• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      求解一類可分離凸規(guī)劃的對(duì)偶顯式模型DP-EM方法1)

      2017-11-11 01:55:20隋允康彭細(xì)榮
      力學(xué)學(xué)報(bào) 2017年5期
      關(guān)鍵詞:對(duì)偶精度變量

      隋允康 彭細(xì)榮

      ?(北京工業(yè)大學(xué)工程數(shù)值模擬中心,北京100022)

      ?(湖南城市學(xué)院土木工程學(xué)院,湖南益陽413000)

      生物、工程及交叉力學(xué)

      求解一類可分離凸規(guī)劃的對(duì)偶顯式模型DP-EM方法1)

      隋允康?,2)彭細(xì)榮?,3)

      ?(北京工業(yè)大學(xué)工程數(shù)值模擬中心,北京100022)

      ?(湖南城市學(xué)院土木工程學(xué)院,湖南益陽413000)

      推導(dǎo)對(duì)偶目標(biāo)函數(shù)的精確顯式表達(dá)式,可選用更多成熟高效的求解方法,從而進(jìn)一步提高了非線性規(guī)劃對(duì)偶理論求解結(jié)構(gòu)拓?fù)鋬?yōu)化問題的效率.研究工作來源于非線性凸規(guī)劃同其對(duì)偶規(guī)劃的間隙為零,可以等價(jià)轉(zhuǎn)化為對(duì)偶問題求解,通??梢源蟠蟮乜s小問題的規(guī)模,可是二者不具有顯式關(guān)系卻影響了對(duì)偶解法的應(yīng)用.所幸的是,結(jié)構(gòu)優(yōu)化當(dāng)中一大類問題包括連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化問題,不僅具有凸性,而且具有變量可分離性,于是原變量和對(duì)偶變量之間有了顯式關(guān)系,因此,對(duì)偶解法成了38年來被應(yīng)用的有效方法之一.然而長期以來,對(duì)偶問題的目標(biāo)函數(shù)并不是顯式,這緣于含參數(shù)的極小化問題導(dǎo)致目標(biāo)函數(shù)為隱式表達(dá),常見的顯式化方法是進(jìn)行二階近似.本文突破了對(duì)偶問題難以顯式化只能采用近似顯式的定勢(shì),將我們提出的“對(duì)偶規(guī)劃--顯式模型”(DP-EM)方法應(yīng)用于連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化,并與對(duì)偶序列二次規(guī)劃(DSQP)算法及移動(dòng)漸近線(MMA)算法為求解器的方法進(jìn)行計(jì)算效率對(duì)比,結(jié)果顯示:(1)MMA算法比DP-EM算法和DSQP算法的外部迭代次數(shù)均多;(2)DP-EM算法與DSQP算法外循環(huán)次數(shù)相同,而內(nèi)循環(huán)數(shù)顯著減少.說明了DP-EM算法具有顯式對(duì)偶函數(shù)的優(yōu)勢(shì).

      對(duì)偶目標(biāo)顯式模型化,可分離凸規(guī)劃,結(jié)構(gòu)拓?fù)鋬?yōu)化,對(duì)偶序列二次規(guī)劃方法,移動(dòng)漸近線方法

      引言

      結(jié)構(gòu)拓?fù)鋬?yōu)化已經(jīng)提出了大量的研究方法,比如均勻化方法[1]、變密度法[2]、ICM法[3]、進(jìn)化結(jié)構(gòu)優(yōu)化方法[4]、水平集法[5]、相場法[6]及拓?fù)鋵?dǎo)數(shù)法[78]等,綜述文獻(xiàn)可參考Sigmund等[9]及Joshua等[10],專著有Bendsoe等[11]的變密度法及隋允康等[12]的ICM法等.從優(yōu)化模型的角度看,多數(shù)方法建立的數(shù)學(xué)模型歸結(jié)為非線性規(guī)劃問題,可以采用基于非線性規(guī)劃理論的各種求解算法,其中也包括數(shù)學(xué)規(guī)劃對(duì)偶理論的相關(guān)解法[13].早在結(jié)構(gòu)拓?fù)鋬?yōu)化之前的結(jié)構(gòu)截面優(yōu)化研究中,對(duì)偶規(guī)劃解法就已經(jīng)被關(guān)注,最典型的是1979年Fleury發(fā)表的工作,把凸規(guī)劃的對(duì)偶規(guī)劃解法作為新方法介紹到結(jié)構(gòu)優(yōu)化領(lǐng)域,并且用于求解桁架截面優(yōu)化問題[14].

      較之含很多約束條件的原問題,對(duì)偶問題只含有非負(fù)對(duì)偶變量條件,稱為擬無約束規(guī)劃,只要稍微修正一下,無約束規(guī)劃的尋優(yōu)算法就可以應(yīng)用,這是該方法的優(yōu)勢(shì).美中不足的是,對(duì)偶目標(biāo)函數(shù)只是隱函數(shù)形式,然而,卻可以求出其一階導(dǎo)數(shù)和二階導(dǎo)數(shù)的數(shù)值表達(dá)式.因此,F(xiàn)leury在文獻(xiàn)[14]中介紹了尋優(yōu)的一階算法和二階算法,二者都是無約束規(guī)劃尋優(yōu)的“上升算法”(即反向的“下降算法”).

      錢令希團(tuán)隊(duì)于1980年就論證了求解結(jié)構(gòu)桁架截面優(yōu)化原問題和對(duì)偶問題的等價(jià)性[15],并且指出:由于對(duì)偶問題變量的維數(shù)等于原問題的約束個(gè)數(shù),通常會(huì)大大地縮小優(yōu)化的規(guī)模,因此建議按對(duì)偶問題求解,然后通過Kuhn-Tucker條件建立原變量與對(duì)偶變量之間的顯式關(guān)系,得到原問題的最優(yōu)解.在對(duì)偶問題求解時(shí),用Lemke算法或其他算法直接求解擬無約束的二次規(guī)劃形式的對(duì)偶問題,較之Fleury采用的“上升算法”,二次規(guī)劃算法簡潔、方便和可靠.

      在錢令希團(tuán)隊(duì)的一系列工作[3,1520]中,文獻(xiàn)[15-17]闡發(fā)了桁架結(jié)構(gòu)優(yōu)化運(yùn)用對(duì)偶問題求解的理論和方法,文獻(xiàn)[18]將截面優(yōu)化問題的對(duì)偶解法從文獻(xiàn)[14-17]的桿單元推廣到桿、膜、梁單元的組合結(jié)構(gòu),文獻(xiàn)[3]則進(jìn)一步推廣到桿、膜、板、殼、梁單元的復(fù)雜組合結(jié)構(gòu),而且文獻(xiàn)[18]和文獻(xiàn)[3]分別把只適合桿單元[1417]的對(duì)偶函數(shù)的二階導(dǎo)數(shù)公式做了相應(yīng)的推廣,文獻(xiàn)[19-20]聚焦在二次規(guī)劃,介紹了該團(tuán)隊(duì)的一系列工作:原問題的二次化、對(duì)偶問題的二次化、正定幾何規(guī)劃的二次化和縮并幾何規(guī)劃二次化.

      隋允康從1995年就指導(dǎo)博士生和碩士生開始了結(jié)構(gòu)拓?fù)鋬?yōu)化ICM法的研究,限于篇幅,本文只列出相關(guān)的4篇文獻(xiàn)[2124],其他研究者如龍凱等也應(yīng)用過ICM法[25].ICM方法建立優(yōu)化模型后,都是將原問題轉(zhuǎn)為對(duì)偶問題求解.原因在于:對(duì)偶變量的個(gè)數(shù)是原問題的有效約束數(shù)目,因而對(duì)偶問題的設(shè)計(jì)變量維數(shù)極大地降低,以連續(xù)體多位移約束的結(jié)構(gòu)拓?fù)鋬?yōu)化為例,假如有10000個(gè)單元,4個(gè)載荷工況下3點(diǎn)位移約束,實(shí)際有效約束最多只有12個(gè),亦即最多12個(gè)對(duì)偶變量,而原問題卻有10000個(gè)原變量.其中的奧妙就在于Kuhn-Tucker條件成為原變量與對(duì)偶變量之間顯式關(guān)系的橋梁,從而大幅度地提高了求解效率.

      基于ICM方法建立的優(yōu)化模型,同結(jié)構(gòu)截面優(yōu)化的研究類似,難以求解出對(duì)偶目標(biāo)函數(shù)的顯式表達(dá)式,只得轉(zhuǎn)而求其一階導(dǎo)數(shù)和二階導(dǎo)數(shù),進(jìn)而建立二次近似函數(shù)形式的對(duì)偶目標(biāo)函數(shù),形成對(duì)偶序列二次規(guī)劃(DSQP)方法的求解算法[3,12],取得了很好的求解效率.由于長期以來采用DSQP方法求解,加上對(duì)偶目標(biāo)函數(shù)依然是一個(gè)含參數(shù)的極小化問題,因而形成了不求對(duì)偶問題的目標(biāo)函數(shù)顯式的定勢(shì).

      本文從結(jié)構(gòu)優(yōu)化所建立的數(shù)學(xué)規(guī)劃模型的特點(diǎn)出發(fā),針對(duì)一大類常見的變量可分離的凸規(guī)劃問題,突破了只是停留在對(duì)偶目標(biāo)二階近似的定勢(shì),推導(dǎo)得出了顯式的對(duì)偶目標(biāo)函數(shù).在這一研究的基礎(chǔ)上,提出了便捷求解的DP-EM(dual programmingexplicit model)方法,并將其應(yīng)用于求解連續(xù)體結(jié)構(gòu)的拓?fù)鋬?yōu)化問題.本文將DP-EM方法與基于DSQP算法及MMA算法[26]的方法進(jìn)行計(jì)算效率對(duì)比,結(jié)果顯示DP-EM方法具有更高的求解效率.

      1 對(duì)偶目標(biāo)函數(shù)的顯式化導(dǎo)致DP-EM方法

      對(duì)于下列非線性規(guī)劃

      滿足凸規(guī)劃的條件.x為設(shè)計(jì)變量向量,N為設(shè)計(jì)變量數(shù)目,F(xiàn)(x)為目標(biāo)函數(shù),Gj(x)為不等式約束函數(shù),M為約束數(shù)目,及為設(shè)計(jì)變量上下限,ai,bij,α及β分別為目標(biāo)函數(shù)及約束函數(shù)中的系數(shù)及指數(shù).

      式(1)的拉格朗日函數(shù)為

      其中λj為拉格朗日乘子.原問題(1)的對(duì)偶問題為

      其中

      式(4)的Kuhn-Tucker條件為

      將式(6)代入式(4)得

      下面的工作是設(shè)法將式 (7)的表達(dá)式適當(dāng)轉(zhuǎn)化,從而將?(λ)顯式化.為此,將式(6)代入式(5),其中,主動(dòng)變量有下式

      對(duì)于i∈Ia求和,得

      由式(9)可得

      亦即

      將式(11)代入式(7),得

      根據(jù)式(12),對(duì)偶規(guī)劃式(3)可以轉(zhuǎn)化為等價(jià)的如下規(guī)劃

      注意式(15)具有顯式目標(biāo)函數(shù)式(13),此規(guī)劃在聯(lián)合式(6)的情況下,可以在原問題的凸規(guī)則的前提下,得到原問題(1)的解.上述在理論上是完整的,用于結(jié)構(gòu)優(yōu)化的實(shí)際問題,只是多了一個(gè)建立優(yōu)化模型的工作.

      由于結(jié)構(gòu)優(yōu)化模型是近似的,建模伴隨著求解,是一個(gè)大循環(huán)的迭代過程.另外,式(6)依賴于上被動(dòng)變量集、主動(dòng)變量集Ia和下被動(dòng)變量集,在式(15)與式(6)的交替計(jì)算中,若變量集有變動(dòng),則每一輪大循環(huán)中出現(xiàn)小循環(huán)的過程.

      鑒于每輪建模中,結(jié)構(gòu)分析與敏度分析的昂貴,與建模得到 bij(i=1,2,···,N;j=1,2,···,M)構(gòu)造式(13),然后求解規(guī)劃(15),代回式(6)得到一個(gè)解,而不做小循環(huán)相比,采用小循環(huán)要好得多,可以充分利用好昂貴的模型.

      至于規(guī)劃(15)在顯式(13)下的求解方法,比以往規(guī)劃的SQP解法可以有更多的選擇,不僅二次規(guī)劃方法,還可以利用其他無約束優(yōu)化方法,例如最速下降法、共軛梯度法、牛頓法、擬牛頓法(變尺度法)、信賴域法等等.盡管存在一個(gè)對(duì)偶變量非負(fù)約束,每次算出的λj只要為負(fù)值,就可以修正為0.此文中采用了MATLAB優(yōu)化工具箱中的fmincon函數(shù)求解規(guī)劃(15).

      上述是針對(duì)一類變量可分離凸規(guī)劃問題的建立模型和求解算法,為了方便于表述,稱之為“對(duì)偶規(guī)劃 --顯式模型”(dual programming-explicit model,DPEM)方法.

      2 DP-EM方法對(duì)于連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化的應(yīng)用

      以重量極小化受位移約束的連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化為例,應(yīng)用ICM法建立拓?fù)鋬?yōu)化模型,采用冪函數(shù)形式的過濾函數(shù),單元重量及單元?jiǎng)偠扔眠^濾函數(shù)識(shí)別

      其中,wi及 ki為單元重量及單元?jiǎng)偠汝?,及為單元固有重量及單元固有剛度?fw(ti)=(ti)α及分別為單元重量及單元?jiǎng)偠鹊膬绾瘮?shù)形式過濾函數(shù),本文取α=1及β=3.

      結(jié)構(gòu)總重量可表達(dá)為

      其中N表示單元拓?fù)湓O(shè)計(jì)變量的總數(shù).

      利用莫爾定理位移可表達(dá)為

      用ICM法建立的拓?fù)鋬?yōu)化模型表示為

      式中t=(t1,t2,···,tN)T是單元拓?fù)湓O(shè)計(jì)變量向量ˉuj表示第 j號(hào)位移約束的上限.此模型與式(1)相同,不同之處只是設(shè)計(jì)變量x用拓?fù)湓O(shè)計(jì)變量t表達(dá)而已.

      3 程序?qū)崿F(xiàn)和算例比較

      式(19)的結(jié)構(gòu)拓?fù)鋬?yōu)化問題即式(1)形式的可分離變量非線性規(guī)劃,為了比較不同數(shù)學(xué)規(guī)劃求解算法的效率,編制了3種求解方法的程序:本文提出的DP-EM方法對(duì)應(yīng)的求解算法,以往的DSQP算法和移動(dòng)漸近線(MMA)算法.DP-EM算法及DSQP算法采用自編的MATLAB函數(shù),MMA算法采用文獻(xiàn)[13]所公布的MATLAB代碼.

      3種算法的收斂準(zhǔn)則采取連續(xù)二次迭代的最大設(shè)計(jì)變量差值小于設(shè)定的收斂精度

      其中收斂精度ε在此文中取0.005.

      連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化存在棋盤格現(xiàn)象及網(wǎng)格依賴等數(shù)值不穩(wěn)定問題,消除此數(shù)值不穩(wěn)定問題的一類典型方法是過濾法[9].本文采用對(duì)位移貢獻(xiàn)系數(shù)Aij進(jìn)行過濾處理的方法[22].

      為了驗(yàn)證本文方法的正確性,采用網(wǎng)上公布的88行編碼的連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化程序的優(yōu)化結(jié)果,作為算例進(jìn)行比較[27].不過,文獻(xiàn)[27]求解的是體積約束下結(jié)構(gòu)柔順度極小問題,而本文求解的是位移約束下體積極小問題.

      如何把88行程序的結(jié)果作為本文的算例?首先用88行程序算出一個(gè)最優(yōu)拓?fù)錁?gòu)型結(jié)果,把其中擬作為位移約束點(diǎn)的位移作為算例的約束位移值,然后用本文的三種方法進(jìn)行計(jì)算;最后把算例與文獻(xiàn)[27]的結(jié)果對(duì)比看最后的拓?fù)錁?gòu)型是否相同.

      算例1:MBB梁拓?fù)鋬?yōu)化

      MBB梁拓?fù)鋬?yōu)化,基結(jié)構(gòu)寬高比為6:1,無量綱集中載荷F=2作用于跨中頂點(diǎn),左、右下角分別為鉸支及滑動(dòng)鉸支約束,材料無量綱彈性模量E=1,泊松比0.3.取一半結(jié)構(gòu)進(jìn)行分析,計(jì)算簡圖如圖1所示,采用60×20,150×50及300×100三種網(wǎng)格進(jìn)行計(jì)算.

      圖1 150×50網(wǎng)格MBB梁問題取一半結(jié)構(gòu)進(jìn)行分析及優(yōu)化時(shí)模型定義Fig.1 Half of structure for analysis and optimization of the MBB beam with 150×50 mesh

      采用與文獻(xiàn)[27]相同的數(shù)據(jù),保留體積比0.5,采用敏度過濾,過濾半徑為基結(jié)構(gòu)高度的0.12倍,SIMP方法的懲罰因子取p=3,收斂精度分別取0.01及0.005.采用150×50網(wǎng)格按88行程序計(jì)算出來的體積約束下結(jié)構(gòu)柔順度極小化的最優(yōu)拓?fù)鋱D形如圖2所示,兩種精度下得到的最優(yōu)拓?fù)鋱D形相同,對(duì)應(yīng)的最優(yōu)目標(biāo)函數(shù)值分別為219.52及219.57,相差很小.其中收斂精度為0.01時(shí)的結(jié)果與文獻(xiàn)[27]是相同的.

      收斂精度為0.005時(shí)對(duì)應(yīng)的最優(yōu)結(jié)構(gòu)在力作用方向的位移值為219.57,以此位移值作為此算例位移約束下重量極小化問題中的位移約束值.

      圖2 150×50網(wǎng)格時(shí)文獻(xiàn)[27]中88行代碼得到的最優(yōu)拓?fù)銯ig.2 Optimal topologies obtained by the 88 lines of codes in the reference[27]for 150×50 mesh

      不取收斂精度0.01對(duì)應(yīng)的位移值作為約束,是考慮到MMA算法在此精度下得不到最優(yōu)拓?fù)?當(dāng)收斂精度取0.01時(shí),不同方法得到的離散前的最優(yōu)拓?fù)浣Y(jié)構(gòu)對(duì)比如表1所示,DP-EM算法及DSQP算法得到的最優(yōu)拓?fù)湎嗤?,也與88行程序得到的最優(yōu)拓?fù)湎嗤?,但與MMA算法得到的最優(yōu)拓?fù)洳幌嗤?當(dāng)收斂精度取0.005時(shí),三種方法得到的最優(yōu)拓?fù)渚嗤?,如?所示.離散后最優(yōu)拓?fù)淙绫?所示.MMA算法需要設(shè)定更高的收斂精度才能得到最優(yōu)拓?fù)?,其在收斂精度?.01時(shí)得到的拓?fù)洳⒉皇亲顑?yōu)拓?fù)洌鳧P-EM算法及DSQP算法在低精度下即得到了最優(yōu)拓?fù)?,表現(xiàn)出了算法有更好的尋優(yōu)能力.

      表1 算例1不同求解算法離散前的最優(yōu)拓?fù)浣Y(jié)構(gòu)對(duì)比(收斂精度0.01)Table 1 Comparison of optimal topologies obtained by di ff erent algorithms before discrete for the example 1(convergence precision takes 0.01)

      表2 算例1不同求解算法離散前的最優(yōu)拓?fù)浣Y(jié)構(gòu)對(duì)比(收斂精度0.005)Table 2 Comparison of optimal topologies obtained by di ff erent algorithms before discrete for the example 1(convergence precision takes 0.005)

      表3 算例1不同求解算法離散后的最優(yōu)拓?fù)浣Y(jié)構(gòu)對(duì)比(收斂精度0.005)Table 3 Comparison of optimal topologies obtained by di ff erent algorithms before discrete for the example 1(convergence precision takes 0.005)

      收斂精度為0.005時(shí)不同算法求解效率對(duì)比如表4所示.DP-EM算法及DSQP算法外循環(huán)迭代次數(shù)相同,均明顯少于MMA算法,如圖3所示.而內(nèi)循環(huán)次數(shù)DP-EM算法比DSQP算法顯著減少,DPEM每次內(nèi)循環(huán)迭代3次或4次,而DSQP算法每次內(nèi)循環(huán)迭代10次左右,如圖4所示,可見通過對(duì)偶函數(shù)的顯式化,可更快更好地得到對(duì)偶變量的最優(yōu)解,從而顯著地減少內(nèi)循環(huán)次數(shù).

      此外,MMA算法隨著單元數(shù)目(即設(shè)計(jì)變量數(shù)目)的增加,迭代次數(shù)增加,而DP-EM算法與DSQP算法則變化不大.所以,對(duì)大規(guī)模問題,DP-EM算法與DSQP算法的效率比MMA算法顯著提升.

      表4 算例1不同求解算法求解效率對(duì)比(收斂精度0.005)Table 4 Comparison of the solution efficiencies of di ff erent algorithms for the example 1(convergence precision takes 0.005)

      圖3 DP-EM及DSQP與MMA迭代次數(shù)比較Fig.3 Comparison of the iterations for DP-EM,DSQP and MMA

      圖4 DP-EM與DSQP內(nèi)循環(huán)迭代次數(shù)比較Fig.4 Comparison of the iterations of the internal loops for the DP-EM and DSQP

      算例2:多工況多位移約束拓?fù)鋬?yōu)化問題[27]

      一正方形平板結(jié)構(gòu)如圖5所示,載荷工況有2種,工況1為一集中載荷F1=1豎直向上作用于右上角;工況2為一集中載荷F2=1豎直向下作用于右下角.平板左邊界固定約束,材料彈性模量E=1,泊松比0.3.采用75×75,150×150及300×300三種網(wǎng)格進(jìn)行計(jì)算.

      圖5 150×150網(wǎng)格正方形平板拓?fù)鋬?yōu)化問題定義Fig.5 De fi nition of the topology optimization problem of a square plate with 150×150 mesh

      采用與文獻(xiàn)[27]相同的數(shù)據(jù),兩個(gè)工況柔順度采用0.5的權(quán)重進(jìn)行加權(quán)組合成單一柔順度目標(biāo),保留體積比0.4,采用敏度過濾,過濾半徑為基結(jié)構(gòu)設(shè)計(jì)的0.04倍,SIMP方法的懲罰因子取p=3,收斂精度分別取0.01及0.005.采用150×150網(wǎng)格按88行程序計(jì)算出來的體積約束下結(jié)構(gòu)柔順度極小化的最優(yōu)拓?fù)鋱D形如圖6所示,兩種精度下得到的最優(yōu)拓?fù)鋱D形不相同,對(duì)應(yīng)的最優(yōu)目標(biāo)函數(shù)值分別為69.20及68.83,目標(biāo)函數(shù)值相差很小,但拓?fù)鋱D形相差很大.其中收斂精度為0.01時(shí)的結(jié)果與文獻(xiàn)[27]是相同的,但顯然,這一精度下得到的并非最優(yōu)拓?fù)鋱D形.因而,此算例的比較對(duì)象取收斂精度為0.005時(shí)的結(jié)果,對(duì)應(yīng)的最優(yōu)結(jié)構(gòu)在兩工況下集中力作用方向的位移值均為34.42,以此位移值作為此算例重量極小化問題中的位移約束值,即位移約束F1及F2作用方向位移小于34.42.

      三種求解算法在收斂精度為0.005時(shí)得到的最優(yōu)拓?fù)湎嗤c88行程序計(jì)算在收斂精度0.005時(shí)的最優(yōu)拓?fù)湫问较嗤?,如?所示.不同算法求解效率對(duì)比如表6、圖7及圖8所示,外循環(huán)迭代次數(shù)DP-EM算法及DSQP算法相同,均比MMA算法少,但沒有算例1中差別那么大.而內(nèi)循環(huán)次數(shù)DP-EM算法明顯比DSQP算法少.

      圖6 150×150網(wǎng)格時(shí)文獻(xiàn)[27]中88行代碼得到的最優(yōu)拓?fù)銯ig.6 Optimal topologies obtained by the 88 lines of codes in the Ref.[27]for 150×150 mesh

      表5 算例2不同求解算法最優(yōu)拓?fù)浣Y(jié)構(gòu)對(duì)比Table 5 Comparison of optimal topologies obtained by di ff erent algorithms for the example 2

      表6 算例2不同求解算法求解效率對(duì)比Table 6 Comparison of the solution efficiencies of di ff erent algorithms for the example 2

      圖7 DP-EM及DSQP與MMA迭代次數(shù)比較Fig.7 Comparison of the iterations for DP-EM,DSQP and MMA

      圖8 DP-EM與DSQP內(nèi)循環(huán)迭代次數(shù)比較Fig.8 Comparison of the iterations of the internal loops for the DP-EM and DSQP

      4 結(jié)論

      針對(duì)可分離變量的凸規(guī)劃問題,本文推導(dǎo)了其對(duì)偶目標(biāo)函數(shù)的顯式表達(dá)式,并提出了對(duì)應(yīng)的DPEM方法及其求解算法,付諸連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化問題,取多工況位移約束下重量目標(biāo)極小化問題編程,將DP-EM算法與DSQP算法及MMA算法進(jìn)行了效率對(duì)比.

      (1)在所有算例的計(jì)算中,三種算法皆與文獻(xiàn)[15]的最后構(gòu)型相同,表明本文的方法及其程序通過了驗(yàn)證.

      (2)DP-EM算法與DSQP算法相比外循環(huán)次數(shù)相同,是由于其求解的是同一數(shù)學(xué)規(guī)劃模型,只是優(yōu)化求解器不同.DP-EM算法的內(nèi)循環(huán)數(shù)顯著少于DSQP算法,顯示了DP-EM算法得到顯式對(duì)偶函數(shù)的優(yōu)勢(shì),而DSQP算法應(yīng)用二階近似迭代逼近的目標(biāo)函數(shù),故計(jì)算效率遜色.

      (3)MMA算法比DP-EM算法和DSQP算法的外部迭代次數(shù)亦即結(jié)構(gòu)分析次數(shù)多,是因?yàn)镸MA算法僅利用了原優(yōu)化模型的目標(biāo)函數(shù)及約束函數(shù)的一階敏度信息,近似程度比較低.

      (4)從科學(xué)研究方法論看,獲得準(zhǔn)確的顯式模型優(yōu)于近似的逼近模型,而能夠做到的首要條件是突破“不可能做”的思維定勢(shì),從而別開生面地走出自己的路徑.進(jìn)一步拓寬DP-EM方法的工作正在進(jìn)行,研究結(jié)果將會(huì)陸續(xù)發(fā)表.

      1 Bendsoe MP,Kikuchi N.Generating optimal topologies in structural design using a homogenization method.Computer Methods in Applied Mechanics and Engineering,1988,69:197-224

      2 Mlejnek HP.Some aspects of the genesis of structures.Structural Optimization,1992,5:64-69

      3隋允康.建模·變換·優(yōu)化——結(jié)構(gòu)綜合方法新進(jìn)展.大連:大連理工大學(xué)出版社,1996(Sui Yunkang.Modelling,Transformation,and Optimization–New Developments of Structural Synthesis Method.Dalian:Dalian University of Technology Press,1996(in Chinese))

      4 Xie YM,Steven GP.A simple evolutionary procedure for structural optimization.Comput Struct,1993,49:885-896

      5 Osher S,Sethian J.Fronts propagating with curvature dependent speed-algorithms based on hamilton-jacobi formulations.J Comput Phys,1988,79(1):12-49

      6 Bourdin B,Chambolle A.Design-dependent loads in topology optimization.ESAIM:Control,Optimisation and Calculus of Variations,2003,9(8):19-48

      7 Eschenauer HA,Kobelev VV,Schumacher A.Bubble method for topology and shape optimization of structures.Structural Optimization,1994,8(1):42-51

      8 Norato J,Bends?e M,Haber R,et al.A topological derivative method for topology optimization.Structural and Multidisciplinary Optimization,2007,33(4-5):375-386

      9 Sigmund O,Maute K.Topology optimization approaches—A comparative review.Structural Multidisciplinary Optimization,2013,48(6):1031-1055

      10 Joshua DD,Ramana VG.A survey of structural and multidisciplinary continuum topology optimization:Post 2000.Structural and Multidisciplinary Optimization,2014,49:1-38

      11 Bendsoe M P,Sigmund O.Topology Optimization:Theory,Methods and Applications.New York:Springer Berlin Heidelberg,2003

      12隋允康,葉紅玲.連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化的ICM方法.北京:科學(xué)出版社,2013(Sui Yunkang,Ye Hongling.Continuum Topology Optimization Methods ICM.Beijing:Science Press,2013(in Chinese))

      13 Bazaraa MS,Shetty CM.Nonlinear Programming,Theory and Algorithms.[s.l.]John Wiley&Sons,1979

      14 Fleury C.Structural weight optimization dual method of convex programming.International Journal for Numerical Methods in Engineering,1979,14(12):1761-1783

      15錢令希,鐘萬勰,隋允康等.多單元、多工況、多約束的結(jié)構(gòu)優(yōu)化程序系統(tǒng)DDDU.大連工學(xué)院學(xué)報(bào),1980,19(4):1-17(Qian Lingxi,Zhong Wanxie,Sui Yunkang,Zhang Jindong.Optimum design of structures with multiple types of element under multiple loading cases and multiple constraints-program system DDDU.Journal of Dalian Institute of Technology,1980,19(4):1-17(in Chinese))

      16 Qian LX,Zhong WX,Sui YK,et al.Efficient optimum design of structures program DDDU.Computer Methods in Applied Mechanics and Engineering,1982,30(2):209-224

      17錢令希.工程結(jié)構(gòu)優(yōu)化設(shè)計(jì).北京:水利電力出版社,1983(Qian Lingxi.Optimization Design for Engineering Structures.Beijing:Water Conservancy and Electric Power Press,1983(in Chinese))

      18隋允康,鐘萬勰,錢令希.桿--膜--梁組合結(jié)構(gòu)優(yōu)化的DDDU-2程序系統(tǒng).大連工學(xué)院學(xué)報(bào),1983,22(1):21-36(Sui Yunkang,Zhong Wanxie,Qian Lingxi.Optimum design of structures composed of bars-membranes-beams program system DDDU-2.Journal of Dalian Institute of Technology,1983,1:21-36(in Chinese))

      19錢令希,鐘萬勰,程耿東等.工程結(jié)構(gòu)的序列二次規(guī)劃.固體力學(xué)學(xué)報(bào),1983,22(4):469-480(Qian Lingxi,Zhong Wanxie,Cheng Gengdong,et al.Sequential quadratic programming approach in engineering structural optimization.Acta Mechanica Solida Sinica,1983,22(4):469-480(in Chinese))

      20 Qian LX,Zhong WX,Cheng GD,et al.An approach to structural optimization-SQP(sequential quadratic programming).Engineering Optimization,1984,1(8):83-100

      21隋允康,楊德慶,孫煥純.統(tǒng)一骨架與連續(xù)體的結(jié)構(gòu)拓?fù)鋬?yōu)化的 ICM理論與方法.計(jì)算力學(xué)學(xué)報(bào),2000,1(17):28-33(Sui Yunkang,Yang Deqing,Sun Huanchun.Uniform ICM theory and method on optimization of structural topology for skeletonal and continuum structures.Chinese Journal of Computational Mechanics,2000,1(17):28-33(in Chinese))

      22隋允康,彭細(xì)榮.結(jié)構(gòu)拓?fù)鋬?yōu)化ICM方法的改善.力學(xué)學(xué)報(bào),2005,37(2):190-198(Sui Yunkang,Peng Xirong.The improvement for the ICM method of structural topology optimization.Acta Mechanica Sinica,2005,37(2):190-198(in Chinese))

      23隋允康,宣東海,尚珍.連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化的高精度逼近ICM方法.力學(xué)學(xué)報(bào),2011,43(4):716-724(Sui Yunkang,Xuan Donghai,Shang Zhen.ICM method with high accuracy approximation for topology optimization of continuum structures.Chinese Journal of Theoretical and Applied Mechanics,2011,43(4):716-724(in Chinese))

      24葉紅玲,沈靜嫻,隋允康.頻率約束的三維連續(xù)體結(jié)構(gòu)動(dòng)力拓?fù)鋬?yōu)化設(shè)計(jì).力學(xué)學(xué)報(bào),2012,44(6):1037-1045(Ye Hongling,ShenJingxian,SuiYunkang.Dynamictopologicaloptimaldesignof three-dimensional continuum structures with frequency constraints.Acta Mechanica Sinica,2012,44(6):1037-1045(in Chinese))

      25龍凱,王選,韓丹.基于多相材料的穩(wěn)態(tài)熱傳導(dǎo)結(jié)構(gòu)輕量化設(shè)計(jì).力學(xué)學(xué)報(bào),2017,49(2):359-366(Long Kai,Wang Xuan,Han Dan.Structural light design for steady heat conduction using multimaterial.Chinese Journal of Theoretical and Applied Mechanics,2017,49(2):359-366(in Chinese))

      26 Svanberg K.Method of moving asymptotes–a new method for structural optimization.International Journal for Numerical Methods in Engineering,1987,24(2):359-373

      27 Andreassen E,Clausen A,Lazarov BS,et al.Efficient topology optimization in MATLAB using 88 lines of code.Structural Multidisciplinary Optimization,2011,43(1):1-16

      A DUAL EXPLICIT MODEL BASED DP-EM METHOD FOR SOLVING A CLASS OF SEPARABLE CONVEX PROGRAMMING1)

      Sui Yunkang?,2)Peng Xirong?,3)?(Numerical Simulation Center for Engineering,Beijing University of Technology,Beijing 100022,China)
      ?(School of Civil Engineering,Hunan City University,Yiyang 413000,Hunan,China)

      An explicit exact formula is derived for the objective function of the dual model of a class of separable convex programming problems.It makes more mature and efficient methods can be chose to solve the dual model.Therefore,the advantage of applying the duality theory of nonlinear programming to efficiently solve structural topology optimization problems is fully exploited.The research work is rooted in that the gap of a nonlinear convex programming with its dual programming is zero.Solving original programming can be equivalently transformed into solving its dual programming.The scale of the solved programming can usually be reduced greatly.But an explicit relationship is not existed between the original programming and dual programming has a ff ected the application of the dual solution algorithm.Fortunately,the programming models of a large class of structural optimization problems,including the continuum topology optimization,are convex and separable.And an explicit relationship between the original variables and their dual variables is existed;therefore,the dual solution algorithm has become one of the e ff ective methods for 38 years.However,the objective function of the dual problem is not explicit for a long time.It is because the dual problem is a parametric minimization problem which leads to the objective function is expressed as an implicit expression.The common explicit expression for the dual objective function is a two-order approximation.The regular thinking tendency that the dual problem is too difficult to be expressed explicitly and can only be expressed approximately is breakthrough.A dual programming explicit model(DP-EM)method is put forward for the topology optimization of continuum structures.Comparison of computational efficiency among the DP-EM method,the dual sequential quadratic program(DSQP)method and the method of moving asymptotes(MMA)is presented.The results showed that:(1)more external iterations are needed for the MMA algorithm than the DP-EM algorithm and DSQP algorithm;(2)same external iterations are needed for the DP-EM algorithm and DSQP algorithm,but internal iterations is less for the DP-EM method.It shows the advantage of the DP-EM algorithm due to its explicit dual function.

      explicit dual objective function,separable convex programming,structural topology optimization,dual sequential quadratic program method,method of moving asymptotes

      O343.1

      A

      10.6052/0459-1879-17-176

      2017–05–13收稿,2017–08–15 錄用,2017–08–17 網(wǎng)絡(luò)版發(fā)表.

      1)國家自然科學(xué)基金(11672103)和湖南省自然科學(xué)基金(2016JJ6016)資助項(xiàng)目.

      2)隋允康,教授,主要研究方向:結(jié)構(gòu)優(yōu)化.E-mail:ysui@bjut.edu.cn

      3)彭細(xì)榮,副教授,主要研究方向:結(jié)構(gòu)優(yōu)化.E-mail:pxr568@163.com

      隋允康,彭細(xì)榮.求解一類可分離凸規(guī)劃的對(duì)偶顯式模型DP-EM方法.力學(xué)學(xué)報(bào),2017,49(5):1135-1144

      Sui Yunkang,Peng Xirong.A dual explicit model based DP-EM method for solving a class of separable convex programming.Chinese Journal of Theoretical and Applied Mechanics,2017,49(5):1135-1144

      猜你喜歡
      對(duì)偶精度變量
      抓住不變量解題
      也談分離變量
      基于DSPIC33F微處理器的采集精度的提高
      電子制作(2018年11期)2018-08-04 03:25:38
      GPS/GLONASS/BDS組合PPP精度分析
      SL(3,3n)和SU(3,3n)的第一Cartan不變量
      對(duì)偶平行體與對(duì)偶Steiner點(diǎn)
      改進(jìn)的Goldschmidt雙精度浮點(diǎn)除法器
      對(duì)偶均值積分的Marcus-Lopes不等式
      對(duì)偶Brunn-Minkowski不等式的逆
      分離變量法:常見的通性通法
      怀安县| 永济市| 平湖市| 榆社县| 徐汇区| 阳原县| 龙游县| 冷水江市| 阳朔县| 和田县| 木兰县| 吉安县| 涡阳县| 和静县| 太谷县| 靖西县| 华坪县| 搜索| 怀远县| 秦安县| 启东市| 宿迁市| 苍溪县| 西和县| 望都县| 石林| 祁连县| 广宁县| 城步| 红桥区| 临颍县| 常宁市| 布尔津县| 拉萨市| 北票市| 南乐县| 九龙城区| 吕梁市| 临沭县| 南江县| 汉源县|