDF、ADF、Ash、WSC之間呈正相關(guān)。模擬輪牧下,生長時(shí)間和分蘗分別與產(chǎn)草量、EE、NDF、ADF、WSC均顯著相關(guān)(P<0.05),其中TD和CP、EE和TD、GT、NDF、WSC、WSC和ADF呈負(fù)相關(guān)關(guān)系,其它相關(guān)指標(biāo)間均呈正相關(guān)關(guān)系。

      表1 模擬輪牧和收獲干草兩種利用方式下Aberavon產(chǎn)量和營養(yǎng)品質(zhì)的相關(guān)性Table 1 Correlationship among the indices of Aberavon ryegrass under two utilization methods of simulated rotational grazing and making had

      注:FY,產(chǎn)草量;TD,分蘗;PH,株高;GT,生長時(shí)間;CP,粗蛋白;EE,粗脂肪;NDF,中性洗滌纖維;ADF,酸性洗滌纖維;Ash,粗灰分;WSC,可溶性碳水化合物。*相關(guān)性達(dá)到顯著水平(P<0.05),**相關(guān)性達(dá)到極顯著水平(P<0.01)。右上部分為模擬輪牧;左下半部分為收獲干草。下同。

      Note: FY, forage yield ; TD, tiller density; PH, plant height; GT, growth time; CP, crude protein; EE, ether extract; NDF, neutral detergent fiber; ADF, acid detergent fiber; Ash, crude ash; WSC, water soluble carbohydrate. * indicate significant correlation at the 0.05 level, ** indicate significant correlation at the 0.01 level. Making hay (MH)I in the lower left; Simulated rotational grazing (SG) in the upper right. similarly for the following tables.

      Abermagic收獲干草,產(chǎn)草量和EE、WSC,EE和NDF、ADF、Ash,WSC和CP、ADF以及ADF和CP無顯著相關(guān)性(P>0.05),其它指標(biāo)之間顯著相關(guān)(P<0.05)(表3),其中CP和FY、PH、TD、GT,EE和PH、TD、GT,WSC和EE、NDF、Ash呈負(fù)相關(guān)關(guān)系,其余飼用指標(biāo)間均呈正相關(guān)關(guān)系。模擬家畜輪牧條件下,除CP和粗灰分外,其它營養(yǎng)指標(biāo)均與生長時(shí)間和分蘗呈顯著(P<0.05)或極顯著(P<0.01)相關(guān)關(guān)系,GT和PH、EE、NDF、ADF,F(xiàn)Y和EE、CP,TD和EE,WSC和EE、NDF、ADF、Ash呈負(fù)相關(guān)關(guān)系,其余相關(guān)指標(biāo)間均呈正相關(guān)關(guān)系。

      表2 模擬輪牧和收獲干草兩種利用方式下Aberstar黑麥草各指標(biāo)間相關(guān)性分析Table 2 Correlationship among the indices of Aberstar ryegrass under two utilization methods of simulated rotational grazing and making had

      表3 模擬輪牧和收獲干草兩種利用方式下Abermagic黑麥草各指標(biāo)間相關(guān)性分析Table 3 Correlationship among the indices of Abermagic ryegrass under two utilization methods of simulated rotational grazing and making had

      收獲干草的Premium,產(chǎn)草量與株高、NDF、ADF、Ash,株高與分蘗、NDF、ADF,CP、粗脂肪分別與NDF、ADF、Ash、WSC之間無顯著相關(guān)性(P>0.05),其它指標(biāo)兩兩間顯著相關(guān)(P<0.05)(表4)。在具有相關(guān)性的指標(biāo)中CP、EE和FY、PH、TD、GT,WSC和CP、Ash均呈負(fù)相關(guān)關(guān)系,其它指標(biāo)兩兩之間均呈正相關(guān)關(guān)系(表4)。模擬輪牧下,Premium生長時(shí)間和分蘗分別與產(chǎn)草量EE、NDF、ADF、WSC顯著或極顯著相關(guān)關(guān)系(P<0.05或P<0.01(表4)。在具有相關(guān)性的指標(biāo)中,EE和FY、TD、GT、NDF、ADF、WSC,PH和TD、GT,WSC和PH、ADF和Ash,CP和FY均呈負(fù)相關(guān)關(guān)系,其余指標(biāo)兩兩之間均呈正相關(guān)關(guān)系(表4)。

      2.2利用生長時(shí)間對(duì)產(chǎn)草量和牧草品質(zhì)進(jìn)行預(yù)測(cè)

      收獲干草的Aberavon、Aberstar、Premium和Abermagic黑麥草的產(chǎn)草量均隨生長時(shí)間呈線性遞增(圖1),斜率體現(xiàn)了產(chǎn)草量隨生長時(shí)間變化的敏感性,Abervon、Aberstar、Abermagic和Premium產(chǎn)草量平均每天分別增加9.9、2.0、1.4和8.6 kg·hm-2;Aberavon和Premium、Abermagic之間、Aberstar和Abermagic之間的斜率差異不顯著(P>0.05),其它品種之間差異顯著(P<0.05)。模擬輪牧的所有品種黑麥草,產(chǎn)草量隨生長時(shí)間的斜率差異不顯著,呈線性上升,日均增加28.3 kg·hm-2(圖1)。

      如:以簽訂虛假的技術(shù)合作協(xié)議的形式,虛列測(cè)試化驗(yàn)加工費(fèi),行轉(zhuǎn)撥科研經(jīng)費(fèi)或分包科研任務(wù)之實(shí)。審計(jì)中發(fā)現(xiàn),有家科研單位在委托外單位進(jìn)行測(cè)試化驗(yàn)加工費(fèi)時(shí),有合同與某大學(xué)開展合作,合同中列舉了需要測(cè)試試驗(yàn)的工作內(nèi)容和要求,測(cè)試費(fèi)用為專項(xiàng)經(jīng)費(fèi)支出10萬元。而審計(jì)人員發(fā)現(xiàn),同樣的合同內(nèi)容,簽約對(duì)方卻為個(gè)人,匯款憑證顯示合同金額達(dá)50萬元也是匯款到個(gè)人賬戶。選擇測(cè)試試驗(yàn)加工單位,要考慮到是否有相關(guān)資質(zhì)和能力,項(xiàng)目組還要說明選擇對(duì)方的理由及原因;測(cè)試試驗(yàn)加工完成后,還要附注工作內(nèi)容及結(jié)果。

      收獲干草的Aberavon、Aberstar、Premium和Abermagic黑麥草,隨著生長時(shí)間延長,CP、EE均呈線性下降(圖2、圖3);CP斜率除Abermagic顯著低于Aberavon和Aberstar外(P<0.05),其它品種間差異均不顯著(P>0.05);各品種之間 EE的斜率差異顯著(P<0.05);WSC隨生長時(shí)間呈線性增加,日均增幅0.06%左右(圖4)。

      表4 模擬輪牧和收獲干草兩種利用方式下Premium黑麥草各指標(biāo)間相關(guān)性分析Table 4 Correlationship among the indices of Premium ryegrass under two utilization methods of simulated rotational grazing and making had

      圖1 收獲干草和模擬輪牧兩種條件下生長時(shí)間與產(chǎn)草量之間的關(guān)系 Fig. 1 Relationship between the growth time and hay yield under two utilization methods of making hay and simulated rotational grazing

      圖2 收獲干草和模擬輪牧兩種條件下生長時(shí)間與粗蛋白之間的關(guān)系Fig. 2 Relationship between the growth time and CP under utilization methods of making hay and simulated rotational grazing

      圖3 收獲干草和模擬輪牧兩種條件下生長時(shí)間與粗脂肪之間的關(guān)系Fig. 3 Relationship between the growth time and EE under utilization methods of making hay and simulated rotational grazing

      圖4 收獲干草和模擬輪牧兩種條件下生長時(shí)間與可溶性碳水化合物(WSC)之間的關(guān)系Fig. 4 Relationship between the growth time and WSC under utilization methods of making hay and simulated rotational grazing

      模擬輪牧下,所有試驗(yàn)品種黑麥草CP與生長時(shí)間相關(guān)性不顯著(P>0.05)(圖2),EE呈線性下降,品種間斜率的差異不顯著(P>0.05)(圖3);Abermagic 的WSC隨生長時(shí)間升幅顯著高于其它3個(gè)品種,Aberavon、Aberstar、Premium之間差異均不顯著(P>0.05)(圖4)。

      收獲干草所有試驗(yàn)品種的黑麥草NDF、ADF、Ash與生長時(shí)間均呈正相關(guān)關(guān)系。Aberavon和Aberstar只有Ash的斜率降幅顯著低于Abermagic(P<0.05),NDF、ADF斜率差異均不顯著(P>0.05);Premium和Abermagic的NDF、ADF、Ash的斜率升幅均差異顯著(P<0.05)(圖5-7)。

      模擬輪牧下所有品種黑麥草Ash與生長時(shí)間相關(guān)性不顯著(P>0.05)(圖7);所有品種黑麥草NDF除Aberstar和Premium、Aberstar和Abermagic之間斜率差異顯著(P<0.05)外,其它各組差異均不顯著(P>0.05)(圖5);Aberavon、Aberstar、Premium和Abermagic的ADF斜率均不顯著(P>0.05),平均每天增加5.93%(圖5-6)。

      2.3利用株高對(duì)草產(chǎn)量和品質(zhì)進(jìn)行預(yù)測(cè)

      用于收獲干草的黑麥草產(chǎn)草量隨株高的增大呈線性增加趨勢(shì)(圖8)。除Premium斜率升幅顯著高于Aberstar外(P<0.05),其它所有試驗(yàn)黑麥草品種兩兩之間斜率均無顯著差異(P>0.05);4種黑麥草CP和EE均呈線性下降(圖8),Premium和Aberavon、Abermagic的EE斜率差異顯著,其它各品種EE之間斜率差異均不顯著(P>0.05)(圖8)。

      圖5 收獲干草和模擬輪牧兩種條件下生長時(shí)間與中性洗滌纖維(NDF)之間的關(guān)系Fig. 5 Relationship between the growth time and NDF under utilization methods of making hay and simulated rotational grazing

      圖6 收獲干草和模擬輪牧兩種條件下生長時(shí)間與酸性洗滌纖維(ADF)之間的關(guān)系Fig. 6 Relationship between the growth time and ADF under utilization methods of making hay and simulated rotational grazing

      圖7 收獲干草和模擬輪牧兩種條件下生長時(shí)間與粗灰分之間的關(guān)系Fig. 7 Relationship between the growth time and ash under utilization methods of making hay and simulated rotational grazing

      圖8 收獲干草條件下株高與產(chǎn)草量、粗蛋白、粗脂肪的關(guān)系Fig. 8 Relationship between the plant height and hay yield, CP, and EE under utilization methods of making hay

      圖9 收獲干草條件下株高與NDF、ADF、WSC的關(guān)系Fig. 9 Relationship between the plant height and NDF, ADF, WSC under utilization methods of making hay

      隨株高的增加,Premium的NDF、ADF與株高相關(guān)不顯著(P>0.05),Aberstar和Abermagic的NDF斜率無顯著差異(P=0.226),Aberstar和Aberavon、Abermagic斜率差異極顯著(P<0.01),Aberstar、Aberavon和Abermagic黑麥草的ADF斜率差異均不顯著(P>0.05)(圖9);隨株高的增加,所有試驗(yàn)品種黑麥草的WSC隨株高增加呈線性增加,除Aberavon斜率增幅顯著小于Aberstar和Abermagic外(P<0.05),其它黑麥草兩兩之間斜率均無顯著差異(P>0.05)。

      2.4利用分蘗對(duì)產(chǎn)草量和品質(zhì)的進(jìn)行預(yù)測(cè)

      收獲干草的所有試驗(yàn)品種黑麥草的草產(chǎn)草量均隨分蘗增加呈線性上升趨勢(shì),除Aberavon與Aberstar斜率無顯著差異外(P=0.439),其它品種兩兩之間差異顯著(P<0.05)(圖10)。模擬輪牧的產(chǎn)草量隨分蘗的增大呈指數(shù)上升趨勢(shì),品種之間的斜率無顯著差異(P>0.05)(圖10)。

      圖10 收獲干草和模擬輪牧兩種條件下分蘗與產(chǎn)草量的關(guān)系Fig. 10 Relationship between the tiller density and hay production under two utilization methods of making hay and simulated rotational grazing

      圖11 收獲干草和模擬輪牧兩種條件下分蘗與粗蛋白之間的關(guān)系Fig. 11 Relationship between the tiller density and CP under two utilization methods of making hay and simulated grazing

      圖12 收獲干草和模擬輪牧兩種條件下分蘗與粗脂肪之間的關(guān)系Fig. 12 Relationship between the tiller density and EE under two utilization methods of making hay and simulated rotational grazing

      圖13 收獲干草和模擬輪牧兩種條件下分蘗與WSC之間的關(guān)系Fig. 13 Relationship between the tiller density and WSC under two utilization methods of making hay and simulated rotational grazing

      模擬輪牧下所有黑麥草品種分蘗和CP均無顯著相關(guān)(P>0.05)(圖11)。EE隨分蘗增加呈線性下降且各品種黑麥草兩兩之間斜率均無顯著差異(P>0.05),日均減少0.6%左右(圖12)。WSC隨分蘗呈線性上升,除Aberavon和Abermagic斜率無顯著差異外(P=0.382),其它黑麥草品種兩兩之間斜率均差異顯著(P<0.05)(圖13)。

      Aberavon、Aberstar、Premium和Abermagic收獲干草的黑麥草隨分蘗增加NDF、Ash均呈線性增長趨勢(shì),ADF呈對(duì)數(shù)增長趨勢(shì),其中Aberavon和Premium以及Aberstar和Abermagic的 NDF和Ash斜率均差異不顯著(P>0.05)。Aberstar和Abermagic的ADF隨分蘗增加斜率無顯著差異(P>0.05)、Aberavon和Premium的Ash隨分蘗增加斜率無顯著差異(P>0.05),其它黑麥草兩兩之間NDF、ADF、Ash三者隨分蘗增加斜率均差異顯著(P<0.05)(圖14-16)。

      模擬放牧下,Aberavon、Aberstar、Premium和Abermagic黑麥草的Ash與分蘗相關(guān)不顯著(P>0.05)。NDF隨分蘗數(shù)增加呈線性上升趨勢(shì)、ADF隨分蘗數(shù)增加呈對(duì)數(shù)上升趨勢(shì),除Aberavon和Abermagic 的ADF斜率差異不顯著外(P=0.382),4個(gè)品種黑麥草NDF、ADF兩兩之間斜率均差異顯著(P<0.05)。

      2.5牧草生長對(duì)品質(zhì)的多元回歸預(yù)測(cè)

      利用株高、分蘗和生長時(shí)間來模擬回歸方程(表5),通過株高、分蘗和生長時(shí)間3個(gè)指標(biāo)來分別建立多元回歸來預(yù)測(cè)黑麥草的產(chǎn)量和營養(yǎng)品質(zhì)。利用株高、分蘗來模擬回歸方程(表6),通過株高和分蘗兩個(gè)指標(biāo)來建立多元回歸來預(yù)測(cè)黑麥草的營養(yǎng)品質(zhì)。

      圖14 收獲干草和模擬輪牧兩種條件下分蘗與NDF之間的關(guān)系Fig. 14 Relationship between the tiller density and NDF under two utilization methods of making hay and simulated rotational grazing

      圖15 收獲干草和模擬輪牧兩種條件下分蘗與ADF之間的關(guān)系Fig. 15 Relationship between the tiller density and ADF under two utilization methods of making hay and simulated rotational grazing

      圖16 收獲干草和模擬輪牧兩種條件下分蘗與Ash之間的關(guān)系Fig. 16 Relationship between the tiller density and Ash under two utilization methods of making hay and simulated rotational grazing

      表5 利用株高、分蘗和生長時(shí)間預(yù)測(cè)黑麥草飼用成分的預(yù)測(cè)模型Table 5 Forage nutrition prediction model by plant height, tiller density and growth time

      表6 利用株高和分蘗預(yù)測(cè)黑麥草飼用成分的預(yù)測(cè)模型Table 6 Forage nutrition prediction model by plant ehight and tiller density

      3 討論

      牧草產(chǎn)草量和品質(zhì)是確定利用時(shí)間和方式的決定因素。不同利用方式下的黑麥草草地生產(chǎn)能力差別巨大。收獲干草利用方式下,Aberavon、Aberstar、Premium和Abermagic黑麥產(chǎn)草量隨生長時(shí)間增加均表現(xiàn)出持續(xù)上升趨勢(shì),且產(chǎn)草量均在150~175 d時(shí)達(dá)到最大(圖17)。放牧是草地最經(jīng)濟(jì)適用的管理方式,以最簡便的方式為家畜提供良好的生存環(huán)境、健康的營養(yǎng)源[27]。放牧可以加速牧草營養(yǎng)物質(zhì)循環(huán)、顯著提高牧草光合能力、促進(jìn)資源再分配[29]。在模擬放牧利用方式下,牧草Aberavon、Aberstar、Premium、Abermagic累積產(chǎn)量隨生長時(shí)間增加均表現(xiàn)出上升趨勢(shì),其中Aberstar累積產(chǎn)草量最大。Binnie和Chestnutt[30]研究表明,黑麥草放牧地可利用氮和殘留氮含量均高于刈割草地。在黑麥(Secalecereale)[31]、春小麥(Triticumaestivum)[32]、燕麥(Avenasativa)[33]上也得到類似結(jié)果,較收獲干草的利用方式,模擬放牧大大提高牧產(chǎn)草量和CP產(chǎn)量。

      圖17 模擬輪牧和收獲干草兩種利用方式下4個(gè)黑麥草品種的干草產(chǎn)量和粗蛋白與生長時(shí)間的關(guān)系Fig. 17 Relationship between the growth time and hay yield, CP under two utilization methods of making hay and simulated rotational grazing

      國外一些科研院所已經(jīng)建立起了整套的苜蓿產(chǎn)量和營養(yǎng)品質(zhì)預(yù)測(cè)模型,歐洲采用GrazeGro通過觀測(cè)葉片指標(biāo)和分蘗來預(yù)測(cè)多花黑麥草的草產(chǎn)量[34]。Parsons等[35]建立了美國紫花苜蓿的NYPQ(New York Predictive Quality)和NYHT(New York Height)預(yù)測(cè)模型,利用株高預(yù)測(cè)NDF。聯(lián)合國采用AquaCrop模型對(duì)畫眉草(Eragrostistef)產(chǎn)量、水分利用效率等指標(biāo)進(jìn)行研究[36]。國內(nèi)一般在種子培育方面有預(yù)測(cè)研究,如萌發(fā)率[37]、發(fā)芽時(shí)間[38]等;杜文勇等[39]研究利用AquaCrop模型通過灌溉方式、土壤成分等因素預(yù)測(cè)冬小麥產(chǎn)量。本研究預(yù)測(cè)模型中,Aberavon、Aberstar、Premium和Abermagic 4個(gè)高糖黑麥草品種預(yù)測(cè)的粗蛋白結(jié)果與實(shí)測(cè)值比較(圖18),草產(chǎn)量和生長時(shí)間擬合的預(yù)測(cè)方程和實(shí)測(cè)值比較接近,與NYPQ、NYHT、AquaCrop等模型相比較擬合度相近[34-35],且預(yù)測(cè)值與實(shí)測(cè)值的擬合系數(shù)均大于0.85,說明本研究的預(yù)測(cè)模型可以較精確地預(yù)測(cè)高糖黑麥草的生產(chǎn)性能和營養(yǎng)成分。

      References:

      [1] 侯扶江,南志標(biāo),任繼周.作物-家畜綜合生產(chǎn)系統(tǒng).草業(yè)學(xué)報(bào),2009(5):211-234. Hou F J,Nan Z B,Ren J Z.Integrated crop-livestock production system.Prataculturae Sinica,2009(5):211-234.(in Chinese)

      [2] 王宇濤,辛國榮,楊中藝,陳三有.多花黑麥草的應(yīng)用研究進(jìn)展.草業(yè)科學(xué),2010,27(3):118-123. Wang Y T,Xin G R,Yang Z Y,Chen S Y.Progress on applications of Italian ryegrass.Pratacultural Science,2010,27(3):118-123.(in Chinese)

      [3] 王宇濤,辛國榮,陳三有,劉玉田.意大利黑麥草飼喂奶牛效果.草業(yè)科學(xué),2008,25(10):118-123. Wang Y T,Xin G R,Chen S Y,Liu Y T.The effects of feeding cows with Italian ryegrass.Pratacultural Science,2008,25(10):118-123.(in Chinese)

      [4] 張新躍.四川農(nóng)區(qū)高效草地農(nóng)業(yè)系統(tǒng)研究進(jìn)展.草業(yè)科學(xué),2004,21(12):7-14. Zhang X Y.Research development of high-efficiency system of grassland-agriculture in farming district.Pratacultural Science,2004,21(12):7-14.(in Chinese)

      [5] 張新躍,何丕陽,何光武,吳立倫,劉開全.“飼用玉米-黑麥草”草地農(nóng)業(yè)系統(tǒng)的研究Ⅰ飼用玉米的品種比較與生產(chǎn)性能.草業(yè)學(xué)報(bào),2001,10(2):33-38. Zhang X Y,He P Y,He G W,Wu L L,Liu K Q.Studies on the”corn-Italian ryegrass system”Ⅰ.Comparison of corn varieties and their productivity.Acta Prataculturae Sinica,2001,10(2):33-38.(in Chinese)

      [6] 張新躍,張瑞珍,羅文莉,王元清,楊成勇,何丕陽.“飼用玉米—黑麥草”草地農(nóng)業(yè)系統(tǒng)的研究——Ⅴ.飼用玉米性能評(píng)價(jià)與系統(tǒng)優(yōu)化.草業(yè)與畜牧,2007(12):1-4. Zhang X Y,Zhang R Z,Lou W L,Wang Y Q,Yang C Y,He P Y.Study of grassland agricultural system of “Corn-Italian ryegrass”—Ⅴ.Productivity performance evaluation and system optimization of silage maize.Prataculture & Animal Husbandry,2007(12):1-4.(in Chinese)

      [7] Izquierdo J,Bastida F,Lezaún J M,Mjsd A,Gonzalez-Andujar J L.Development and evaluation of a model for predictingLoliumrigidumemergence in winter cereal crops in the Mediterranean area.Weed Research,2013,53(4):269-278.

      [8] Moorby J M,Evans R T,Scollan N D,Macrae J C,Theodorou M K.Increased concentration of water-soluble carbohydrate in perennial ryegrass (LoliumperenneL.).Evaluation in dairy cows in early lactation.Grass and Forage Science,2006,61(1):52-59.

      [9] 成慧,Eun Joong Kim,侯扶江.高糖黑麥草在隴中黃土高原和河西綠洲引種試驗(yàn)初報(bào).草業(yè)科學(xué),2011,28(6):978-982. Chen H,Eun J K,Hou F J.Introduction of high soluble sugar ryegrass in Longzhong Loess plateau and Hexi Oasis.Pratacultural Science,2011,28(6):978-983.(in Chinese)

      [10] 楊天輝,成慧,Eun Joong Kim,常生華,張瑜,莫本田,侯扶江.黃土高原模擬輪牧高糖黑麥草生產(chǎn)性能的影響.草業(yè)科學(xué),2015,32(9):1473-1481. Yang T H,Chang H,Eun J K,Chang S H,Zhang Y,Mo B T,Hou F J.Responses of stimulated grazing to high-sugar ryegrass productive qualities on the Loess Plateau.Pratacultural Science,2015,32(9):1473-1481.(in Chinese)

      [11] Garay A H,Hodgson J,Matthew C.Effect of spring grazing management on perennial ryegrass and ryegrass-white clover pastures.New Zealand Journal of Agricultural Research,1997,40(1):37-50.

      [12] Chilibroste P,Tamminga S,Boer H,Gibb M J,Dikken G D.Duration of regrowth of ryegrass (Loliumperenne) effects on grazing behavior,intake,rumen fill,and fermentation of lactating dairy cows.Journal of Dairy Science,2000,83(5):984-995.

      [13] Hassan B E,Krueger W C,譚安鳴.放牧季節(jié)和放牧強(qiáng)度對(duì)多年生黑麥草糖貯的影響.草原與草坪,1982(1):26-29. Hassan B E,Krueger W C,Tan A M.Effects of grazing season and grazing intensity on sugar storage of perennial ryegrass.Grassland and Turf,1982(1):26-29.(in Chinese)

      [14] 夏景新,趙益春.羊茅黑麥草和無芒雀麥葉片再生動(dòng)態(tài)及其與草地管理的關(guān)系.草業(yè)科學(xué),1995,12(1):9-12. Xia J X,Zhao Y C.The dynamic and the relationship between leaves regrowth and pasture management in fescue -ryegrass and smooth bromegrass swards.Pratacultural Science,1995,12(1):9-12.(in Chinese)

      [15] 張瑞珍,何光武,楊成勇,王元清,何丕陽.多花黑麥草不同種質(zhì)資源的生產(chǎn)性能評(píng)價(jià).四川畜牧獸醫(yī),2012,39(2):30-31. Zhang R Z,He G W,Yang C Y,Wang Y Q,He P Y.Performance evaluation of different germplasm resources ofLoliummultiflorum.Sichuan Animal & Veterinary Sciences,2012,39(2):30-31.(in Chinese)

      [16] Cosgrove G P.The composition of high sugar ryegrasses.Proceedings of the New Zealand Grassland Association,2009,71:187-193.

      [17] Alende M,Andrae J,Lagreca G V,Arnoni R,Fluck A C,Duckett S.Chemical composition of high sugar and conventional ryegrass varieties grown in greenhouse conditions.Gulf Port,MS:68th Southern Pastures and Forage Crop Improvement Conference,2014:16.

      [18] 劉歡,馬嘯,張新全,陳誠,唐露,楊忠富,齊曉.多花黑麥草農(nóng)藝性狀變異及產(chǎn)量通徑分析.草業(yè)科學(xué),2016,33(10):2071-2081. Liu H,Ma X,Zhang X Q,Chen C,Tang L,Yang Z F,Qi X.Path analysis of yield and mutation analysis of agronomic traits inLoliummultiflorum.Pratacultural Science,2016,33(10):2071-2081.(in Chinese)

      [19] Rasmussen S,Parsons A J,Xue H,Newman J A.High sugar grasses-harnessing the benefits of new cultivars through growth management.Proceedings of the New Zealand Grassland Association,2009,71:167-175.

      [20] 孫園園,關(guān)萍,何杉,石建明.鎘脅迫對(duì)多花黑麥草鎘積累特征、生理抗性及超微結(jié)構(gòu)的影響.草業(yè)科學(xué),2016,33(8):1589-1597. Sun Y Y,Guan P,He S,Shi J M.Effects of Cd stress on Cd accumulation,physiological response and ultrastructure ofLoliummultiflorum.Pratacultural Science,2016,33(8):1589-1597.(in Chinese)

      [21] Kawamura O,Fukuyama K,Shibahara T.In-silo losses from high moisture Italian ryegrass (LoliummultiflorumLAM.) silage stored under high temperature conditions.Journal of Japanese Society of Grassland Science,1994,40:22-27.

      [22] Staerfl S M,Zeitz J O,Amelchanka S L,K?lber T,Kreuzer M,Leiber F.Comparison of the milk fatty acid composition from dairy cows fed high-sugar ryegrass,low-sugar ryegrass,or maize.Dairy Science & Technology,2013,93(2):201-210.

      [23] Merry R J,Lee M R,Davies D R,Dewhurst R J,Moorby J M,Scollan N D,Theodorou M K.Effects of high-sugar ryegrass silage and mixtures with red clover silage on ruminant digestion.1.In vitro and in vivo studies of nitrogen utilization.Journal of Animal Science,2006,84(11):3049-3060.

      [24] Staerfl S M,Amelchanka S L,K?lber T,Soliva C R,Kreuzer M,Zeitz J O.Effect of feeding dried high-sugar ryegrass (‘AberMagic’) on methane and urinary nitrogen emissions of primiparous cows.Livestock Science,2012,150(1-3):293-301.

      [25] 李國軍,張勝智,吉哲君.瑪曲草原氣候生態(tài)環(huán)境變化及牧草產(chǎn)量灰色預(yù)測(cè).干旱氣象,2009,27(1):61-65. Li G J,Zhang S Z,Ji Z J.Environment variation characteristic and gray-relation forecast on pasture’s yield in Maqu grassland.Journal of Arid Meteorology,2009,27(1):61-65.(in Chinese)

      [26] 成慧,侯扶江,常生華,陳先江.黃土高原秋播時(shí)間對(duì)3種小谷物牧草生產(chǎn)性能的影響.草地學(xué)報(bào),2013,21(6):1162-1168. Cheng H,Hou F J,Chang S H,Chen X J.Effects of fall sowing time on the forage productivity of small grain planted in the Loess Plateau.Acta Agrestia Sinica,2013,21(6):1162-1168.(in Chinese)

      [27] 任繼周,侯扶江,胥剛.放牧管理的現(xiàn)代化轉(zhuǎn)型——我國亟待補(bǔ)上的一課.草業(yè)科學(xué),2011,28(10):1745-1754. Ren J Z,Hou F J,Xu G.Transformation of grazing system:The urgent task for China.Pratacultural Science,2011,28(10):1745-1754.(in Chinese)

      [28] 任繼周.草業(yè)科學(xué)研究方法.中國農(nóng)業(yè)出版社,1998.36. Ren J Z.The Research Methods of Grassland Science.Beijing:China Agriculture Press,1998:36.

      [29] Oesterheld M,Mcnaughton S J.Effect of stress and time for recovery on the amount of compensatory growth after grazing.Oecologia,1991,85(3):305-313.

      [30] Binnie R C,Chestnutt D M B C.Effect of regrowth interval on the productivity of swards defoliated by cutting and grazing.Grass and Forage Science,1991,46(4):343-350.

      [31] Drake D J,Orloff S B.Simulated grazing effects on triticale forage yield.Forage & Grazinglands,2005,3(1):doi:10.1094/FG-2005-0314-01-RS.

      [32] Droushiotis D N.Effect of grazing simulation on forage hay and grain yields of spring barleys in a low rainfall environment.Journal of Agricultural Science,1984,103(3):587-594.

      [33] 成慧,常生華,陳先江,侯扶江.引黃灌區(qū)模擬輪牧對(duì)春小麥、燕麥和黑麥飼草生產(chǎn)的影響.草業(yè)學(xué)報(bào),2015,24(6):92-98. Cheng H,Chang S H,Chen X J,Hou F J.Influence of simulated rotational grazing on the forage production of spring wheat,oats and rye in the Yellow River irrigation area.Acta Prataculturae Sinica,2015,24(6):92-98.(in Chinese)

      [34] Barrett P D,Laidlaw A S,Mayne C S.GrazeGro:A European herbage growth model to predict pasture production in perennial ryegrass swards for decision support.European Journal of Agronomy,2005,23(1):37-56.

      [35] Parsons D,Cherney J H,Gauch H G.Alfalfa fiber estimation in mixed stands and its relationship to plant morphology.Crop Science,2006,46(6):2446-2452.

      [36] Araya A,Keesstra S D,Stroosnijder L.Simulating yield response to water of Teff (Eragrostistef) with FAO’s AquaCrop model.Field Crops Research,2010,116(1-2):196-204.

      [37] 周嶺,蔣恩臣.木醋液對(duì)茄子種子萌發(fā)的影響及預(yù)測(cè)模型的建立.東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2009,40(9):102-107. Zhou L,Jiang E C.Effect of wood vinegar on eggplant seeds germinating and foundation of forecasting model.Journal of Northeast Agricultural University,2009,40(9):102-107.(in Chinese)

      [38] 董麗芬,王利寶,馬建華.油松、側(cè)柏種子萌發(fā)時(shí)間預(yù)測(cè).西北林學(xué)院學(xué)報(bào).2004,19(2):56-57. Dong L F,Wang L B,Ma J H.Germinating time ofPinustabulaeformis andPlatycladusorientalis.Journal of Northwest Forestry University,2004,19(2):56-57.(in Chinese)

      [39] 杜文勇,何雄奎,Shamaila Z,胡振方,曾愛軍,Muller J.冬小麥生物量和產(chǎn)量的AquaCrop模型預(yù)測(cè).農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(4):174-178. Du W Y,He X K,Shamaila Z,Hu Z F,Zeng A J,Muller J.Yield and biomass prediction testing of AquaCrop Model for winter wheat.Transactions of the Chinese Society for Agricultural Machinery,2011(4):174-178.(in Chinese)

      (責(zé)任編輯 武艷培)

      本刊如有印裝質(zhì)量問題,請(qǐng)將原雜志寄回編輯部,由本部負(fù)責(zé)調(diào)換。

      PredictionofyieldandqualityofhighsugarryegrassinLoessplateau

      Wang Yong-jia1,2, Cheng Hui1, Eun Joong Kim3, Nigel Scollan4, Chang Sheng-hua1,2, Hou Fu-jiang1,2
      (1.State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; 2.Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China;3.Department of Animal Science, Kyungpook National University, Sangju, South Korea;4.Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK)

      In order to investigate theLoessplateauhigh sugar ryegrass CP, EE, NDF, ADF, Ash, WSC and other forage quality index and the relationship between growth time, plant height, tiller density; usingthe method of field experiment combined with the prediction model, in simulated grazing and hay harvest two utilization mode of forage yield and quality of forage composition could be predicted, with the growth time, plant height, tiller density on high sugar ryegrass. The results show that in hay harvest the growth time, plant height and tiller density of ryegrass were significantly correlated with each nutrient index of Aberavon, Aberstar, Premium and Abermagic (P<0.05); Simulation grazing of Aberavon, Aberstar, Premium and Abermagic of ryegrass plant height and other nutrition indexes were not correlated (P>0.05). Expect CP and Ash, the other quality indexes of ryegrass were significantly related with tiller density and growth time (P<0.05). By usingthe growth time, plant height, tiller density, a single regression prediction model and a multiple regression prediction model were established for the yield and forage composition of 4 ryegrass cultivars, which were considerably accurate while being compared with the observed values. It can provide a scientific basis for the cultivation and utilization of high sugar ryegrass in theL.plateau

      grazing; tiller density; plant height; CP; EE; NDF; ADF; WSC

      Hou Fu-jiang E-mail:cyhoufj@lzu.edu.cn

      S816;S543+.6

      :A

      :1001-0629(2017)09-1863-17

      10.11829/j.issn.1001-0629.2017-0013

      王永嘉,成慧,Eun Joong Kim,Nigel Scollan,常生華,侯扶江.黃土高原高糖黑麥草的產(chǎn)量和品質(zhì)預(yù)測(cè).草業(yè)科學(xué),2017,34(9):1863-1879.

      Wang Y J,Cheng H,Eun J K,Nigel S,Chang S H,Hou F J.Prediction of yield and quality of high sugar ryegrass inLoessplateau.Pratacultural Science,2017,34(9):1863-1879.

      2016-12-31接受日期:2017-03-21

      長江學(xué)者和創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃項(xiàng)目(IRT-17R50);甘肅省2016年草牧業(yè)試驗(yàn)試點(diǎn)和草業(yè)技術(shù)創(chuàng)新聯(lián)盟科技支撐(GCLM2016001)

      王永嘉(1992-),男,甘肅永登人,在讀碩士生,研究方向?yàn)樾竽翆W(xué)。E-mail:yjwang15@lzu.edu.cn

      侯扶江(1971-),男,河南扶溝人,教授,博導(dǎo),博士,研究方向?yàn)椴菪蠡プ?。E-mail:cyhoufj@lzu.edu.cn

      猜你喜歡
      輪牧產(chǎn)草量草業(yè)
      黃土高原4種高糖黑麥草在不同刈割方式下的營養(yǎng)價(jià)值評(píng)價(jià)
      青海草業(yè)
      露天開采背景下錫林浩特市產(chǎn)草量時(shí)空變化及對(duì)氣象因子的響應(yīng)
      輪牧能有效促進(jìn)高寒草地生物量和穩(wěn)定性
      黑龍江省大慶地區(qū)20個(gè)紫花苜蓿引種試驗(yàn)
      北方草地夏秋季劃區(qū)輪牧技術(shù)
      輪牧方式對(duì)荒漠草原灘羊牧食特征、體重及繁殖性能的影響
      2017 年第1 期《草業(yè)科學(xué)》審稿專家
      貴州草地劃區(qū)輪牧對(duì)春季草地成分的影響
      2015年3月草業(yè)科學(xué)大事記
      上高县| 松桃| 宜君县| 喀喇| 临猗县| 潜山县| 巴彦淖尔市| 横峰县| 宜宾县| 大姚县| 囊谦县| 海伦市| 项城市| 浦县| 黔西| 隆子县| 错那县| 德令哈市| 富平县| 民权县| 同江市| 吉安县| 重庆市| 武威市| 东明县| 阿荣旗| 吴川市| 安化县| 桂阳县| 小金县| 襄樊市| 内乡县| 高雄县| 新营市| 泸西县| 綦江县| 安义县| 牙克石市| 改则县| 忻州市| 长乐市|