• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and evaluation of PID electronic control system for seed meters for maize precision planting

    2017-11-01 23:03:55HeXiantaoDingYouqiangZhangDongxingYangLiCuiTaoWeiJiantaoLiuQuanweiYanBingxinZhaoDongyue
    農(nóng)業(yè)工程學報 2017年17期
    關(guān)鍵詞:排種電驅(qū)種器

    He Xiantao, Ding Youqiang, Zhang Dongxing,2, Yang Li,2, Cui Tao,2, Wei Jiantao, Liu Quanwei, Yan Bingxin, Zhao Dongyue

    ?

    Design and evaluation of PID electronic control system for seed meters for maize precision planting

    He Xiantao1, Ding Youqiang1, Zhang Dongxing1,2, Yang Li1,2※, Cui Tao1,2, Wei Jiantao3, Liu Quanwei1, Yan Bingxin1, Zhao Dongyue1

    (1. College of Engineering, China Agricultural University, Beijing 100083, China; 2. Soil-Machine-Plant key laboratory of the Ministry of Agriculture of China, Beijing 100083, China; 3. CNH Industrial, Chicago 60527, USA)

    A proportional-integral-derivative (PID) electronic control system for seed meters was developed to improve the planting quality and operation efficiency of conventional planters with ground wheel and chain driven system. A PID algorithm was used for controlling seed plate rotation speed. In addition, the PID controller incorporated integral separation of the integral term to increase the response time and reduce the occurrence of overshoot when the set point was far away from the current rotation rate. The final tuned PID parameter values wereK=16,K=0.05, andK=36. The response time, overshoot, and steady error for a seed plate rotation speed step response from 0 to 24 r/min were 0.4 s, 1.56%, and 0.75%, respectively. Experiment results showed that the Singulation index (SI) of seed meter could receive to 98.4%, and the Multiple index (UI) and Miss index (MI) were not more than 1% even at the highest planting speed of 12 km/h, which indicated that the seed meter with the developed control system and tuned PID parameters could obtain better planting quality and higher planting speed.

    agricultural machinery; electronic control; performance; PID parameter tuning; integral separation

    0 Introduction

    Precision planters are used widely in China, and the performance of seed meter, which is a key component of precision planter, affects the uniformity of seed distribution directly[1]. However, conventional precision planters with ground wheels and chains driven system bring poor planting quality due to slippage between wheel and ground, and chain instability during the process[2]. Adopting electric motor to replace conventional mechanical driving system to drive seed meters is one of methods to solve the problems.

    The agricultural machinery companies in the world, e.g. John Deere[3]and Horsch[4], have developed their characteristic driving seed meters for precision planter by using electric motors, and the high-technology agricultural machinery companies, e.g. Precision Planting[5]and Ag Leader[6], have also developed corresponding control system for precision planters equipped with electric-driven seed meters in recently years. The planters with technology above significantly improve the planting speed to 15 km/h and singulation to about 98%, but their prices are very high. In addition, Chaney et al.[7]designed a kind of electronic control system for a sugarcane planter. He et al.[8]developed a type of seed meter based on electromagnetic vibrating mode, and also designed its PLC controller. Tang et al.[9]designed a driving system for seed meters to control the speed of seed plate based on the planting speed. Zhai et al.[10-11]developed an automated driving system of seed metering according to sensor signal. But these researches are at testing stage and not applied in the market.

    To solve issues above, this study developed a PID electronic control system for seed meters and conducted experiments to test the performance of the control system in the lab.

    1 Material and methods

    1.1 Components of the electronic control system

    The system consisted of five components: control box, touch screen display (MT4414T, Kinco Automation company, China), incremental encoder (TRD-2T500BF, Koyo Electrical Company, Japan), seed plate driving motor (57BL55S06, Times Brilliant Electrical Company, China), seed meter, as in Fig. 1.

    Fig.1 Components of electronic control system

    A twelve volt power supply provides power for the entire control system. The seed meter adopted in this study was an air-pressure precision corn meter developed by Shi et al.[12-13], which was modified to be driven by seed plate driving motor. The motors are DC brushless motors, and each motor’s back is embedded by three Hall-effect sensors to measure the positions of the rotors and realize current switching for the rotors electronically, which eliminates brush maintenance of DC brush motor[14-16]. In the meantime, the Hall-effect sensors were used by the study to measure the motor rotation speed in real time for achieving closed-loop control[17]. The planting speed was measured by an incremental encoder that was mounted on the shaft of a ground wheel.

    Whereis the planting speed, km/h;is diameter of the ground wheel, cm;is the sample period, s;is the number of pulses received within the period of;is the wheel slip ratio, %;is resolution of the encoder, pulses/r.

    A touch screen display as interface of data input/output used to enter planting parameters such as number of seed holes per disk seed spacing,and, and also display planting speed and rotation speed of seed plate. The touch screen display was communicated with the controller by RS485. The controller is the core of the system, which was designed to receive input data from incremental encoder and touch screen display and output a signal pulse with a certain frequency and duty cycle to adjust seed plate rotation speed for achieving desired seed spacing as planned. The seed plate rotation speed is calculated as

    Whereis the seed plate rotation speed, r/min;is the number of seed holes per disk;is the seed spacing, cm.

    1.2 PID control of seed plate rotation speed

    As PID control is a simple algorithm with high reliability, and commonly used in various control systems[18-21], a closed-loop PID is used in this study to control the seed plate rotation speed for improving the seed plate’s dynamic performance. The PID control principle was illustrated in Fig.2.

    Fig.2 Schematic diagram of PID control principle

    The controller computes the error between the target values and actual values of seed plate rotation speed at time t, then control the motor speed by adjusting the signal duty cycle. A basic PID controller in continuous time[22-23]is described by

    WhereP() is the signal duty cycle;() is the error between the target values ((), r/min) and actual values ((), r/min) of seed plate rotation speed at time t, r/min;K, KandKare the proportional, integral, and differential gain constant, respectively. Equation (3) is discretized as follows for reducing computational cost[22-23].

    Here,(),p() (r/min) are the discrete error and control signal’s duty cycle, respectively;is sampling points.

    1.3 Setting PID parameters via step response analysis

    The present study employed a trial-and-error method to estimate the PID parameters by laboratory experiments. Given a step response in, the step response curve was plotted, and the impact of each PID parameter was analyzed in turn through trial and error to obtain a response curve that provided a rapid response time and a small stable error within a small overshoot. The overshoot was set here to be within 2%, and PID parameter selection providing the optimal performance of the control response was based on an appropriate tradeoff between the minimum response time and the minimum stable error.

    The laboratory setup employed for tuning is illustrated in Fig.3. The encoder (1 in Fig.3) was mounted on the shaft of a meter that measures the actual value ofin real time, and the rotation speed signal was sent to a data acquisition card (2 in Fig. 3; National Instrument USB-6009). LabView software was installed on a PC (3 in Fig. 3) to read the signal from the data acquisition card, calculate the meter’s rotation speed, and then display it to obtain the step response of. Planting parameters are entered through the touch screen display with=25 cm and=9 km/h, resulting a target value of in=24 r/min, thus, registering a step response from 0 to 24 r/min. Zhengdan 958 maize hybrid seeds were employed in the calibration, and the air pressure was set at 3.0 kPa. The encoder’s resolution was 2 500 pulses/r, and the data acquisition rate was 10 Hz.

    1.Incremental encoder 2.Data acquisition card 3.PC interface for LabView software

    Fig.3. Test setup employed for tuning PID parameters

    1.3.1 Setting the proportional gain constant (K)

    To determineK, we considered only proportional control in the trial and error experiments (i.e.,K=K=0). The proportional term produces an output value at sampling pointthat is proportional to(). The proportional response can be adjusted by multiplying() byK. A high proportional gain results in a large change in the output for a given change in() (i.e.,()?(?1)), and an overly high gain can make the system unstable. In the tuning process shown in Fig. 4, settingK=5 responded too slow, andKwas then incrementally increased to 10, 15 and 20. The response plot forK=15 exhibits the beginning of overshoot, which is greatly increased whenK=20. Therefore,Kshould be between 15 and 20. Further fine tuning obtained an optimal value ofK=16, which, shown in Table 1, provides minimum values for both the response time and stable error.

    Note: Kp is the proportional gain constant. Same as below.

    Table 1 Step response results for tuning Kp (proportional controller only, i.e., Ki=Kd=0)

    Note:Kis the integral gain constant;Kis the differential gain constant, Same as below.

    1.3.2 Setting the integral gain constant (K)

    To determineK, we considered only proportional- integral control in the trial and error experiments (i.e.,K= 0), and the previously optimized valueK=16 is employed as a constant. The integral term can eliminate the residual steady-state error that occurs with a pure proportional controller. However, it may slow down the system response and cause additional overshoot. Fig.5 presents the step response curves obtained forKvalues of 0.01 and 0.1 (red and green curves, respectively), where we observe that integral accumulation for even a small value ofK=0.01 delays the response time and increases system overshoot due to the initially large overshoot of 1.37% associated with proportional control alone. While the overshoot caused by the integral term would be reduced by decreasingKappropriately, this would also further increase the response time. Therefore, we retain a constantK, and employ integral separation[24-27]to reduce the overshoot and slow response caused by the integral term. This method employs a switching variableXto omit the integral term when() is large, and to include the integral term when() is small. The switching variable is defined as follows[28-29].

    The overall PID equation after introducingX[28-29]is given as

    Employing only the first 2 terms of Equation 6, a comparison between the results with and without integral separation given in Fig.5 showed that the added delay is eliminated and no overshoot occurs forK=0.01. However,K=0.1 induces a minor degree of overshoot, indicating thatKshould be between 0.01 and 0.1. The tuning results are listed in Table 2. Fine tuning of the integral term yields an optimal valueK=0.05. Here, compared withK=0.01, the steady error is reduced to 32.5% while the response time is increased to only 16.7%, indicating that the performance withK=0.05 is better. Compared with proportional control only, the steady error is reduced to 0.56% (i.e., a 34% reduction).

    Fig.5 Step response curves from Ki tuning

    Table 2 Step response results with integral-separation method (proportional-integral controller only, i.e., Kd=0)

    1.3.3 Setting the differential gain constant (K)

    The derivative of the error predicts system behavior, and thus improves the settling time and stability of the system, but it is sensitive to system noise, and can cause oscillation. Holding the other values constant atK=16 andK=0.05 during tuning,Kis initially selected as 10, 20, 30, 40, and 50, and the response curves obtained are shown in Fig.6a. The response times tend to decrease over the initial range forK, achieving a minimum value at 40 and 50. However, consideration of the tuning results listed in Table 3 indicates that the steady error also increases over the initial range forK, indicating thatKshould be less than 40. Through fine tuning, the optimal value ofK=36 was determined. Here, compared withK=20, the response time is reduced by 20% while the steady error is increased by only 17.2%, indicating a better response performance withK=36. The final parameters obtained by tuning areK=16,K=0.05, andK=36. The response time, overshoot, and steady error obtained with these parameters are 0.4 s, 1.56%, and 0.75%, respectively. Compared with the PI controller, the response time is reduced by 0.3 s, as shown in Fig.6b.

    Note: Kd is gain constant and same as below.

    Table 3 Step response results for tuning Kd (full PID controller)

    1.3.4 System step response under different planting speeds

    The proposed control system is mainly employed for high speed planting. To validate the performance at high speed, step response testing for values ofof 8 km/h to 14 km/h was conducted with=25 cm, and the results are shown in Fig.7.

    Fig.7 Step response curves under different planting speeds

    The target values ofassociated with each value ofare given in the chart legend. At 14 km/h, the step response exhibits instability and the actual value of(i.e., 35 r/min) did not attain the target value of 37.33 r/min . This may have caused by an inability of the motor to reach the target speed at the twelve volt power supply, which was applied based on the power supply voltage of the tractor. Adopting a power converter to transfer twelve volt to twenty-four volt is a way to increase speed of seed plate, but this raises the energy consumption and cost of the control system. But forless than 14 km/h, the step response was very stable. Therefore, the maximum working speed of the control system can reach at 13 km/h, which is much too high than the working speeds of conventional planters.

    2 Results and discussion

    2.1 The performance of the control system

    The performance of the proposed control system was tested in laboratory with three replications. Zhengdan 958 maize hybrid seeds were employed, and the air pressure was set at 3.0 kPa. Planting parameters were entered through the touch screen display with=25 cm,=50 cm and three planting speeds (6, 9 and 12 km/h, respectively).Using a camera to record planting condition, as in Fig.8.

    1.Control box 2.Touch screen display 3.Seed meter 4.Light source 5.Camera

    Basing on China National Standard of Test Methods of Single Seed Driller (GB/T 6973-2005)[30], the performance indexes is calculated as follows.

    Where1is the number of singles,2is the number of multiples,3is the number of skips, and′ is the number of theoretical planting seeds. SI is singulation index of seed meter; UI is multiple index of seed meter; MI is miss index of seed meter.

    The results of experiment is shown in Table 4 and Fig.9.

    Table 4 Results of experiment

    Note: SI is singulation index of seed meter; UI is multiple index of seed meter; MI is miss index of seed meter. The same below.

    Note: Columns labeled with same letters are not significantly different.

    As shown in the Table 4, with the increase of the planting speed, the SI, UI and MI didn’t change significantly. The data also showed that SI increased at first and then decreased with the planting speed increasing, and the best value was 99.47% at speed of 9 km/h. UI decreased at first and then increased with the speed increasing, and the worst value was 0.93% at speed of 6 km/h. MI were both zero at speed of 6, 9 km/h, but the value reached 0.8% at the speed of 12 km/h. Analyses above showed that UI was the determinant factor lead to SI decreasing when at low planting speed (6, 9 km/h), then MI became determinant instead of UI at the high planting speed (12 km/h). The best planting performance was got at speed of 9 km/h with SI of 99.47%, UI of 0.53% and MI of 0%. However, even at the highest planting speed of 12 km/h, the SI of seed meter can also be 98.4%, meanwhile the UI and MI were not more than 1%, which are far better than China National Standard[31]. Further analysis shown in Fig. 9 indicates that, when planting speed increased from 6 km/h to 9 km/h, the SI, UI, and MI changed only moderately. However when planting speed changed from 9 km/h to 12 km/h, the SI and MI changed appreciably. This change was possibly caused by the requirement of higher air pressure at higher planting speed. Results indicate that the seed meter with the developed control system and tuned PID parameters can obtain better planting quality and higher planting speed.

    2.2 The cost and market expectation of the control system

    Most of the components used in the control system are locally manufactured in China, and their costs are listed in the Table 5. The table indicates that, the cost of expanding one planting row that includes a seed plate driving motor and a seed meter is $321, and the control system has a higher performance-price ratio with the number of planting row increasing. The total cost of the control system for a four-row planter is $1800, which is considerably less than similar systems from abroad (for example, the cost of the controller alone from Precision Planting LLC is greater than $5000 in the Chinese market), making the system accessible to precision planters in developing countries and be largely used in the market.

    Table 5 Cost of control system for a four-row planter

    3 Conclusions

    A PID electronic control system for seed meters was designed and evaluated in this study. Conclusions of this research were as follows.

    1) Using integral separation in the PID control algorithm reduced the issues of overshoot and delayed response time associated with the integral component under conditions when the error is large. After tuning, the final PID parameters obtained wereK=16,K=0.05, andK=36. Under a step response infrom 0 to 24 r/min, the response time, overshoot, and steady error were 0.4 s, 1.56%, 0.75%, respectively.

    2) The experiment data showed that the SI of seed meter can be 98.4%, meanwhile the UI and MI are not more than 1% even at the highest planting speed of 12 km/h, which indicate that the seed meter with the developed control system and tuned PID parameters can obtain better planting quality and higher planting speed.

    3) Most of the components used in the electronic control system are locally manufactured in China, which is considerably less expensive than the similar systems abroad, making the system accessible to precision planters in developing countries.

    [1] Zhang Junchang, Yan Xiaoli, Xue Shaoping, et al. Design of no-tillage maize planter with straw smashing and fertilizing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(12): 51-55.

    [2] Saadat K, Mohammad J E, Mohammad M M. Design, development and evaluation of a mechatronic transmission system to improve the performance of a conventional row crop planter[J]. International journal of Agronomy and Plant Production, 2013, 4(3): 480-487.

    [3] Deere & Company (brand name John Deere). John deere Exact Emerge row unit[EB/OL]. [2016-08-05]. https://www. deere.com/en/planting-equipment/row-units/exactemerge-row- unit/

    [4] Horsch Maschinen GmbH. Maestro CC Technical Data [EB/OL]. [2016-08-17]. http://www.horsch.com/produkte/ saemaschinen/einzelkornsaemaschinen/maestro/maestro-cc/

    [5] Precision Planting LLC. Precision Planting vSet Select meter[EB/OL].[2016-09-21]. http://www.precisionplanting.com/#products/vset_select/.

    [6] Ag Leader Technology. Ag Leader SureDrive[EB/OL]. [2016-09-10]. http://www.agleader.com/products/seedcommand/sure-drives/.

    [7] Chaney P P, Parish R L, Sistler F E. Automatic control system for a sugarcane planter[J]. Applied Engineering in Agriculture, 1986, 2(2): 51-54.

    [8] He Peixiang, Yang Mingjin, Chen Zhonghui. Study on photoelectric controlled precision seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2003, 34(1): 47-49.

    [9] Tang Yaohua, Zhang Jinguo. Seed sowing driving system based on non-contact speed measuring[J]. Agri Mech Research, 2009(3): 21-23.

    [10] Zhai Jianbo, Gao Haizhou, Zheng Xiaolong, et al. Research on automatical seed metering drive system based on sensor technology[J]. Hubei Agricultural Sciences, 2011, 50(17): 3619-3621.

    [11] Zhai Jianbo, Xia Junfang, Zhou Yong, et al. Design and experimental study of the control system for precision seed-metering device[J]. International Journal of Agricultural & Biological Engineering, 2014, 7(3): 13-18.

    [12] Shi Song, Zhang Dongxing, Yang Li, et al. Design and experiment of pneumatic maize precision seed-metering device with combined holes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 10-18.

    [13] Shi Song, Zhang Dongxing, Yang Li, et al. Simulation and verification of seed-filling performance ofpneumatic- combined holes maize precision seed-metering device based on EDEM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 62-69.

    [14] Xun Qian, Wu Yong, Wang Peiliang, et al. Starting control strategy of brushless DC motor based on Hall rotor position sensor[J]. China Measurement & Test, 2016, 42(8): 118-122.

    [15] Chen Yonghua. Application of Hall Effect in the control of brushless DC motor [J]. Experiment Science and Technology, 2011, 9(2): 34-36.

    [16] Zhang Qingchao, Ma Ruiqing, Zhang Zhen, et al. Electromagnetic torque observation of brushless DC motor based on hall position signals[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 187-195.

    [17] Guo Wei, Wang Mingming. A modified speed measurement method using frequency multiplication to the hall signal of BLDC motor[J]. Micromotors, 2012, 45(1): 74-84.

    [18] Knospe C. PID control[J]. IEEE Control Systems Magazine, 2006, 26(1): 30-31.

    [19] Sigurd S. Simple analytic rules for model reduction and PID controller tuning[J]. Journal of Process Control, 2003, 13(4): 291-309.

    [20] Bucz ?, Kozáková A, Vesely V. Easy Tuning of pid controllers for specified performance[J]. IFAC Proceedings Volumes, 2012, 45(3): 733-738.

    [21] Yun Li, Ang K H, Chong G. PID control system analysis and design[J]. Control Systems IEEE, 2006, 26(1): 32-41.

    [22] Ang K H, Chong G, Li Y. PID control system analysis, design, and technology[J]. IEEE transactions on control systems technology, 2005, 13(4): 559-76.

    [23] Al-Mashakbeh A S. Proportional integral and derivative control of brushless dc motor[J]. European Journal of Scientific Research, 2009, 35(2): 198-203.

    [24] Jiang Weirong, Huang Haibo, Lan Jianping. Simulation and design of integral separation fuzzy control system for brushless DC motor[C]//International Conference on Computational and Information Sciences, 2013: 1194-1197.

    [25] Theorin A, H?gglund T. Derivative backoff: The other saturation problem for PID controllers[J]. Journal of Process Control, 2015, 33: 155-160.

    [26] Guo Xuyang, Qi Xiaohui, Tian Lizhuang. AC servo system based on integral partition PID control[J]. Modern Electronics Technique, 2007, (19): 163-164.

    [27] Wang Xiaodong. A kind of integration separation pid controller's designing[J]. Shanxi Science and Technology, 2006(6): 104-106.

    [28] Li Ge, Jia Yuanwu, Zhang Hua, et al. Application of integral-separation PID control algorithm in PLC-based tension control system[J]. Journal of Textile Research, 2008, 29(8): 109-112.

    [29] Ye Shuliang, Wang Keqi. The design of digital PID control with separated integral for an ultra-precision positioning system[J]. Techniques of Automation and Applications, 2003, 22(10): 65-67.

    [30] Standardization Administration of the People’s Republic of China. Testing Methods of Single Seed Drills (precision drills): GB/T 6973-2005[S]. Beijing: Standards Press of China, 2005.

    [31] Standardization Administration of the People’s Republic of China. Specifications for single seed drills (precision drills): JB/T 10293-2001[S]. Beijing: Standards Press of China, 2001.

    玉米精量排種器電驅(qū)PID控制系統(tǒng)設(shè)計與性能評價

    和賢桃1,丁友強1,張東興1,2,楊 麗1,2※,崔 濤1,2,魏劍濤3,劉全威1,顏丙新1,趙東岳1

    (1. 中國農(nóng)業(yè)大學工學院,北京 100083; 2. 農(nóng)業(yè)部土壤-機器-植物系統(tǒng)技術(shù)重點實驗室,北京 100083;3. 凱斯紐荷蘭公司,芝加哥 60527)

    本文研究了一種基于PID的排種器電驅(qū)控制系統(tǒng),取消了播種機采用地輪和鏈條驅(qū)動的方式,提高了播種機的播種質(zhì)量和作業(yè)速度。采用PID算法控制排種盤轉(zhuǎn)速,在目標轉(zhuǎn)速與當前轉(zhuǎn)速差異較大時,加入PID積分分離算法,以減少轉(zhuǎn)速的超調(diào)量。通過整定后的PID參數(shù)為:K= 16、K= 0.05、K= 36,在其排種盤轉(zhuǎn)速范圍為0~24 r/min時,響應(yīng)時間、超調(diào)量、穩(wěn)態(tài)誤差分別為0.4秒,1.56%和0.75%。試驗結(jié)果表明,在12 km/h的高速播種作業(yè)條件下,采用該電驅(qū)控制系統(tǒng)的排種器排種單粒率仍然可達到98.4%,其重播率和漏播率小于1%。采用本文研究的基于PID算法的排種控制系統(tǒng)可以獲得良好的排種質(zhì)量和更高的排種速度,使排種器更適宜高速精量播種。

    農(nóng)業(yè)機械;電驅(qū)控制;性能;PID整定;積分分離

    10.11975/j.issn.1002-6819.2017.17.004

    TP273

    A

    1002-6819(2017)-17-0028-06

    2017-04-07

    2017-08-02

    the National Key Research and Development Program of China (No.2017YFD0700703); the National Natural Science Foundation of China(51575515); China Agriculture Research System (CARS-02).

    He Xiantao, Doctor, major research direction is intelligent agricultural equipment. Beijing, China Agricultural University, 100083. Email: hxt@cau.edu.cn

    Yang Li, Professor, Doctoral supervisor, major research direction is modern agricultural machinery and intelligent agricultural equipment. Beijing, China Agricultural University, 100083. Email: yangli@cau.edu.cn

    猜你喜歡
    排種電驅(qū)種器
    玉米擾動輔助充種高速氣吸式排種器設(shè)計與試驗
    一種排種盤傳動結(jié)構(gòu)的設(shè)計與應(yīng)用
    油冷多合一電驅(qū)總成油堵密封分析
    四桿平移式大豆小區(qū)育種排種器設(shè)計與試驗
    基于EDEM的雙腔式棉花精量排種器排種性能仿真研究
    某大容量電驅(qū)系統(tǒng)配套同步電機電磁分析與計算
    新型電驅(qū)壓裂變頻調(diào)速六相異步電動機的研制
    精量排種器現(xiàn)狀及發(fā)展分析
    氣力托勺式馬鈴薯精量排種器設(shè)計
    PCL803電驅(qū)壓縮機起升泵高溫故障
    国产不卡一卡二| 在线观看日韩欧美| 国产91精品成人一区二区三区| 精品国产一区二区三区四区第35| www.999成人在线观看| 在线观看一区二区三区激情| 久久久国产精品麻豆| 久久精品亚洲av国产电影网| 黄色丝袜av网址大全| 不卡av一区二区三区| 三上悠亚av全集在线观看| 欧美黑人精品巨大| 亚洲一区二区三区欧美精品| 亚洲精品国产色婷婷电影| 美女国产高潮福利片在线看| 欧美黑人精品巨大| 亚洲五月天丁香| 99久久综合精品五月天人人| 老司机亚洲免费影院| 新久久久久国产一级毛片| 人人妻人人爽人人添夜夜欢视频| 成人黄色视频免费在线看| 精品第一国产精品| 少妇 在线观看| 国产不卡一卡二| 狠狠狠狠99中文字幕| 女人精品久久久久毛片| 欧美乱色亚洲激情| 亚洲欧美色中文字幕在线| 国内毛片毛片毛片毛片毛片| 欧美成人免费av一区二区三区 | 黄色女人牲交| 高清毛片免费观看视频网站 | 国产成人av激情在线播放| 亚洲精品成人av观看孕妇| avwww免费| 亚洲一码二码三码区别大吗| 校园春色视频在线观看| 在线十欧美十亚洲十日本专区| 婷婷精品国产亚洲av在线 | 欧美 亚洲 国产 日韩一| 国产精品影院久久| 丝袜美腿诱惑在线| 色综合欧美亚洲国产小说| 欧美人与性动交α欧美软件| 久久久国产欧美日韩av| av网站免费在线观看视频| 欧美成人免费av一区二区三区 | 国产精品自产拍在线观看55亚洲 | 日韩精品免费视频一区二区三区| 国产成人精品久久二区二区91| 久久久久视频综合| 超碰成人久久| 少妇被粗大的猛进出69影院| 日韩人妻精品一区2区三区| 国产成人啪精品午夜网站| 亚洲午夜精品一区,二区,三区| 91成人精品电影| 99国产综合亚洲精品| 免费在线观看亚洲国产| 老司机深夜福利视频在线观看| 在线视频色国产色| 久久精品成人免费网站| 我的亚洲天堂| 悠悠久久av| 精品人妻熟女毛片av久久网站| 久久午夜亚洲精品久久| 亚洲在线自拍视频| 久久婷婷成人综合色麻豆| 天堂动漫精品| 日韩一卡2卡3卡4卡2021年| 99久久99久久久精品蜜桃| 日本五十路高清| 欧美激情高清一区二区三区| 黑人猛操日本美女一级片| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产看品久久| 九色亚洲精品在线播放| 一区二区日韩欧美中文字幕| 亚洲一码二码三码区别大吗| 久久午夜综合久久蜜桃| 国产精品综合久久久久久久免费 | 国产亚洲av高清不卡| 国产精品免费一区二区三区在线 | 国产乱人伦免费视频| 精品国产一区二区三区四区第35| 大香蕉久久成人网| 中文字幕av电影在线播放| 免费在线观看影片大全网站| 国产一区二区三区在线臀色熟女 | 在线观看舔阴道视频| videos熟女内射| 黑丝袜美女国产一区| 亚洲一区高清亚洲精品| 国产精品亚洲一级av第二区| 亚洲精品美女久久久久99蜜臀| 久99久视频精品免费| 国产成人免费无遮挡视频| 亚洲伊人色综图| 免费观看人在逋| 十分钟在线观看高清视频www| 日本撒尿小便嘘嘘汇集6| 久久国产乱子伦精品免费另类| 免费少妇av软件| 亚洲av电影在线进入| 久99久视频精品免费| 欧美人与性动交α欧美精品济南到| 欧美国产精品一级二级三级| 亚洲自偷自拍图片 自拍| www日本在线高清视频| 成人国产一区最新在线观看| 99re在线观看精品视频| 十八禁网站免费在线| 最近最新中文字幕大全免费视频| 波多野结衣一区麻豆| 成年女人毛片免费观看观看9 | 亚洲精品av麻豆狂野| 黄色成人免费大全| 大型黄色视频在线免费观看| 在线观看免费视频网站a站| 国产三级黄色录像| a级毛片在线看网站| 国产麻豆69| 国内久久婷婷六月综合欲色啪| 一级毛片女人18水好多| 黄色成人免费大全| 亚洲国产毛片av蜜桃av| 大香蕉久久网| 国产黄色免费在线视频| 亚洲精品乱久久久久久| 9色porny在线观看| 视频在线观看一区二区三区| 日韩一卡2卡3卡4卡2021年| 热re99久久国产66热| 大型黄色视频在线免费观看| 亚洲精品一二三| 欧美日韩乱码在线| av片东京热男人的天堂| 我的亚洲天堂| 变态另类成人亚洲欧美熟女 | 一级毛片女人18水好多| 精品少妇一区二区三区视频日本电影| 他把我摸到了高潮在线观看| 亚洲精华国产精华精| 色综合欧美亚洲国产小说| 欧美国产精品va在线观看不卡| 亚洲精品在线观看二区| 美女高潮到喷水免费观看| 欧美日韩成人在线一区二区| 黄色丝袜av网址大全| 中文字幕精品免费在线观看视频| 亚洲av成人不卡在线观看播放网| 国产午夜精品久久久久久| 国产精品成人在线| 人人妻人人添人人爽欧美一区卜| 日韩免费高清中文字幕av| 韩国精品一区二区三区| 老汉色av国产亚洲站长工具| 最近最新免费中文字幕在线| av一本久久久久| 又黄又粗又硬又大视频| 国产野战对白在线观看| 欧美激情极品国产一区二区三区| 男人的好看免费观看在线视频 | 一区福利在线观看| 少妇裸体淫交视频免费看高清 | 国产野战对白在线观看| 亚洲av成人av| 色精品久久人妻99蜜桃| 久久久久国产一级毛片高清牌| 中文字幕av电影在线播放| 麻豆乱淫一区二区| 久热这里只有精品99| 亚洲av第一区精品v没综合| av福利片在线| 黄片播放在线免费| 成人特级黄色片久久久久久久| 日本欧美视频一区| 国产一区二区三区在线臀色熟女 | 色综合欧美亚洲国产小说| 手机成人av网站| 天堂动漫精品| 成熟少妇高潮喷水视频| 每晚都被弄得嗷嗷叫到高潮| 啪啪无遮挡十八禁网站| 精品卡一卡二卡四卡免费| 精品视频人人做人人爽| 亚洲欧美激情综合另类| 不卡一级毛片| 香蕉丝袜av| 最近最新中文字幕大全电影3 | 午夜两性在线视频| а√天堂www在线а√下载 | 亚洲一码二码三码区别大吗| xxxhd国产人妻xxx| 国产一区有黄有色的免费视频| 男人的好看免费观看在线视频 | 国产在线观看jvid| 女警被强在线播放| 麻豆乱淫一区二区| 国内毛片毛片毛片毛片毛片| 看免费av毛片| 国产不卡av网站在线观看| 精品久久久久久电影网| 女同久久另类99精品国产91| 女性生殖器流出的白浆| av天堂久久9| 精品亚洲成a人片在线观看| 最近最新免费中文字幕在线| 美女福利国产在线| 精品一品国产午夜福利视频| 国产麻豆69| 女同久久另类99精品国产91| 中文字幕人妻丝袜制服| 99国产精品99久久久久| 中文字幕人妻丝袜一区二区| 国产精品永久免费网站| 在线视频色国产色| 精品国产一区二区久久| 婷婷成人精品国产| 视频在线观看一区二区三区| 欧美乱色亚洲激情| 午夜福利免费观看在线| 精品一区二区三区av网在线观看| 国产成人系列免费观看| 在线观看日韩欧美| 动漫黄色视频在线观看| 亚洲黑人精品在线| 香蕉久久夜色| 国产三级黄色录像| 夜夜躁狠狠躁天天躁| 国产xxxxx性猛交| 麻豆国产av国片精品| 一边摸一边抽搐一进一出视频| 五月开心婷婷网| 亚洲国产中文字幕在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 美女 人体艺术 gogo| 国产精品国产高清国产av | 亚洲成a人片在线一区二区| 午夜福利在线观看吧| 亚洲免费av在线视频| 看黄色毛片网站| 国产精品98久久久久久宅男小说| 欧美黑人精品巨大| 日韩视频一区二区在线观看| 国产极品粉嫩免费观看在线| 男男h啪啪无遮挡| 他把我摸到了高潮在线观看| 欧美另类亚洲清纯唯美| 亚洲av成人不卡在线观看播放网| 久久香蕉激情| 不卡一级毛片| 黄片大片在线免费观看| 女性被躁到高潮视频| 日韩熟女老妇一区二区性免费视频| 国产精品 欧美亚洲| 国产亚洲精品第一综合不卡| 日本wwww免费看| 亚洲成人免费电影在线观看| 日韩人妻精品一区2区三区| 欧美日韩国产mv在线观看视频| 精品乱码久久久久久99久播| 国产精品 欧美亚洲| 午夜福利视频在线观看免费| 视频区图区小说| 成人特级黄色片久久久久久久| 狠狠狠狠99中文字幕| 中文字幕高清在线视频| 国产精品九九99| 欧美日韩亚洲国产一区二区在线观看 | 欧美最黄视频在线播放免费 | 国产亚洲欧美在线一区二区| 人人妻人人添人人爽欧美一区卜| 精品乱码久久久久久99久播| 久久ye,这里只有精品| 欧美av亚洲av综合av国产av| 国产区一区二久久| 日本五十路高清| 久9热在线精品视频| 亚洲专区国产一区二区| 亚洲国产欧美一区二区综合| 国产精品乱码一区二三区的特点 | 美女高潮喷水抽搐中文字幕| 欧美大码av| avwww免费| 欧美黄色淫秽网站| 人人妻,人人澡人人爽秒播| 国产精品成人在线| 久久久精品区二区三区| 桃红色精品国产亚洲av| 欧美日韩精品网址| 在线看a的网站| 欧美日韩国产mv在线观看视频| 国产一区二区三区综合在线观看| 50天的宝宝边吃奶边哭怎么回事| 免费在线观看完整版高清| 校园春色视频在线观看| 亚洲美女黄片视频| 操美女的视频在线观看| 99国产极品粉嫩在线观看| 欧美成狂野欧美在线观看| 777久久人妻少妇嫩草av网站| 日韩视频一区二区在线观看| 黑人操中国人逼视频| 亚洲精品国产精品久久久不卡| 久久午夜综合久久蜜桃| 欧美老熟妇乱子伦牲交| 最近最新中文字幕大全电影3 | 777米奇影视久久| 十八禁高潮呻吟视频| 免费观看a级毛片全部| 亚洲精品成人av观看孕妇| 99国产综合亚洲精品| 精品高清国产在线一区| 久久香蕉国产精品| 美女福利国产在线| 露出奶头的视频| 精品久久久久久久久久免费视频 | 一个人免费在线观看的高清视频| 免费一级毛片在线播放高清视频 | 久热这里只有精品99| 大码成人一级视频| 午夜福利欧美成人| 色综合欧美亚洲国产小说| 久久国产乱子伦精品免费另类| 日本wwww免费看| 三上悠亚av全集在线观看| 亚洲色图 男人天堂 中文字幕| 中文亚洲av片在线观看爽 | 午夜视频精品福利| 两性夫妻黄色片| 亚洲熟女毛片儿| 中亚洲国语对白在线视频| 亚洲一区中文字幕在线| 亚洲黑人精品在线| 国产精品1区2区在线观看. | 国产精品国产高清国产av | 超碰97精品在线观看| 免费看十八禁软件| 麻豆成人av在线观看| av网站免费在线观看视频| 又黄又爽又免费观看的视频| 啪啪无遮挡十八禁网站| 可以免费在线观看a视频的电影网站| 午夜视频精品福利| 三级毛片av免费| 男人舔女人的私密视频| 精品久久久久久电影网| 91成人精品电影| 免费不卡黄色视频| 色在线成人网| 中出人妻视频一区二区| 美女午夜性视频免费| 久久久国产成人精品二区 | 狠狠婷婷综合久久久久久88av| 精品国产国语对白av| 午夜福利在线免费观看网站| 日韩免费高清中文字幕av| 久久中文字幕一级| 欧美国产精品va在线观看不卡| 精品免费久久久久久久清纯 | 国产成人影院久久av| 国产精品99久久99久久久不卡| 交换朋友夫妻互换小说| 变态另类成人亚洲欧美熟女 | 国产成人精品久久二区二区91| 女性被躁到高潮视频| 大型av网站在线播放| 美女国产高潮福利片在线看| 亚洲一区二区三区欧美精品| 国产精品亚洲一级av第二区| 午夜精品在线福利| 少妇粗大呻吟视频| 午夜老司机福利片| 91成人精品电影| 首页视频小说图片口味搜索| 丁香欧美五月| 午夜久久久在线观看| 久久精品aⅴ一区二区三区四区| 午夜成年电影在线免费观看| 欧美老熟妇乱子伦牲交| 脱女人内裤的视频| 一个人免费在线观看的高清视频| 成人永久免费在线观看视频| 男女免费视频国产| 一二三四在线观看免费中文在| 免费看十八禁软件| 欧美亚洲日本最大视频资源| 国产成人av教育| 99国产极品粉嫩在线观看| 两人在一起打扑克的视频| 村上凉子中文字幕在线| av网站在线播放免费| 一区福利在线观看| xxx96com| 亚洲熟妇中文字幕五十中出 | www.自偷自拍.com| 国产97色在线日韩免费| 美女午夜性视频免费| 午夜成年电影在线免费观看| 亚洲av美国av| 久久 成人 亚洲| 国产精品一区二区在线观看99| 欧美乱码精品一区二区三区| 亚洲七黄色美女视频| 9热在线视频观看99| 麻豆av在线久日| 欧美成人午夜精品| 欧美日韩视频精品一区| av线在线观看网站| 婷婷丁香在线五月| 在线永久观看黄色视频| 一级毛片女人18水好多| 日韩视频一区二区在线观看| 岛国在线观看网站| a在线观看视频网站| 身体一侧抽搐| 国产麻豆69| 亚洲国产精品sss在线观看 | 一级毛片女人18水好多| 成人免费观看视频高清| 一本综合久久免费| 亚洲五月天丁香| 动漫黄色视频在线观看| 国产精品秋霞免费鲁丝片| 天天躁狠狠躁夜夜躁狠狠躁| www.熟女人妻精品国产| 久久久水蜜桃国产精品网| 在线国产一区二区在线| 狠狠婷婷综合久久久久久88av| 曰老女人黄片| 男人的好看免费观看在线视频 | 亚洲人成77777在线视频| 又黄又粗又硬又大视频| 亚洲一区二区三区欧美精品| 亚洲中文日韩欧美视频| 久久国产精品大桥未久av| 一级毛片高清免费大全| 亚洲精品中文字幕一二三四区| 成年版毛片免费区| 欧美日韩视频精品一区| 免费看a级黄色片| 高清av免费在线| 久久天堂一区二区三区四区| 国产激情欧美一区二区| 黄频高清免费视频| 精品少妇一区二区三区视频日本电影| 99精品久久久久人妻精品| 国产在线一区二区三区精| 久久这里只有精品19| 欧美精品高潮呻吟av久久| 欧美中文综合在线视频| 天堂动漫精品| 好看av亚洲va欧美ⅴa在| 男女免费视频国产| 动漫黄色视频在线观看| 亚洲欧美激情综合另类| 国产主播在线观看一区二区| 久久人人爽av亚洲精品天堂| 黑丝袜美女国产一区| 欧美激情久久久久久爽电影 | av超薄肉色丝袜交足视频| 精品国产亚洲在线| 久久久精品国产亚洲av高清涩受| 欧美在线黄色| 丰满迷人的少妇在线观看| 女性生殖器流出的白浆| 岛国在线观看网站| 香蕉国产在线看| 成人国产一区最新在线观看| 国产亚洲欧美精品永久| 99re6热这里在线精品视频| 真人做人爱边吃奶动态| 国产成人精品无人区| 久久久精品区二区三区| av片东京热男人的天堂| 少妇被粗大的猛进出69影院| 一级毛片精品| 亚洲欧美一区二区三区黑人| 中文亚洲av片在线观看爽 | 久久精品aⅴ一区二区三区四区| 精品一区二区三区av网在线观看| 国产精品av久久久久免费| 欧美日韩瑟瑟在线播放| 欧美乱妇无乱码| 黑人巨大精品欧美一区二区蜜桃| 国产激情久久老熟女| avwww免费| 国产激情久久老熟女| 久久狼人影院| 夫妻午夜视频| 两个人免费观看高清视频| 国产激情久久老熟女| 日韩精品免费视频一区二区三区| bbb黄色大片| 一级a爱视频在线免费观看| 视频区欧美日本亚洲| 少妇被粗大的猛进出69影院| 男女免费视频国产| 欧美日韩国产mv在线观看视频| 天堂动漫精品| 亚洲第一欧美日韩一区二区三区| 女人被躁到高潮嗷嗷叫费观| 午夜福利在线观看吧| 在线观看舔阴道视频| 老汉色av国产亚洲站长工具| 欧美一级毛片孕妇| 身体一侧抽搐| 亚洲七黄色美女视频| 真人做人爱边吃奶动态| 精品国产美女av久久久久小说| 国产成人欧美在线观看 | 欧美黑人欧美精品刺激| 亚洲国产中文字幕在线视频| 国产男靠女视频免费网站| 亚洲精品自拍成人| 丝袜美足系列| 精品国产美女av久久久久小说| av片东京热男人的天堂| 激情视频va一区二区三区| 国产亚洲精品久久久久5区| 亚洲欧美日韩高清在线视频| 91成人精品电影| tocl精华| 国产精品国产高清国产av | 欧美最黄视频在线播放免费 | 一级片'在线观看视频| 精品亚洲成国产av| 成熟少妇高潮喷水视频| 亚洲国产看品久久| 制服人妻中文乱码| av中文乱码字幕在线| 女人被狂操c到高潮| 美女午夜性视频免费| 欧美一级毛片孕妇| 久久久精品免费免费高清| 欧美日韩亚洲国产一区二区在线观看 | 女警被强在线播放| 久久国产乱子伦精品免费另类| 色综合欧美亚洲国产小说| 国产蜜桃级精品一区二区三区 | 欧美黑人精品巨大| 中出人妻视频一区二区| ponron亚洲| 亚洲一区高清亚洲精品| 国产高清激情床上av| 久久久久精品国产欧美久久久| 欧美激情 高清一区二区三区| 欧美久久黑人一区二区| 国产欧美亚洲国产| 91在线观看av| 狠狠狠狠99中文字幕| 欧美精品亚洲一区二区| 日韩大码丰满熟妇| 精品一区二区三区视频在线观看免费 | 巨乳人妻的诱惑在线观看| 国产成人啪精品午夜网站| 午夜免费观看网址| 午夜免费鲁丝| 亚洲久久久国产精品| 成人精品一区二区免费| 国产有黄有色有爽视频| 欧美日韩瑟瑟在线播放| 国产精品久久视频播放| 动漫黄色视频在线观看| 国产欧美日韩综合在线一区二区| av中文乱码字幕在线| 亚洲综合色网址| 另类亚洲欧美激情| 久久热在线av| 女性生殖器流出的白浆| 高清欧美精品videossex| 久久久久久久久久久久大奶| 建设人人有责人人尽责人人享有的| 久久香蕉激情| 国产亚洲精品第一综合不卡| 久久久国产一区二区| 丰满的人妻完整版| 精品少妇久久久久久888优播| 90打野战视频偷拍视频| 国产精品乱码一区二三区的特点 | 日韩 欧美 亚洲 中文字幕| 成人18禁高潮啪啪吃奶动态图| 成人免费观看视频高清| 欧美激情久久久久久爽电影 | 99国产极品粉嫩在线观看| 久久草成人影院| 91麻豆精品激情在线观看国产 | 成人影院久久| 久久精品aⅴ一区二区三区四区| 老司机午夜福利在线观看视频| 精品人妻1区二区| 久久久精品国产亚洲av高清涩受| 亚洲专区中文字幕在线| 中文字幕人妻熟女乱码| 身体一侧抽搐| 香蕉国产在线看| 欧美精品亚洲一区二区| 欧美激情高清一区二区三区| 人人妻人人添人人爽欧美一区卜| 国产精品久久久人人做人人爽| 欧美国产精品一级二级三级| 午夜福利视频在线观看免费| 操美女的视频在线观看| 18禁观看日本| 亚洲色图 男人天堂 中文字幕| 国产视频一区二区在线看| 亚洲精品中文字幕一二三四区| 亚洲一区二区三区不卡视频| videosex国产| 日日爽夜夜爽网站| 19禁男女啪啪无遮挡网站| av国产精品久久久久影院| 一二三四社区在线视频社区8|