• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于全極化UAVSAR圖像的海浪斜率反演方法研究*

      2017-11-01 15:02:31尹全超張彥敏王運(yùn)華
      關(guān)鍵詞:入射角海浪方位

      尹全超, 張彥敏, 王運(yùn)華

      (中國海洋大學(xué)信息科學(xué)與工程學(xué)院,山東 青島 266100)

      基于全極化UAVSAR圖像的海浪斜率反演方法研究*

      尹全超, 張彥敏**, 王運(yùn)華

      (中國海洋大學(xué)信息科學(xué)與工程學(xué)院,山東 青島 266100)

      利用L波段Uninhabited Aerial Vehicle Synthetic Aperture Radar(UAVSAR)全極化數(shù)據(jù),對(duì)成像海域海浪斜率的反演進(jìn)行了研究。其中,沿SAR圖像方位向海浪斜率是通過Krogager分解右旋和左旋圓極化相位差方程所提取的極化方向角,并利用該極化方向角的偏移量進(jìn)行求解。而在求解海浪沿距離向的斜率的過程中,本文則選取了平均散射角(α角)、一致性參數(shù)、極化相干矩陣對(duì)角元素T22/T11、同極化比四種極化特征參數(shù),并基于Bragg共振散射模型,對(duì)這四種極化特征參數(shù)的近似表達(dá)式進(jìn)行了理論推導(dǎo),通過分析發(fā)現(xiàn)這四種極化參數(shù)都是入射角的單調(diào)函數(shù),從而使得利用這四種極化參數(shù)擬合求解距離向海浪斜率成為可能。本文中選取37景UAVSAR海浪圖像,采用極化方向角及其他四種極化參數(shù)分別對(duì)海浪方位向和距離向斜率進(jìn)行了擬合反演,并通過反演所得海浪斜率譜進(jìn)一步計(jì)算出感興趣海域海浪的波長、周期、傳播方向、斜率均方根、有效波高等參數(shù),將所得結(jié)果與National Data Buoy Center(NDBC)提供的浮標(biāo)數(shù)據(jù)進(jìn)行了對(duì)比。通過對(duì)反演結(jié)果進(jìn)行統(tǒng)計(jì)分析發(fā)現(xiàn):T22/T11、一致性參數(shù)的所得結(jié)果較好,同極化比次之,α角稍差;另外,從計(jì)算的復(fù)雜程度來說,T22/T11、一致性參數(shù)、同極化比較之α角簡單,不需要復(fù)雜的極化分解。

      海浪斜率;UAVSAR;極化特征

      海浪是海洋上一種常見的波動(dòng)現(xiàn)象,是發(fā)生在海氣界面的重要海洋動(dòng)力學(xué)過程,很大程度上影響著相關(guān)海洋工程的開展和實(shí)施,在軍事上海浪也是重要的參數(shù),對(duì)海浪相關(guān)性質(zhì)的研究以及對(duì)海浪相關(guān)活動(dòng)的監(jiān)測(cè)和預(yù)警是目前的熱點(diǎn)問題。合成孔徑雷達(dá)(Synthetic Aperture Radar,SAR)是監(jiān)測(cè)海浪活動(dòng)的一種強(qiáng)有力的工具,有著全天時(shí)、全天候、高分辨率、大監(jiān)測(cè)范圍等特點(diǎn),幾乎可以在任何天氣條件下對(duì)海浪進(jìn)行觀測(cè),是目前國內(nèi)外公認(rèn)的有效監(jiān)測(cè)手段。在SAR海浪成像的過程中,主要調(diào)制作用可以分為傾斜調(diào)制、流體力學(xué)調(diào)制以及速度聚束調(diào)制[1]。傾斜調(diào)制是由海浪坡度變化引起本地入射角變化[2]而產(chǎn)生的,流體力學(xué)調(diào)制是由于大尺度表面波和小尺度表面(布拉格表面)波相互之間的流體力學(xué)相互作用引起,在中等入射角的情況下貢獻(xiàn)了最多的后向散射[3]。速度聚束是SAR成像系統(tǒng)所獨(dú)有的調(diào)制作用[4],是在方位向雷達(dá)和目標(biāo)的相對(duì)運(yùn)動(dòng)造成的,在海浪沿方位向傳播的情況下,速度聚束的影響顯著。

      傳統(tǒng)單極化的情況下,研究人員利用ERS 1&2、RADASAT-1等數(shù)據(jù)來從圖像中提取海浪斜率譜,并對(duì)海浪作定量描述[5],提出了多種不同的方法[6-10]??傮w上可以分為線性方法和非線性方法兩類。所謂線性方法,就是在海浪譜和SAR圖像譜之間定義一種線性的調(diào)制轉(zhuǎn)換函數(shù)(MTF),Lyzenga[10]在1988年提出過此類方法,但這種方法是純線性的,不包括調(diào)制中的任何非線性處理過程,所提取的海浪信息不夠準(zhǔn)確?;诖耍蔷€性迭代的反演方法被提出:Hasselmann[8]等人利用Lyzenga[10]提出的線性調(diào)制轉(zhuǎn)換函數(shù)以迭代的方法來從圖像譜中恢復(fù)海浪譜,并在1996年被改進(jìn)[11]了算法;但是這種方法運(yùn)算復(fù)雜,需要從海浪數(shù)值模型中獲取第一猜測(cè)譜。為了避免提取海浪譜的過程中對(duì)第一猜測(cè)譜的依賴,Mastenbroek和de Valk提出了一種半?yún)?shù)的方法[12],這種方法不需要海況的先驗(yàn)知識(shí),每個(gè)SAR圖像譜可以和散射計(jì)的風(fēng)矢量關(guān)聯(lián)起來;但僅適用于ERS衛(wèi)星,對(duì)于沒自帶散射計(jì)的衛(wèi)星數(shù)據(jù)無效。

      隨著全極化SAR技術(shù)的發(fā)展,Schuler和Lee等人提出了利用AirSAR全極化信息提取海浪斜率譜的方法[13],這種方法可以直接計(jì)算海浪斜率,無需復(fù)雜的調(diào)制轉(zhuǎn)換函數(shù)和第一猜測(cè)譜,此方法適用于P和L波段。在假設(shè)布拉格散射和Phillips海浪譜的情況下,He[14]等人推導(dǎo)了線性極化SAR傾斜和極化方向角的調(diào)制轉(zhuǎn)換函數(shù),提出了利用C波段的機(jī)載數(shù)據(jù)直接計(jì)算海浪斜率譜的方法[15],不過并沒有直接利用到交叉極化信息。Zhang[16]等人利用全極化的RADARSAT-2數(shù)據(jù),改進(jìn)了He的算法,直接利用共極化和交叉極化數(shù)據(jù)來分別計(jì)算出方位向和距離向的海浪斜率譜,但這種方法還是要依賴調(diào)制轉(zhuǎn)換函數(shù)。為了在SAR圖像所有波段的數(shù)據(jù)中提取海浪斜率并且避免對(duì)調(diào)制轉(zhuǎn)換函數(shù)的依賴,Xie[17]等人利用SFS(Shade-from-shading)方法和極化方向角提取了海浪斜率,并且在RADARSAT-2數(shù)據(jù)上得到了驗(yàn)證。

      在本文中,方位向采用右旋和左旋圓極化相位差方程提取的圓極化角算法,距離向采用α角、一致性參數(shù)、T22/T11、同極化比4種極化特征方法。其中圓極化角算法在陸地[18]和海洋[13]的方位向斜率提取中已經(jīng)取得較為成功的應(yīng)用;在距離向上,因?yàn)槿肷浣堑恼{(diào)制作用,不同的極化特征會(huì)隨著入射角的改變而變化,α角是旋轉(zhuǎn)不變且對(duì)入射角有著較好的敏感性[19],已經(jīng)被成功應(yīng)用到距離向海浪斜率的提取工作中[13]。采用一致性參數(shù)、T22/T11、同極化比來擬合計(jì)算距離向斜率的可行性也在本文中做了推導(dǎo)并采用統(tǒng)計(jì)的方法得到了驗(yàn)證。共選取了37景L波段UAVSAR全極化數(shù)據(jù)來擬合計(jì)算海浪斜率,計(jì)算出波長、周期、方向、斜率均方根、有效波高五個(gè)參數(shù),并將所得結(jié)果與NDBC(National Data Buoy Center)提供的浮標(biāo)數(shù)據(jù)進(jìn)行了對(duì)比,取得了較為吻合的結(jié)果。相對(duì)于傳統(tǒng)的單極化方法,本文不需要依賴復(fù)雜的調(diào)制轉(zhuǎn)換函數(shù)便可計(jì)算出方位向和距離向的海浪斜率;同時(shí)相對(duì)于α角的方法,一致性參數(shù)、T22/T11、同極化比這三種極化特征不需要進(jìn)行復(fù)雜的極化分解,在距離向斜率的反演中,其反演效果與α角相當(dāng)甚至優(yōu)于α角。

      1 四種極化特征隨入射角變化敏感性分析

      在本節(jié)中將對(duì)α角、一致性參數(shù)、T22/T11、同極化比4種極化特征從理論進(jìn)行分析,研究其隨入射角θi的變化關(guān)系。L波段UAVSAR的頻率為1.26 GHz,根據(jù)Ellison[20]等人的方法,假設(shè)溫度為25℃,鹽度為35,計(jì)算得出所對(duì)應(yīng)的相對(duì)介電常數(shù)εr為71~80j??梢姡琇波段微波的海水相對(duì)介電常數(shù)實(shí)部較大,因此為了簡單起見,本節(jié)中將εr的值取無窮大,并對(duì)上述4種極化特征隨入射角θi的變化關(guān)系進(jìn)行了理論推導(dǎo)。同時(shí),為了驗(yàn)證該近似的合理性,本節(jié)中將所得近似結(jié)果與εr取71~80j時(shí)的結(jié)果進(jìn)行了比較。

      1.1 α角隨入射角變化敏感性分析

      基于SPM(Small Perturbation scattering Model)小擾動(dòng)散射模型可以估計(jì)α角對(duì)沿距離向傳播海浪的敏感性。α角是利用Cloud-Pottier極化分解理論[21-22],對(duì)3×3的相干矩陣做特征值分解,具有旋轉(zhuǎn)不變性,α角計(jì)算公式為:

      α=P1α1+P2α2+P3α3,

      (1)

      Pi表示為:

      (2)

      其中:λi為平均相干矩陣T3的特征值。假設(shè)布拉格散射的情況下,散射矩陣如下所示:

      (3)

      其中:Bragg散射系數(shù)[23]SHH和SVV分別為:

      (4)

      (5)

      根據(jù)Pottier[19]的方法,α角可以表示為:

      (6)

      當(dāng)εr→∞時(shí),

      SHH=-1 ,

      (7)

      (8)

      將公式(7)、(8)代入(6)可得

      tanα=sin2θi,

      (9)

      則α對(duì)θi的導(dǎo)數(shù)為

      (10)

      在UAVSAR的入射角范圍(25°~65°)內(nèi),其導(dǎo)數(shù)恒大于0。εr分別取無窮大(藍(lán))和71~80j(紅)的時(shí)候,可得α和θi的對(duì)應(yīng)關(guān)系(見圖1),由圖1可知α角隨UAVSAR入射角θi變化單調(diào)遞增且敏感。

      1.2 一致性參數(shù)隨入射角變化敏感性分析

      Freeman[24]在2008年提出了一致性參數(shù)的算法,定義如下

      (11)

      根據(jù)公式(3),將公式(7)、(8)代入(11)可得

      (12)

      γ對(duì)θi的導(dǎo)數(shù)為

      (13)

      εr取無窮大(藍(lán))和71~80j(紅),可得出一致性參數(shù)和θi的對(duì)應(yīng)關(guān)系(見圖2),在UAVSAR的入射角范圍(25°~65°)內(nèi),其導(dǎo)數(shù)恒小于0,一致性參數(shù)隨入射角θi的變化單調(diào)遞減且敏感。

      圖1 εr取無窮大(藍(lán))和71~80j(紅)時(shí)α和θi的對(duì)應(yīng)關(guān)系 Fig.1 The influence of θion α angle for different relative dielectric constant, εr=∞(blue line) and εr=71~80j(red line)

      圖2 εr取無窮大(藍(lán))和71~80j(紅)時(shí)一致性參數(shù)與θi對(duì)應(yīng)關(guān)系Fig.2 The influence of θion the consistent parameter for different relative dielectric constant, εr=∞(blue line) and εr=71~80j(red line)

      1.3 T22/T11隨入射角變化敏感性分析

      取3×3的相干矩陣中的T22/T11也可以來擬合估計(jì)距離向海浪斜率,T22和T11可以分別表示為:

      (14)

      (15)

      則T22/T11可以表示為:

      (16)

      根據(jù)公式(3),將公式(7)、(8)代入(16)可得

      (17)

      (18)

      在UAVSAR的入射角范圍(25°~65°)內(nèi),其導(dǎo)數(shù)恒大于0,T22/T11隨UAVSAR入射角θi變化單調(diào)遞增。εr取無窮大(藍(lán))和71~80j(紅),推導(dǎo)出T22/T11和θi的對(duì)應(yīng)關(guān)系(見圖3)。

      圖3 εr取無窮大(藍(lán))和71~80j(紅)時(shí) T22/T11和θi的對(duì)應(yīng)關(guān)系Fig.3 The influence of θion the ratio T22/T11 for different relative dielectric constant, εr=∞(blue line) and εr=71~80j(red line)

      1.4 同極化比隨入射角變化敏感性分析

      海面的后向散射可以用下面公式[25]表示:

      (19)

      (20)

      其中:kr表示波數(shù);W(.)是海表面粗糙度和布拉格散射系數(shù)的二維波束譜密度;θi表示入射角;ψ表示斜面距離向的坡度;ξ表示斜面在方位向的傾斜角度,同極化的后向散射比為:

      (21)

      一般情況下ξ的值很小,可近似為

      (22)

      根據(jù)公式(3),將公式(7)、(8)代入(22)可得

      (23)

      同極化比對(duì)θi的導(dǎo)數(shù)為

      (24)

      UAVSAR的入射角范圍為25°~65°,在此范圍內(nèi)其導(dǎo)數(shù)恒小于0,εr取無窮大(藍(lán))和71~80j(紅),可得同極化比和θi的對(duì)應(yīng)關(guān)系(見圖4),可知同極化比隨入射角θi變化單調(diào)遞減且敏感。

      圖4 εr取無窮大(藍(lán))和71~80j(紅)時(shí) 同極化比和θi對(duì)應(yīng)關(guān)系Fig.4 The influence of θion the co-polarized ratio for different relative dielectric constant, εr=∞(blue line) and εr=71~80j(red line)

      綜上,在距離向上采用α角、一致性參數(shù)、T22/T11、同極化比四種極化方法隨著入射角的變化而單調(diào)變化,并且具有一定的敏感性,因此可以來擬合距離向的海面斜率。

      2 海浪反演步驟及實(shí)驗(yàn)結(jié)果分析

      在實(shí)驗(yàn)過程分別對(duì)所選取的37景UAVSAR數(shù)據(jù)(見附錄A)做了處理,在本節(jié)中選取了示例數(shù)據(jù)(見表1)來詳細(xì)說明海浪斜率的提取過程以及處理結(jié)果,并采用了NDBC的浮標(biāo)數(shù)據(jù)做對(duì)比與驗(yàn)證。

      2.1 海浪反演步驟

      在示例數(shù)據(jù)的快視圖(見圖5)中,紅框?yàn)闉楸敬螌?shí)驗(yàn)的目標(biāo)區(qū)域,大小為512×512個(gè)像素點(diǎn),對(duì)原始研究區(qū)域(見圖6)的處理過程如下:

      表1 示例數(shù)據(jù)說明Table 1 The instruction of the sample SAR image

      圖5 示例數(shù)據(jù)的快視圖Fig.5 The quick-view image of the sample SAR image

      圖6 研究區(qū)域VV極化強(qiáng)度圖像Fig.6 The intensity for VV polarization channel in the research region

      (1) 選取512×512像素的研究區(qū)域,在距離向使用線性插值的方法校正幾何變形。

      (2) 采用圓極化的方法計(jì)算方位向斜率。

      (3) 分別采用α角、一致性參數(shù)、T22/T11、同極化比來擬合距離向斜率,并使用高通濾波對(duì)結(jié)果進(jìn)行處理。

      (4) 分別對(duì)方位和距離向海浪斜率做快速傅里葉變換(FFT),得到方位和距離向的海浪斜率譜Py、Px,并估計(jì)海浪的波長、方向、周期、斜率均方根和有效波高。

      依據(jù)海浪斜率譜,可以用下述方法來定量提取海浪相關(guān)參數(shù)信息[13]。其中主波波長用λd表示,即:

      λd=2π/kw,

      (25)

      kw表示波數(shù)。周期可通過下面公式得出:

      (26)

      T=2π/ωw,

      (27)

      其中:H表示水深。海浪方向需要從UAVSAR的天線文件中讀取雷達(dá)的飛行方向,海浪方向?yàn)槔走_(dá)飛行方向和反演的海浪譜的方向之和;這樣計(jì)算出的海浪方向會(huì)存在180°模糊的問題,本文通過比較模糊方向與浮標(biāo)海浪方向的差值來加以判斷,差值較小者即為反演海浪傳播方向。海浪斜率均方根可以通過下面公式[16]計(jì)算:

      Srms=[()2+()2]1/2,

      (28)

      其中:Saz和Sr分別表示方位向和距離向的海浪斜率;φ表示海浪的傳播方向。有效波高可通過Srms和主波波長計(jì)算得出[13]:

      Hd=tan(Srms)·(λd/2) 。

      (29)

      2.2 方位向斜率反演

      利用極化方向角(θ)可以直接來計(jì)算方位向斜率,極化方向角可以用極化特征法和圓極化算法兩種方法來計(jì)算,圖像處理的結(jié)果證明圓極化算法在海洋圖像上可以更好的估計(jì)極化方向角θ,圓極化的算法[18]如下:

      (30)

      式中

      (31)

      圓極化方向角θ與方位向斜率的關(guān)系[19,26]如下:

      (32)

      式中:tanω是方位向斜率;φ表示雷達(dá)視角;tanγ表示地距斜率,海洋表面在Bragg散射情況下的平均的傾斜角很小,所以式中的tanγcosφ可以忽略,即:

      tanω?(sinφ)tanθ。

      (33)

      依據(jù)方位向的處理結(jié)果(見圖7),提取波長258.69 m方向345.98°周期12.87 s。

      2.3 距離向斜率反演

      采用第1節(jié)中的4種極化特征方法,處理示例數(shù)據(jù),可得到距離向斜率擬合結(jié)果(見圖8-11)。

      綜合方位向和距離向的反演結(jié)果,依據(jù)2.1節(jié)中的方法可提取出相關(guān)海浪參數(shù)。根據(jù)數(shù)據(jù)經(jīng)緯度,使用NDBC提供的46012浮標(biāo)數(shù)據(jù)來做比對(duì)(見表2)??梢娫诨诩y理特征的參數(shù)(波長、周期、波向)中,α角、一致性參數(shù)、T22/T11這3種方法的結(jié)果幾乎一致;在斜率均方根的反演中,這四種方法反演結(jié)果相差不大;在有效波高的反演結(jié)果來看,同極化比的結(jié)果和浮標(biāo)更為相近。

      圖8 α角距離向提取結(jié)果Fig.8 The range slope inversed by the alpha parameter

      圖9 一致性參數(shù)距離向提取結(jié)果Fig.9 The range slope inversed by the conformity coefficient

      圖10 T22/T11距離向提取結(jié)果Fig.10 The range slope inversed by the ratio T22/T11

      圖11 同極化比距離向提取結(jié)果Fig.11 The range slope inversed by the co-polarized ratio

      表2 提取結(jié)果與浮標(biāo)數(shù)據(jù)對(duì)比Table 2 The comparison between the inversion results and the buoy data

      Note:①The alpha parameter;②The conformity coefficient ;③The ratio T22/T11;④The co-polarized ratio;⑤The buoy data;⑥The wavelength;⑦The period;⑧The wave direction/deg;⑨The RMS slope/deg;⑩The significant wave height

      2.4 實(shí)驗(yàn)結(jié)果分析

      為了進(jìn)一步比較距離向上這4種方法的優(yōu)劣,本節(jié)利用上述2.1~2.3所提供的方法,選取了37景UAVSAR海浪數(shù)據(jù)進(jìn)行處理。其中,以浮標(biāo)實(shí)測(cè)數(shù)據(jù)為橫軸,反演結(jié)果為縱軸,分別從波長(見圖12a~12e)、周期(見圖13a~13e)、斜率均方根(見圖14a~14d)、有效波高(見圖15a~15d)做出散點(diǎn)圖,并使用偏移量和標(biāo)準(zhǔn)差對(duì)結(jié)果做出評(píng)估。

      (a.圓極化算法;b.α角;c.一致性參數(shù);d.T22/T11;e.同極化比。a.The orientation angle; b.The alpha parameter; c.The conformity coefficient; d.The ratio T22/T11;e.The co-polarized ratio.)

      圖12 波長統(tǒng)計(jì)分析
      Fig.12 The statistical analysis of the wavelength

      (a.圓極化算法; b.α角; c.一致性參數(shù); d.T22/T11;e.同極化比。a.The orientation angle; b.The alpha parameter; c.The conformity coefficient; d.The ratio T22/T11;e.The co-polarized ratio.)

      圖13 周期統(tǒng)計(jì)分析
      Fig.13 The statistical analysis of the period of sea waves

      (a.α角; b.一致性參數(shù); c.T22/T11;d.同極化比。a.The alpha parameter; b.The conformity coefficient; c.The ratio T22/T11; d.The co-polarized ratio.)

      圖14 斜率均方根統(tǒng)計(jì)分析
      Fig.14 The statistical analysis of the RMS slope

      (a.α角; b.一致性參數(shù); c.T22/T11;d.同極化比。a.The alpha parameter; b.The conformity coefficient; c.The ratio T22/T11; d.The co-polarized ratio.)

      圖15 有效波高統(tǒng)計(jì)分析
      Fig.15 The statistical analysis of the significant wave height

      將反演數(shù)據(jù)與浮標(biāo)數(shù)據(jù)的標(biāo)準(zhǔn)偏差和偏移量數(shù)據(jù)做比較分析(見表3~4)。從波長、周期這種基于紋理的維度來說,距離向的四種極化特征方法的擬合程度相差不大,可以較為準(zhǔn)確的估計(jì);其中一致性參數(shù)的離散程度最小,T22/T11的偏移程度更好,同極化比離散和偏移程度要差一些,α角的反演結(jié)果要差一些。從斜率均方根、有效波高這兩個(gè)維度來說,同極化比的離散程度最小,效果最優(yōu),但其偏移程度不如T22/T11;一致性參數(shù)要稍微差一些,α角離散程度和偏移程度最差。

      表3 不同極化參數(shù)反演結(jié)果與浮標(biāo)數(shù)據(jù)標(biāo)準(zhǔn)偏差Table 3 The standard deviation between the inversion results and the buoy data

      Note:①The wavelength ;②The period;③The wave direction/deg;④The significant wave height;⑤Azimuth direction;⑥The alpha parameter;⑦The conformity coefficient;⑧The ratio T22/T11;⑨The co-polarized ratio

      表4 不同極化參數(shù)反演結(jié)果與浮標(biāo)數(shù)據(jù)的偏移量Table 4 The offset between the inversion results and the buoy data

      Note:①The wavelength;②The period;③The wave direction/deg;④The significant wave height;⑤Azimuth direction;⑥The alpha parameter;⑦The conformity coefficient;⑧The ratio T22/T11;⑨The co-polarized ratio

      3 結(jié)論與討論

      本文采用了全極化的UAVSAR海浪成像數(shù)據(jù),分別計(jì)算海浪方位向和距離向的斜率。方位向上采用了圓極化的算法;在距離向上采用了α角、一致性參數(shù)、T22/T11、同極化比四種極化特征方法。提取了波長、周期、方向、斜率均方根、有效波高五個(gè)參數(shù),并將結(jié)果與NDBC的浮標(biāo)數(shù)據(jù)做了對(duì)比,并選取了37景代表性的數(shù)據(jù)做了統(tǒng)計(jì)分析,主要得出以下結(jié)論:

      (1)在全極化UAVSAR圖像中,采用圓極化算法可以較好的反演方位向斜率,反演結(jié)果與浮標(biāo)較為吻合;

      (2)α角、一致性參數(shù)、T22/T11、同極化比四種極化特征參數(shù)可以比較準(zhǔn)確的擬合距離向斜率,結(jié)合方位向的圓極化算法可以反演海浪的斜率均方根和有效波高,與NDBC結(jié)果相差不大;

      (3)從計(jì)算效率來說,一致性參數(shù)、T22/T11、同極化比的計(jì)算方法較為簡單易行,α角需要極化分解,計(jì)算較為復(fù)雜。

      (4)波長、周期參數(shù)的提取結(jié)果,一致性參數(shù)和T22/T11的結(jié)果較為準(zhǔn)確,同極化比次之,α角的偏差稍大;

      (5)斜率均方根、有效波高的參數(shù)提取結(jié)果,同極化比的效果最好,T22/T11和一致性參數(shù)次之,α角的偏差稍大。綜上,在距離向使用T22/T11、一致性參數(shù)、同極化比可以取得較之α角稍好的提取結(jié)果。

      需要注意的是方位向的圓極化算法只在低風(fēng)速的海況下效果較好,在高風(fēng)速的時(shí)候速度聚束作用顯著,以致無法正常的反演出相關(guān)參數(shù);而距離向的上述四種極化特征方法也依賴于海浪成像的平穩(wěn)性,研究區(qū)域背景噪聲的將會(huì)對(duì)處理結(jié)果造成一定的影響,這是算法本身的局限性所致,所以在采用上述極化特征進(jìn)行反演時(shí)需要進(jìn)行空間均值濾波,并且應(yīng)當(dāng)避開有著較強(qiáng)背景噪聲的成像區(qū)域。本文的距離向極化特征方法僅在P和L波段得到了驗(yàn)證,C波段由于其較強(qiáng)的噪聲,并未得到理想的處理結(jié)果。另本研究只針對(duì)機(jī)載的全極化SAR數(shù)據(jù),星載SAR數(shù)據(jù)(如RADARSAT-2)的入射角較小,并且噪聲水平較高,所以其距離向的擬合反演方法并不適用,更多的方法需要再進(jìn)一步的研究。

      表5 所有統(tǒng)計(jì)反演的UAVSAR數(shù)據(jù)Table 5 The UAVSAR data used in this work

      續(xù)表5

      產(chǎn)品IDProductID緯度Longitude經(jīng)度Latitude成像時(shí)間AcquiredtimeSanAnd_05024_10035_011_100505_L090_CX_0236.60-121.482010/5/519:50SanAnd_05024_11031_000_110601_L090_CX_0236.60-121.472011/6/117:52SanAnd_05026_09089_009_091114_L090_CX_0136.82-121.462009/11/141:29SanAnd_05026_11031_002_110601_L090_CX_0136.80-121.502011/6/118:28SanAnd_05028_11031_004_110601_L090_CX_0137.01-121.522011/6/119:04SanAnd_05028_13186_003_131204_L090_CX_0137.01-121.512013/12/419:23SanAnd_05514_09091_009_091117_L090_CX_0138.47-122.232009/11/1721:53SanAnd_05514_11072_004_111108_L090_CX_0138.46-122.242011/11/821:23SanAnd_05516_12128_006_121105_L090_CX_0138.61-122.362012/11/522:03SanAnd_05516_14068_006_140529_L090_CX_0138.61-122.352014/5/2920:27SanAnd_08523_10085_007_101207_L090_CX_0133.94-117.512010/12/72:12SanAnd_23513_09006_008_090218_L090_CX_0138.42-122.742009/2/1821:52SanAnd_23513_09091_008_091117_L090_CX_0138.42-122.742009/11/1721:33SanAnd_23513_12018_005_120419_L090_CX_0238.42-122.742012/4/1918:31SanAnd_23513_14068_003_140529_L090_CX_0138.42-122.742014/5/2919:22SanAnd_26524_10085_006_101207_L090_CX_0134.29-117.572010/12/71:36SCalBt_12106_11011_000_110414_L090_XX_0133.41-118.472011/4/1415:51

      [1] Alpers W R, Ross D B, Rufenach C L. On the detectability of ocean surface waves by real and synthetic aperture radar[J]. Journal of Geophysical Research: Oceans (1978-2012), 1981, 86(C7): 6481-6498.

      [2] Valenzuela G R. Theories for the interaction of electromagnetic and oceanic waves—A review[J]. Boundary-Layer Meteorology, 1978, 13(1-4): 61-85.

      [3] Keller W, Wright J. Microwave scattering and the straining of wind-generated waves[J]. Radio Science, 1975, 10(2): 139-147.

      [4] Alpers W R, Rufenach C. The effect of orbital motions on synthetic aperture radar imagery of ocean waves[J]. Antennas and Propagation, IEEE Transactions on, 1979, 27(5): 685-690.

      [5] Hasselmann K, Raney R, Plant W, et al. Theory of synthetic aperture radar ocean imaging: A MARSEN view[J]. Journal of Geophysical Research: Oceans (1978-2012), 1985, 90(C3): 4659-4686.

      [6] Plant W J, Zurk L. Dominant wave directions and significant wave heights from synthetic aperture radar imagery of the ocean[J]. Journal of Geophysical Research: Oceans (1978-2012), 1997, 102(C2): 3473-3482.

      [7] Engen G, Johnsen H, Krogstad H E, et al. Directional wave spectra by inversion of ERS-1 synthetic aperture radar ocean imagery[J]. Geoscience and Remote Sensing, IEEE Transactions on, 1994, 32(2): 340-352.

      [8] Hasselmann K, Hasselmann S. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion[J]. Journal of Geophysical Research: Oceans (1978-2012), 1991, 96(C6): 10713-10729.

      [9] Kasilingam D, Shi J. Artificial neural network-based inversion technique for extracting ocean surface wave spectra from sar images[C]. Singapore: Geoscience and Remote Sensing, IGARSS'97 1997: 1193-1195.

      [10] Lyzenga D R. An analytic representation of the synthetic aperture radar image spectrum for ocean waves[J]. Journal of Geophysical Research: Oceans (1978-2012), 1988, 93(C11): 13859-13865.

      [11] Hasselmann S, Brüning C, Hasselmann K, et al. An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra[J]. Journal of Geophysical Research: Oceans (1978-2012), 1996, 101(C7): 16615-16629.

      [12] Mastenbroek C, Valk C d. A semiparametric algorithm to retrieve ocean wave spectra from synthetic aperture radar[J]. Journal of Geophysical Research: Oceans (1978-2012), 2000, 105(C2): 3497-3516.

      [13] Schuler D, Lee J, Kasilingam D, et al. Measurement of ocean surface slopes and wave spectra using polarimetric SAR image data[J]. Remote sensing of environment, 2004, 91(2): 198-211.

      [14] He Y, Perrie W, Xie T, et al. Ocean wave spectra from a linear polarimetric SAR[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2004, 42(11): 2623-2631.

      [15] He Y, Shen H, Perrie W. Remote sensing of ocean waves by polarimetric SAR[J]. Journal of Atmospheric and oceanic technology, 2006, 23(12): 1768-1773.

      [16] Zhang B, Perrie W, He Y. Validation of RADARSAT-2 fully polarimetric SAR measurements of ocean surface waves[J]. Journal of Geophysical Research: Oceans (1978-2012), 2010, 115(C6):

      [17] Xie T, Perrie W, He Y, et al. Ocean surface wave measurements from fully polarimetric SAR imagery[J]. Science China Earth Sciences, 2015, 1-13.

      [18] Lee J S, Schuler D L, Ainsworth T L. Polarimetric SAR data compensation for terrain azimuth slope variation[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2000, 38(5): 2153-2163.

      [19] Pottier E. Unsupervised classification scheme and topography derivation of PolSAR data based on the H/α/A polarimetric decomposition theorem[C]. Nantes: Proceedings 4th International Workshop Radar Polarimetry, 1998: 535-548.

      [20] Ellison W, Balana A, Delbos G, et al. New permittivity measurements of seawater[J]. RADIO SCIENCE-WASHINGTON-, 1998, 33(639-648.

      [21] Cloude S R, Pottier E. A review of target decomposition theorems in radar polarimetry[J]. Geoscience and Remote Sensing, IEEE Transactions on, 1996, 34(2): 498-518.

      [22] Cloude S R. Eigenvalue parameters for surface roughness studies[C]. Denver: International Society for Optics and Photonics, 1999: 2-13.

      [23] Lee J S, Pottier E. Polarimetric radar imaging: from basics to applications[M]. Boca Raton: CRC press, 2009: 349

      [24] Dubois F P, Freeman A, Truong L M-L. Soil moisture estimation from Compact Polarimetry-a viable alternative for SMAP[C]. Oxnard: Microwave Remote Sensing for Land Hydrology Workshop, 2008: CD.

      [25] Minchew B, Jones C E, Holt B. Polarimetric analysis of backscatter from the Deepwater Horizon oil spill using L-band synthetic aperture radar[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2012, 50(10): 3812-3830.

      [26] Lee J S, Jansen R W, Schuler D L, et al. Polarimetric analysis and modeling of multifrequency SAR signatures from Gulf Stream fronts[J]. Oceanic Engineering, IEEE Journal of, 1998, 23(4): 322-333.

      InversionofWaveSurfaceSlopesFromQuad-PolarizationUAVSARData

      YIN Quan-Chao,ZHANG Yan-Min,WANG Yun-Hua

      (College of Information Science and Engineering, Ocean University of China, Qingdao 266100,China)

      L-band quad-polarization data of Uninhabited Aerial Vehicle Synthetic Aperture Radar(UAVSAR) is used to retrieve the two-dimensional ocean wave slopes. Krogager decomposition is modified to estimate the orientation angle by calculating the phase difference between right-hand and left-hand circular polarization, according to the shifts of the orientation angle, the slopes of the azimuth direction is retrieved. Based on the Bragg scattering model, four different methods (alpha parameter, conformity coefficient, T22/T11, co-polarized ratio) are selected in the range direction to estimate the ocean wave slopes. The theoretical derivations of the above four polarization features are presented. The simulation results reveal that these polarization characteristics are monotone with the increase of the incidence angle and sensitive to the change of incidence angle, making it possible to extract the slopes of the range direction. Compared with conventional single-polarized method, the method used in this paper could calculate the wave slopes in azimuth and range directions which does not rely on the complicated modulation transfer function (MTF). Furthermore, the 37 UAVSAR images are used to inverse the wave slopes in both the azimuth and range direction, and five main wave parameters (wavelength, period, direction, root-mean-square slope and significant wave height) of the study images are estimated in terms of the inversed slope spectrum. The retrieval results are in good agreement with the buoy data provided by National Data Buoy Center (NDBC). The experiment results can be summarized below: (1) In full-polarized UAVSAR images, the wave slopes in azimuth direction can be retrieved effectively by circular polarization method. The retrieved results are in good agreement with the data collected by buoys. (2) the alpha parameter, the conformity coefficient, T22/T11 and the co-polarized ratio could fit the wave slopes in range direction accurately. Combined with the circular polarization method in azimuth direction, the four parameters can be used to calculate the RMS (root mean square) slope of waves and significant wave heights. The differences between the calculated results and the data of NDBC are small. (3) In terms of computational efficiency, the methods which rely on the conformity coefficient, T22/T11 and the co-polarized ratio are simple and practicable. The alpha parameter is determined through polarimetric decomposition. Therefore, the method which relies on the alpha parameter is more complex. (4) As for the wavelengths and period parameters, the results retrieved based on the conformity coefficient and T22/T11 are the best. The results retrieved based on co-polarized ratio take the second place. The results retrieved based on the alpha parameter have larger deviations. (5) As for the RMS slopes and significant wave heights, the results retrieved based on the co-polarized ratio are the best. The results retrieved based on the conformity coefficient and T22/T11 take the second place. The results retrieved based on the alpha parameter have larger deviations. From the above, the results computed based on T22/T11, conformity coefficient and co-polarized ratio are better than the alpha parameter in range direction.

      wave slopes; UAVSAR; polarization features

      TP722.6

      A

      1672-5174(2017)12-118-12

      責(zé)任編輯 陳呈超

      10.16441/j.cnki.hdxb.20150180

      尹全超, 張彥敏, 王運(yùn)華. 基于全極化UAVSAR圖像的海浪斜率反演方法研究[J]. 中國海洋大學(xué)學(xué)報(bào)(自然科學(xué)版), 2017, 47(12): 118-129.

      Yin Quan-Chao, Zhang Yan-Min, Wang Yun-Hua. Inversion of wave surface slopes from quad-polarization UAVSAR data[J]. Periodical of Ocean University of China, 2017, 47(12): 118-129.

      國家自然科學(xué)基金項(xiàng)目(41376179);國家自然科學(xué)基金委員會(huì)-山東省人民政府聯(lián)合資助海洋科學(xué)研究中心項(xiàng)目(U1406404)

      Supported by This work was supported in part by the National Natural Science Foundation of China under Grant 41376179, by the National Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers under Grant. U1406404

      2015-04-11;

      2016-05-11

      尹全超(1990-),男,碩士生。E-mail:sailor103@126.com

      ** 通訊作者:E-mail:yanminzhang@ouc.edu.cn

      猜你喜歡
      入射角海浪方位
      一般三棱鏡偏向角與入射角的關(guān)系
      丫丫和小海浪
      幼兒園(2021年13期)2021-12-02 05:13:54
      海浪
      小讀者(2021年2期)2021-11-23 07:17:34
      認(rèn)方位
      幼兒園(2021年12期)2021-11-06 05:10:20
      樊應(yīng)舉
      書香兩岸(2020年3期)2020-06-29 12:33:45
      預(yù)制圓柱形鎢破片斜穿甲鋼靶的破孔能力分析*
      用經(jīng)典定理證明各向異性巖石界面異常入射角的存在
      借助方位法的拆字
      中國修辭(2016年0期)2016-03-20 05:54:32
      說方位
      幼兒100(2016年28期)2016-02-28 21:26:17
      基于TMS320C6678的SAR方位向預(yù)濾波器的并行實(shí)現(xiàn)
      霍林郭勒市| 徐州市| 兴和县| 西乌| 周至县| 台北市| 蕲春县| 五莲县| 新余市| 庄浪县| 哈尔滨市| 望谟县| 高尔夫| 南陵县| 都兰县| 锦州市| 南康市| 灵山县| 西贡区| 介休市| 梅河口市| 无棣县| 天门市| 龙州县| 布拖县| 澄江县| 九龙县| 定襄县| 晋城| 衡水市| 津南区| 廊坊市| 河北区| 鲜城| 浮山县| 遂川县| 娄底市| 海盐县| 高碑店市| 阳城县| 平乡县|