• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      潛艇艙段模型機(jī)械聲源定量識(shí)別試驗(yàn)研究

      2017-10-25 12:43:15于樹(shù)華時(shí)勝?lài)?guó)時(shí)潔韓闖
      聲學(xué)技術(shù) 2017年3期
      關(guān)鍵詞:激振器艙段噪聲源

      于樹(shù)華,時(shí)勝?lài)?guó),2,時(shí)潔,2,韓闖

      ?

      潛艇艙段模型機(jī)械聲源定量識(shí)別試驗(yàn)研究

      于樹(shù)華1,時(shí)勝?lài)?guó)1,2,時(shí)潔1,2,韓闖3

      (1.哈爾濱工程大學(xué)水聲工程學(xué)院,黑龍江哈爾濱150001;2. 哈爾濱工程大學(xué)水聲技術(shù)重點(diǎn)實(shí)驗(yàn)室,黑龍江哈爾濱150001;3. 哈爾濱理工大學(xué)測(cè)控技術(shù)與通信工程學(xué)院,黑龍江哈爾濱150080)

      針對(duì)潛艇機(jī)械聲源的分離量化問(wèn)題,采用了將偏相干輸出譜分析與層次分析相結(jié)合的層次診斷方法。建立了復(fù)雜噪聲源分離量化的遞階層次結(jié)構(gòu),并通過(guò)兩兩比較構(gòu)造判斷矩陣,通過(guò)各層權(quán)重組合處理得到各噪聲源的分離量化結(jié)果;為了驗(yàn)證該方法在實(shí)際工程應(yīng)用中的有效性,開(kāi)展了潛艇艙段模型機(jī)械聲源定量識(shí)別水池試驗(yàn)研究,采用層次診斷分析方法實(shí)現(xiàn)了機(jī)械聲源貢獻(xiàn)分離,并通過(guò)模型偏心電機(jī)、激振器單機(jī)和組合單機(jī)試驗(yàn)工況考核了機(jī)械聲源分離精度。經(jīng)艙段模型試驗(yàn)驗(yàn)證,采用層次診斷方法得到的機(jī)械聲源貢獻(xiàn)分離偏差小于3 dB(50 Hz~1 kHz)。艙段模型試驗(yàn)驗(yàn)證了層次診斷方法在機(jī)械聲源定量識(shí)別中的可行性,并為該方法的工程實(shí)用性提供支撐。

      噪聲源識(shí)別;層次診斷;偏相干分析;艙段模型試驗(yàn)

      0 引言

      從聲學(xué)的角度看,潛艇是一個(gè)復(fù)雜的噪聲源分布體,其水下噪聲主要包括機(jī)械噪聲、螺旋槳噪聲和水動(dòng)力噪聲。在中低速巡航狀態(tài)下,潛艇的主要噪聲源是機(jī)械結(jié)構(gòu)噪聲[1]。控制并減小機(jī)械噪聲是實(shí)現(xiàn)潛艇安靜化的首要環(huán)節(jié)。為了有針對(duì)性地開(kāi)展減振降噪工作,通過(guò)測(cè)量艇體振動(dòng)信號(hào)及其水下輻射噪聲對(duì)各噪聲源貢獻(xiàn)大小進(jìn)行估計(jì),從而識(shí)別出主要噪聲源是一個(gè)關(guān)鍵的技術(shù)手段。為了解決這一難題,國(guó)內(nèi)外學(xué)者進(jìn)行了大量理論與試驗(yàn)研究并提出了許多應(yīng)用于噪聲源識(shí)別的方法[2-7]。然而,潛艇內(nèi)部機(jī)電設(shè)備眾多,且振動(dòng)傳遞路徑復(fù)雜,主要包括機(jī)械設(shè)備-支撐基座、機(jī)械設(shè)備-浮筏隔振裝置以及管路傳遞等振動(dòng)傳遞路徑。上述原因?qū)е铝藵撏?nèi)部機(jī)電設(shè)備之間相互耦合嚴(yán)重,振動(dòng)傳遞特性復(fù)雜,使得噪聲源識(shí)別問(wèn)題難以得到合理的解決。

      本文將層次分析法[8]與相干輸出譜分析、偏相干輸出譜分析[9]相結(jié)合,采用層次診斷技術(shù)[10]對(duì)潛艇艙段模型機(jī)械聲源進(jìn)行定量識(shí)別。將潛艇層次診斷過(guò)程分為兩個(gè)環(huán)節(jié),分別為從艇內(nèi)設(shè)備到殼體、再?gòu)臍んw到聲場(chǎng)評(píng)價(jià)點(diǎn)。在這兩個(gè)環(huán)節(jié)中分別采用層次診斷技術(shù)將復(fù)雜的噪聲源定量識(shí)別問(wèn)題表示為有序的遞階層次結(jié)構(gòu),采用相干分析、偏相干分析在各特征線(xiàn)譜上或特征頻帶內(nèi)對(duì)噪聲源進(jìn)行排序;并對(duì)兩個(gè)環(huán)節(jié)的排序結(jié)果進(jìn)行融合計(jì)算,得到艇內(nèi)各機(jī)械設(shè)備對(duì)水聲場(chǎng)評(píng)價(jià)點(diǎn)的貢獻(xiàn)大小。

      艙段模型試驗(yàn)是對(duì)潛艇機(jī)械噪聲定量識(shí)別技術(shù)進(jìn)行試驗(yàn)驗(yàn)證的重要途徑。本文以潛艇艙段模型為研究對(duì)象,構(gòu)建了艙段模型振動(dòng)與水下輻射噪聲試驗(yàn)測(cè)試系統(tǒng),利用振動(dòng)測(cè)量系統(tǒng)測(cè)量艙段模型內(nèi)部偏心電機(jī)機(jī)腳、激振器激勵(lì)殼體部位以及殼體結(jié)構(gòu)的振動(dòng)數(shù)據(jù),利用近場(chǎng)水下輻射噪聲測(cè)量系統(tǒng)以及遠(yuǎn)場(chǎng)單點(diǎn)聲壓水聽(tīng)器,分別測(cè)量模型殼體水下輻射噪聲的近場(chǎng)和遠(yuǎn)場(chǎng)水下輻射噪聲數(shù)據(jù),以考核機(jī)械聲源貢獻(xiàn)分離測(cè)試分析方法的準(zhǔn)確度,為實(shí)艇碼頭機(jī)械噪聲源測(cè)試提供技術(shù)支撐。

      1 基于層次診斷的噪聲源識(shí)別方法

      1.1 層次診斷基本原理

      根據(jù)噪聲源特點(diǎn)和層次診斷理論可建立具有四個(gè)層次的噪聲源識(shí)別遞階層次結(jié)構(gòu),分別為:目標(biāo)層、準(zhǔn)則層、頻率層和聲源層。目標(biāo)層是噪聲源的主次順序,用A表示;準(zhǔn)則層為噪聲源診斷信號(hào)處理方法(包括相干分析和偏相干分析),用B表示;頻率層用F表示;聲源層用C表示。噪聲源層次診斷結(jié)構(gòu)模型圖如圖1所示。

      圖1 噪聲源層次診斷結(jié)構(gòu)模型圖

      首先確定殼體結(jié)構(gòu)強(qiáng)輻射部位,并選擇殼體結(jié)構(gòu)強(qiáng)輻射部位臨近的若干殼體振動(dòng)測(cè)點(diǎn)(層次診斷系統(tǒng)中間傳遞節(jié)點(diǎn))作為層次診斷的內(nèi)部振動(dòng)源識(shí)別子系統(tǒng)的輸出,同時(shí)也是層次診斷的外部機(jī)械聲源識(shí)別子系統(tǒng)的輸入。因此,殼體振動(dòng)測(cè)點(diǎn)、偏心電機(jī)機(jī)腳和激振器激勵(lì)點(diǎn)的振動(dòng)測(cè)點(diǎn)(層次診斷系統(tǒng)的輸入)、遠(yuǎn)場(chǎng)單點(diǎn)聲壓水聽(tīng)器(層次診斷系統(tǒng)輸出)構(gòu)成一個(gè)完整的層次診斷系統(tǒng)。

      艙段模型機(jī)械聲源貢獻(xiàn)分離層次診斷方法信號(hào)處理流程示意圖如圖2所示。

      圖2 噪聲源層次診斷流程圖

      具體的貢獻(xiàn)分離診斷步驟如下:

      第一步,確定主要噪聲源。將結(jié)構(gòu)振動(dòng)測(cè)量系統(tǒng)測(cè)得的振動(dòng)數(shù)據(jù)與艙段模型內(nèi)部機(jī)械設(shè)備布放信息進(jìn)行綜合分析,可以確定作為聲源層元素的艇內(nèi)機(jī)械設(shè)備和殼體強(qiáng)輻射部位;

      第二步,選取分析準(zhǔn)則。根據(jù)艙段模型機(jī)械聲源定量識(shí)別的具體問(wèn)題確定準(zhǔn)則層的元素,包括特征線(xiàn)譜分析、特征頻帶能量分布分析和相干輸出譜分析、偏相干輸出譜分析;

      第三步,選取分析頻率或頻帶。對(duì)評(píng)價(jià)點(diǎn)處的信號(hào)在頻域上進(jìn)行分析,基于其頻率結(jié)構(gòu)完成對(duì)作為頻率層元素的特征線(xiàn)譜和特征頻帶的提??;

      第四步,構(gòu)建判斷矩陣。對(duì)機(jī)械結(jié)構(gòu)振動(dòng)信號(hào)在頻域上進(jìn)行分析處理,根據(jù)所分析信號(hào)的能量大小,以上一層次中某元素為準(zhǔn)則建立表示與其相關(guān)的本層次中各元素之間相對(duì)重要程度的判斷矩陣;

      第五步,對(duì)判斷矩陣一致性進(jìn)行檢驗(yàn),并計(jì)算單一準(zhǔn)則下各層元素權(quán)重;

      第六步,把第五步中的各層權(quán)重計(jì)算結(jié)果進(jìn)行組合處理,從而完成機(jī)械聲源的定量識(shí)別。并進(jìn)行總的判斷一致性檢驗(yàn)。

      1.2 判斷矩陣構(gòu)建方法的改進(jìn)[10]

      層次診斷借助于合理的標(biāo)度建立具有滿(mǎn)意一致性的判斷矩陣。在潛艇機(jī)械聲源定量識(shí)別過(guò)程中,計(jì)算的是各機(jī)械聲源對(duì)聲場(chǎng)評(píng)價(jià)點(diǎn)的能量貢獻(xiàn)比例,對(duì)測(cè)度對(duì)象采用信號(hào)處理手段得到的結(jié)果具有清晰的物理意義。為了使傳統(tǒng)層次分析法中的標(biāo)度可以應(yīng)用于具有特定物理意義的問(wèn)題,需要對(duì)其進(jìn)行改進(jìn),從而可以反映被測(cè)對(duì)象具有的物理屬性。

      表1 層次診斷中標(biāo)度系統(tǒng)的改進(jìn)

      2 艙段模型試驗(yàn)概況

      為了驗(yàn)證層次診斷技術(shù)在水下大型結(jié)構(gòu)機(jī)械聲源定量識(shí)別中應(yīng)用的可行性,在混響水池開(kāi)展了潛艇艙段模型機(jī)械系統(tǒng)振動(dòng)與水下輻射噪聲測(cè)試試驗(yàn)研究。

      考慮到實(shí)艇碼頭系泊的測(cè)試環(huán)境以及水池測(cè)試條件、艙段模型試驗(yàn)的可操作性,艙段模型全潛水下,布放深度為1.8 m;另外,考慮艙段模型內(nèi)偏心電機(jī)布置在底部,因而將近場(chǎng)輻射噪聲測(cè)量系統(tǒng)布放深度選取較深一些,布放深度為4.6 m,兩者水平相距4 m;遠(yuǎn)場(chǎng)單點(diǎn)聲壓水聽(tīng)器布放深度也為4.6 m,與艙段模型水平相距8.5 m。艙段模型、組合陣列和單點(diǎn)聲壓水聽(tīng)器布放示意圖如圖3所示。

      圖 3 水池試驗(yàn)布放示意圖

      2.1 試驗(yàn)對(duì)象

      試驗(yàn)對(duì)象是具有雙層殼體結(jié)構(gòu)的艙段模型,試驗(yàn)艙總長(zhǎng)為2.87 m,主體雙層殼艙段長(zhǎng)為2.3 m,外徑2 m,耐壓殼直徑為1.6 m,艙段模型實(shí)物如圖4所示。艙段模型內(nèi)部設(shè)置有位于船舯的小型浮筏基座及筏架(模擬小型輔機(jī)浮筏)和舷側(cè)設(shè)置的舷側(cè)浮筏基座(模擬大型整艙浮筏)。

      圖4 艙段模型

      激勵(lì)設(shè)備包括2臺(tái)偏心電機(jī)和1臺(tái)激振器。如圖5所示,2臺(tái)偏心電機(jī)安裝在船舯小型浮筏基座及筏架上,激勵(lì)浮筏基座引起艙段模型殼體結(jié)構(gòu)振動(dòng)并向外部輻射噪聲。如圖6所示,在舷側(cè)浮筏基座上安裝有1臺(tái)激振器,激勵(lì)殼體振動(dòng)并向外輻射噪聲。

      圖5 偏心電機(jī)

      圖6 激振器

      2.2 測(cè)試系統(tǒng)

      艙段模型試驗(yàn)測(cè)試系統(tǒng)的硬件系統(tǒng)包括激勵(lì)設(shè)備機(jī)腳、艙段模型結(jié)構(gòu)振動(dòng)測(cè)量系統(tǒng),近場(chǎng)水下聲輻射測(cè)量系統(tǒng)以及遠(yuǎn)場(chǎng)單點(diǎn)聲壓水聽(tīng)器。其中,結(jié)構(gòu)振動(dòng)測(cè)量系統(tǒng)主要用于偏心電機(jī)和激振器的激勵(lì)振動(dòng)特性以及殼體被激振動(dòng)的空間分布特性測(cè)試,掌握激勵(lì)設(shè)備的振動(dòng)特性以及殼體主要聲輻射部位;近場(chǎng)輻射噪聲測(cè)量系統(tǒng)和遠(yuǎn)場(chǎng)單點(diǎn)噪聲測(cè)量系統(tǒng)可以作為機(jī)械聲源定量識(shí)別過(guò)程的聲場(chǎng)評(píng)價(jià)點(diǎn)。結(jié)構(gòu)振動(dòng)測(cè)量系統(tǒng)包括54只振動(dòng)加速度計(jì),其中,偏心電機(jī)機(jī)腳4個(gè)振動(dòng)測(cè)點(diǎn),激振器機(jī)腳2個(gè)振動(dòng)測(cè)點(diǎn),殼體48個(gè)振動(dòng)測(cè)點(diǎn)(4環(huán)×12個(gè)/環(huán));近場(chǎng)輻射噪聲測(cè)量系統(tǒng)由8只B&K8103型聲壓水聽(tīng)器和3只自行研制的三維矢量水聽(tīng)器組成;遠(yuǎn)場(chǎng)單點(diǎn)噪聲測(cè)量系統(tǒng)為B&K8106型聲壓水聽(tīng)器。艙段模型機(jī)械聲源定位與貢獻(xiàn)分離綜合試驗(yàn)測(cè)試系統(tǒng)共有75路聲與振動(dòng)測(cè)量信號(hào)。試驗(yàn)測(cè)試系統(tǒng)還包括振動(dòng)信號(hào)調(diào)理器、程控濾波放大器、測(cè)量放大器、PULSE采集器和計(jì)算機(jī)。艙段模型一端設(shè)置兩個(gè)船艙水密接插件,主要用于連接水密電纜,根據(jù)實(shí)驗(yàn)需要可分別傳輸振動(dòng)測(cè)試信號(hào)和激振信號(hào)、動(dòng)力電等。

      按照艙段模型內(nèi)安裝設(shè)備對(duì)激勵(lì)設(shè)備振動(dòng)測(cè)點(diǎn)進(jìn)行編號(hào),偏心電機(jī)1為A(靠近水密門(mén)端),偏心電機(jī)2為B(遠(yuǎn)離水密門(mén)端);激振器為C。激勵(lì)設(shè)備振動(dòng)噪聲測(cè)點(diǎn)布置及編號(hào)見(jiàn)表2。

      艙段模型殼體的振動(dòng)測(cè)點(diǎn)布置如圖7所示,在殼體上共有48個(gè)振動(dòng)測(cè)點(diǎn)。按照順時(shí)針(從水密門(mén)端向艙內(nèi)看)、從水密門(mén)端順序?qū)んw振動(dòng)測(cè)點(diǎn)進(jìn)行編號(hào),用字母E、F、G、H表示殼體不同截面的上振動(dòng)測(cè)點(diǎn);用數(shù)字1~12表示同一截面上的不同測(cè)點(diǎn)。

      表2 激勵(lì)設(shè)備振動(dòng)測(cè)點(diǎn)

      圖7 殼體振動(dòng)測(cè)點(diǎn)

      2.3 試驗(yàn)工況

      依托艙段模型分別開(kāi)展激勵(lì)設(shè)備單機(jī)和多機(jī)組合激勵(lì)測(cè)試,具體試驗(yàn)工況如表3所示。開(kāi)展電機(jī)1、電機(jī)2和激振器單機(jī)測(cè)試,獲取電機(jī)1、電機(jī)2和激振器單獨(dú)激勵(lì)模型殼體時(shí)的水下輻射噪聲數(shù)據(jù),為后續(xù)采用分部運(yùn)轉(zhuǎn)法對(duì)機(jī)械聲源定量識(shí)別進(jìn)行正確性檢驗(yàn)提供基準(zhǔn)數(shù)據(jù)。多機(jī)組合激勵(lì)測(cè)試包括電機(jī)1和激振器同時(shí)開(kāi)啟以及電機(jī)1、電機(jī)2和激振器同時(shí)開(kāi)啟兩種方式,驗(yàn)證機(jī)械聲源定量識(shí)別方法的有效性。

      表3 試驗(yàn)工況

      3 試驗(yàn)數(shù)據(jù)分析

      基于艙段模型水下噪聲測(cè)試平臺(tái)的激勵(lì)設(shè)備單機(jī)和多機(jī)組合測(cè)試結(jié)果,利用單機(jī)測(cè)試具有的頻譜特征與機(jī)械聲源對(duì)應(yīng)關(guān)系明確,多機(jī)組合測(cè)試具有機(jī)械聲源數(shù)目與布放位置已知、振動(dòng)傳遞特性與水下殼體聲輻射特性明確的特點(diǎn),將水聲場(chǎng)中不同空間位置作為水聲場(chǎng)評(píng)價(jià)點(diǎn),考察分離量化算法對(duì)不同空間位置的聲場(chǎng)評(píng)價(jià)點(diǎn)的聲源貢獻(xiàn)分離性能。設(shè)備機(jī)腳測(cè)點(diǎn)、殼體測(cè)點(diǎn)分別作為內(nèi)部振動(dòng)源識(shí)別子系統(tǒng)、外部機(jī)械聲源識(shí)別子系統(tǒng)的輸入信息,其選擇通過(guò)重相干函數(shù)計(jì)算驗(yàn)證了層次診斷系統(tǒng)輸入信息是完備的。

      在表3中工況4的條件下,將近場(chǎng)輻射噪聲測(cè)量系統(tǒng)中心測(cè)點(diǎn)作為聲場(chǎng)評(píng)價(jià)點(diǎn)進(jìn)行層次診斷。對(duì)聲場(chǎng)評(píng)價(jià)點(diǎn)處聲信號(hào)進(jìn)行功率譜分析和1/3倍頻程能量分布分析,結(jié)果如圖8所示。

      (a) 聲場(chǎng)評(píng)價(jià)點(diǎn)處聲信號(hào)功率譜

      (b) 聲場(chǎng)評(píng)價(jià)點(diǎn)處聲信號(hào)1/3倍頻程能量分布分析

      圖8 聲場(chǎng)評(píng)價(jià)點(diǎn)處聲信號(hào)頻譜分析

      Fig.8 Frequency spectrum analysis of acoustic signal

      選取水下輻射噪聲的特征頻帶作為頻率層元素,分別是以400、500、630、800 Hz和1 000 Hz為中心頻率的1/3倍頻程頻帶,建立水下輻射噪聲層次診斷模型如圖9所示。

      采用層次診斷可得各殼體測(cè)點(diǎn)對(duì)聲場(chǎng)評(píng)價(jià)點(diǎn)貢獻(xiàn)的排序權(quán)重為

      圖9 機(jī)械聲源定量識(shí)別層次診斷模型

      Fig.9 Hierarchy diagnosis model of mechanical noise identification

      (a)A1測(cè)點(diǎn)與E1測(cè)點(diǎn)之間偏相干函數(shù)

      (b)C1測(cè)點(diǎn)與E1測(cè)點(diǎn)之間偏相干函數(shù)

      (c)A1測(cè)點(diǎn)與E2測(cè)點(diǎn)之間偏相干函數(shù)

      (d)C1測(cè)點(diǎn)與E2測(cè)點(diǎn)之間偏相干函數(shù)

      圖10 A1測(cè)點(diǎn)、C1測(cè)點(diǎn)與殼體測(cè)點(diǎn)之間偏相干函數(shù)

      Fig.10 Partial coherence function between A1, C1and E2

      表4 設(shè)備測(cè)點(diǎn)對(duì)殼體測(cè)點(diǎn)貢獻(xiàn)比例計(jì)算

      采用加權(quán)平均法對(duì)兩個(gè)環(huán)節(jié)的計(jì)算結(jié)果進(jìn)行融合得到的計(jì)算結(jié)果如表5中的第一組試驗(yàn)結(jié)果所示。其它的試驗(yàn)數(shù)據(jù)處理過(guò)程與此類(lèi)似,不再贅述,艙段模型機(jī)械聲源分離量化結(jié)果如表5所示。

      表5 噪聲源分離量化結(jié)果

      在表5中,第一組和第二組試驗(yàn)結(jié)果是在工況4條件下,分別以近場(chǎng)輻射噪聲測(cè)量系統(tǒng)中心測(cè)點(diǎn)和遠(yuǎn)場(chǎng)單點(diǎn)輻射噪聲測(cè)量水聽(tīng)器作為聲場(chǎng)評(píng)價(jià)點(diǎn)得到的。采用分部運(yùn)轉(zhuǎn)法對(duì)工況1和工況3進(jìn)行分析可知,激振器單開(kāi)時(shí)的水下輻射噪聲能量比電機(jī)1高2~3 dB。在兩種工況下得到的分離量化結(jié)果均可以正確識(shí)別出激振器是主要噪聲源,這與分部運(yùn)轉(zhuǎn)法得到的結(jié)論是一致的,且兩臺(tái)設(shè)備的分離量化誤差均低于1 dB。

      表5中的第三組和第四組試驗(yàn)結(jié)果是在工況5條件下,分別以近場(chǎng)輻射噪聲測(cè)量系統(tǒng)中心測(cè)點(diǎn)和遠(yuǎn)場(chǎng)單點(diǎn)輻射噪聲測(cè)量水聽(tīng)器作為聲場(chǎng)評(píng)價(jià)點(diǎn)得到的測(cè)試結(jié)果。對(duì)分部運(yùn)轉(zhuǎn)工況進(jìn)行處理可知,電機(jī)1和激振器的水下輻射噪聲能量比較接近,且激振器強(qiáng)于電機(jī)1,兩者均高于電機(jī)2大約20 dB。在這兩種工況下,采用層次診斷技術(shù)得到的噪聲源分離量化結(jié)果均可以對(duì)噪聲源進(jìn)行正確排序,電機(jī)1和激振器的分離量化誤差不大于2 dB,而電機(jī)2的分離量化誤差大于10 dB。由聲場(chǎng)能量疊加原理可知,若兩聲源輻射聲能量相差大于10 dB,則較小聲源對(duì)總聲場(chǎng)的貢獻(xiàn)可以忽略;那么在噪聲源分離量化過(guò)程中,即使強(qiáng)噪聲源有較小的分離量化誤差,都將會(huì)導(dǎo)致弱噪聲源有較大的分離量化誤差,所以電機(jī)2的分離量化誤差較大也是合理的,但這并不影響后續(xù)減振降噪工作開(kāi)展及其實(shí)施效果。

      4 結(jié)論

      通過(guò)艙段模型機(jī)械聲源定量識(shí)別試驗(yàn),獲得艙段模型的機(jī)械設(shè)備機(jī)腳以及殼體表面振動(dòng)能量的分布情況及其近場(chǎng)、遠(yuǎn)場(chǎng)輻射噪聲數(shù)據(jù),基于遞階層次結(jié)構(gòu)分析模型,采用偏相干輸出譜分析與層次分析相結(jié)合的層次診斷方法,實(shí)現(xiàn)了艙段模型機(jī)械聲源分離量化,確定各機(jī)械噪聲源對(duì)輻射聲場(chǎng)評(píng)價(jià)點(diǎn)的貢獻(xiàn)大小。得到主要結(jié)論如下:

      (1) 對(duì)艙段模型激勵(lì)設(shè)備單機(jī)和組合單機(jī)激勵(lì)測(cè)試工況進(jìn)行處理,利用基于偏相干分析的層次診斷技術(shù)對(duì)測(cè)試數(shù)據(jù)進(jìn)行了分析處理,并對(duì)處理結(jié)果采用分部運(yùn)轉(zhuǎn)法進(jìn)行了準(zhǔn)確性檢驗(yàn),從而驗(yàn)證了層次診斷技術(shù)在耦合條件下機(jī)械聲源定量識(shí)別中的有效性。

      (2) 試驗(yàn)研究為水下航行體機(jī)械噪聲源測(cè)試分析提供了有效的測(cè)試分析手段,對(duì)潛艇減振降噪措施效果的評(píng)定、機(jī)械設(shè)備減振降噪性能的評(píng)估以及聲學(xué)設(shè)計(jì)均具有重要的指導(dǎo)意義和一定的工程應(yīng)用價(jià)值。

      [1] 俞孟薩, 黃國(guó)榮, 伏同先. 潛艇機(jī)械噪聲控制技術(shù)的現(xiàn)狀與發(fā)展概述[J]. 船舶力學(xué), 2003, 7(4): 110-120.YU Mengsa, HUANG Guorong, FU Tongxian. Development review on mechanical-noise control for submarine[J]. Journal of Ship Mechanics, 2003, 7(4): 110-120.

      [2] 黃其柏, 王雪川, 盧文祥, 等. 分布噪聲源診斷的偏相干理論與方法[J]. 聲學(xué)技術(shù), 1995, 14(3): 97-101. HUANG Qibai, WANG Xuechuan, LU Wenxiang, et al. The theory and method of partial coherence analysis of distribution noise source diagnosis[J]. Technical Acoustics, 1995, 14(3): 97-101.

      [3] 汪慶年, 李紅艷, 史風(fēng)娟, 等. 基于頻譜分析的電機(jī)噪聲源的識(shí)別[J]. 聲學(xué)技術(shù), 2009, 28(4): 528-531. WANG Qingnian, LI Hongyan, SHI Fengjuan, et al. Motor noise identification based on spectrum analysis[J]. Technical Acoustics, 2009, 28(4): 528-531.

      [4] Ian Davis, Gareth J. Bennett. Experimental investigation of coherence based noise source identification techniques for turbomachinery applications–classic and novel techniques[C]//Portland, Oregon: 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference), 2011.

      [5] 吳海平, 樓京俊, 劉文武. 相干噪聲源貢獻(xiàn)量排序分析方法[J]. 四川兵工學(xué)報(bào), 2012, 33(11): 89-92. WU Haiping, LOU Jingjun, LIU Wenwu. The order analysis method for the contribution of coherent noise sources[J]. Journal of Sichuan Ordnance, 2012, 33(11): 89-92.

      [6] 余桐奎. 改進(jìn)的復(fù)雜噪聲源識(shí)別方法[J]. 振動(dòng)與沖擊, 2012, 31(14): 152-156. YU Tongkui. Improved method for noise identification[J]. Journal of Vibration and Shock, 2012, 31(14): 152-156.

      [7] 楊德森, 韓闖, 時(shí)勝?lài)?guó), 等. 基于倒譜和偏相干分析的噪聲源分離方法[J]. 哈爾濱工程大學(xué)學(xué)報(bào), 2014, 35(1): 16-24.YANG Desen, HAN Chuang, SHI Shengguo, et al. Separation of noise sources based on the cepstrum and partial coherence theory[J]. Journal of Harbin Engineering University, 2014, 35(1): 16- 24.

      [8] 孫宏才, 田平, 王蓮芬. 網(wǎng)絡(luò)層次分析法與決策科學(xué)[M]. 北京: 國(guó)防工業(yè)出版社, 2011. SUN Hongcai, TIAN Ping, WANG Lianfen. Analytic network process and decision making science[M]. Beijing: National Defense Industry Press, 2011.

      [9] 貝達(dá)特J S, 皮爾索A G. 相關(guān)分析和譜分析的工程應(yīng)用[M]. 北京: 國(guó)防工業(yè)出版社, 1983. Bendat J S, Piersol A G. Engineering application of correlation and spectral analysis[M]. Beijing: National Defense Industry Press, 1983.

      [10] 時(shí)勝?lài)?guó), 于樹(shù)華, 韓闖, 等. 基于層次診斷的水下結(jié)構(gòu)振動(dòng)噪聲源分離量化[J]. 振動(dòng)與沖擊, 2014, 33(9): 33-39. SHI Shengguo, YU Shuhua, HAN Chuang, et al. Separation and quantification of underwater structural vibration and noise sources based on hierarchy diagnosis[J]. Journal of Vibration and Shock, 2014, 33(9): 33-39.

      The experimental research on identification and quantification of mechanical noise in submarine cabin model

      YU Shu-hua1, SHI Sheng-guo1,2, SHI Jie1,2, HAN Chuang3

      (1. College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang,China;2. Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, Heilongjiang, China;3. School of Measurement and Communication, Harbin University of Science and Technology, Harbin 150080, Heilongjiang, China)

      To identify the dominant noise source accurately is the premise of controlling mechanical noise of submarine effectively. To solve the separation and quantification problem of mechanical noise source for submarine, hierarchy diagnosis is proposed which combines the partial coherence output power spectrum analysis and analytic hierarchy process. Hierarchical structure is established for the separation and quantification of complex noise source, judgment matrix is constructed through pairwise comparison, the separation and quantification result of noise source can be calculated. To validate the effectiveness of hierarchical diagnosis in engineering application, the tank experimental research on quantification and identification of the mechanical noise source in submarine cabin model is carried on, the contribution rate of mechanical noise sources is separated by hierarchy diagnosis, and separation accuracy of mechanical noise sources is checked by the experiment.

      noise source identification; hierarchy diagnosis; partial coherence analysis; cabin model experiment

      TB53

      A

      1000-3630(2017)-03-0217-07

      10.16300/j.cnki.1000-3630.2017.03.004

      2016-12-18;

      2017-03-15

      長(zhǎng)江學(xué)者和創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃(IRT_16R17)、國(guó)家自然科學(xué)基金資助項(xiàng)目(61601149)

      于樹(shù)華(1986-), 男, 遼寧大連市人, 博士研究生, 研究方向?yàn)樵肼曉炊ㄎ蛔R(shí)別。

      時(shí)勝?lài)?guó), E-mail: shishengguo@hrbeu.edu.cn

      猜你喜歡
      激振器艙段噪聲源
      空間站艙段運(yùn)輸專(zhuān)列
      電磁激振器與結(jié)構(gòu)的耦合動(dòng)力學(xué)特性分析
      汽車(chē)后視鏡-A柱區(qū)域氣動(dòng)噪聲源特征識(shí)別
      振動(dòng)壓路機(jī)激振器研究
      新型慣性圓錐破碎機(jī)的減振性能
      基于TwinCAT的艙段數(shù)字化柔性自動(dòng)對(duì)接平臺(tái)控制系統(tǒng)設(shè)計(jì)
      芻議如何提高直線(xiàn)振動(dòng)篩激振器維修效率
      一種基于相位增量隨機(jī)化的寬帶噪聲源產(chǎn)生技術(shù)
      水下航行器電池艙段溫度場(chǎng)數(shù)值模擬
      多艙段圓柱殼振動(dòng)特性研究
      绥宁县| 来凤县| 象州县| 乌兰察布市| 高密市| 宁远县| 大港区| 辽宁省| 鹤峰县| 二连浩特市| 牙克石市| 浦东新区| 孙吴县| 厦门市| 泰和县| 平邑县| 旺苍县| 绥棱县| 闽侯县| 阿鲁科尔沁旗| 丽水市| 农安县| 丹东市| 上林县| 西平县| 汶川县| 连城县| 涞源县| 萨嘎县| 常宁市| 汝阳县| 闵行区| 阿克苏市| 平邑县| 得荣县| 永泰县| 沅江市| 朝阳市| 浦江县| 汶川县| 特克斯县|