劉 克,艾文寶
(北京郵電大學(xué),北京 100876)
不確定信道的雙向中繼通信系統(tǒng)波束成形設(shè)計(jì)
劉 克,艾文寶
(北京郵電大學(xué),北京 100876)
本文主要針對(duì)雙向中繼通信系統(tǒng)進(jìn)行研究:此系統(tǒng)中所有節(jié)點(diǎn)均是單天線,兩個(gè)信源通過(guò)多個(gè)中繼進(jìn)行信息交換。并且系統(tǒng)中存在單個(gè)竊聽(tīng)者分兩個(gè)階段分別竊聽(tīng)信源以及中繼轉(zhuǎn)發(fā)的信號(hào)后聯(lián)合解碼。為了提高信源發(fā)送信號(hào)的質(zhì)量以及降低竊聽(tīng)者竊聽(tīng)信號(hào)的效率,本文提出了極小化中繼發(fā)送功率的優(yōu)化模型。由于竊聽(tīng)者信道部分已知,該模型總結(jié)為魯棒性優(yōu)化問(wèn)題。我們對(duì)約束條件進(jìn)行放縮,形成了一個(gè)二次約束二次優(yōu)化問(wèn)題,并利用半正定松弛、秩一分解定理等方法將優(yōu)化模型轉(zhuǎn)化為半正定優(yōu)化問(wèn)題,從而求得原問(wèn)題的解。數(shù)值模擬結(jié)果驗(yàn)證了本文提出的算法的有效性。
雙向中繼通信系統(tǒng); 半正定優(yōu)化; 物理層安全; 二次約束二次優(yōu)化
隨著無(wú)線通信技術(shù)的不斷發(fā)展,學(xué)者們對(duì)物理層安全問(wèn)題的關(guān)注度逐漸提高[1-2]。物理層安全技術(shù)主要用于避免竊聽(tīng)者獲知信息,并且保證信源得到安全可靠的信息。在中繼網(wǎng)絡(luò)傳輸協(xié)議中,放大并轉(zhuǎn)化的中繼策略(AF,Amplify-and-Forward)因其復(fù)雜度較低而得到諸多通信系統(tǒng)中的應(yīng)用研究[3-8]。不考慮竊聽(tīng)者的通信系統(tǒng)中,多輸入多輸出信道的功率極小化已有了研究結(jié)果[9]。考慮中繼輔助的通信網(wǎng)絡(luò),其中每個(gè)節(jié)點(diǎn)有單根天線、一個(gè)竊聽(tīng)者隨時(shí)竊聽(tīng)發(fā)送信號(hào),文獻(xiàn)[10]的作者提出了有效的算法來(lái)求解中繼發(fā)送功率極小化的問(wèn)題[10]。針對(duì)能效極大化模型,文獻(xiàn)[11]的作者利用分式規(guī)劃、精確罰函數(shù)、交替搜索等方法提出了解決能效問(wèn)題的有效算法[11]。大部分文章側(cè)重在竊聽(tīng)者的信道完全已知的情況下進(jìn)行研究。但是在實(shí)際情形下,竊聽(tīng)者到中繼以及信源的信道常常不能完全已知,只能得其估計(jì)值[12-13]。在文獻(xiàn)[14]中作者考慮了多天線的中繼通信系統(tǒng),其中信道信息部分已知且存在誤差界?;诖怂麄兦蟮昧俗顗那闆r下的安全速率[14]。
本文主要研究雙向中繼通信網(wǎng)絡(luò),相比于單向中繼通信網(wǎng)絡(luò),雙向中繼網(wǎng)絡(luò)在信息傳輸上更有效。假定信源以及中繼到竊聽(tīng)者的信道信息部分已知,并且所有節(jié)點(diǎn)均是單天線。同時(shí),在信號(hào)發(fā)送的第一階段中有單個(gè)竊聽(tīng)者竊聽(tīng)兩個(gè)信源的發(fā)送信號(hào);第二個(gè)階段中,竊聽(tīng)者竊聽(tīng)中繼的轉(zhuǎn)發(fā)信號(hào),對(duì)兩個(gè)階段竊聽(tīng)的信號(hào)進(jìn)行聯(lián)合解碼。針對(duì)此通信過(guò)程,本文對(duì)中繼的發(fā)送功率極小化問(wèn)題進(jìn)行研究。通過(guò)對(duì)用戶的信干噪比和竊聽(tīng)者的傳輸速率進(jìn)行約束,本文提出了極小化中繼發(fā)送功率的優(yōu)化問(wèn)題。
1.1 問(wèn)題描述
2.1 模型放縮
由于存在多個(gè)不確定的參數(shù)導(dǎo)致上述魯棒性優(yōu)化問(wèn)題難以求解,因此我們考了用放縮近似的方法將不確定參數(shù)消除。在這一節(jié)中,首先消除不確定參數(shù)
引理2.1:假定x,y分別為n階復(fù)向量,那么有如下結(jié)果:
試驗(yàn)中,我們將本文提出的方法與信道完全已知的情形進(jìn)行比較,在圖1中分別用imperfect CSI和perfect CSI表示。當(dāng)信道完全已知時(shí),jc,f,ΔΔ1,2 j= 都是固定已知的。在圖1中信源的SNR閾值γ設(shè)定為4與6,而竊聽(tīng)者的可達(dá)速率閾值Er設(shè)定為0.2。通過(guò)圖中可以發(fā)現(xiàn)在同等條件下,信道完全已知得到的中繼發(fā)送功率總是低于我們的算法求得的中繼發(fā)送功率。兩者接近,說(shuō)明了算法的有效性。通過(guò)圖1還可以看出,中繼的發(fā)送功率會(huì)隨中繼個(gè)數(shù)N的增大而減少,并且減少的越來(lái)越緩慢;同時(shí),當(dāng)信源的SNR閾值增加時(shí),中繼的發(fā)送功率RP也會(huì)變高。說(shuō)明如果想要提高信號(hào)傳輸給信源的安全性,則中繼需要消耗更高的功率,但是如果增加信源SNR閾值,則竊聽(tīng)者也會(huì)接收到更多信號(hào)。下圖2展示了竊聽(tīng)者的可達(dá)速率閾值為0.25時(shí),中繼發(fā)送功率的變化趨勢(shì)。結(jié)合圖1可以發(fā)現(xiàn)當(dāng)竊聽(tīng)者可達(dá)速率的閾值變大時(shí),中繼的發(fā)送功率也會(huì)上升。
圖1 算法與信道完全已知模型的比較:考慮不同中繼個(gè)數(shù)以及不同γFig.1 Imperfect and perfect: compare with different relay numbers and differentγ
圖2 不同中繼個(gè)數(shù)不同 Er的比較Fig.2 Compare with different relay numbers and different Er
本文考慮了中繼輔助傳輸信號(hào)的雙向中繼通信網(wǎng)絡(luò)。竊聽(tīng)者分兩個(gè)階段竊聽(tīng)信源以及中繼的發(fā)送信號(hào),并對(duì)兩個(gè)階段竊聽(tīng)到的信號(hào)進(jìn)行聯(lián)合解碼。為設(shè)計(jì)中繼的波束成形系數(shù),我們提出了極小化中繼發(fā)送功率的優(yōu)化模型,并要求用戶的信噪比和竊聽(tīng)者的可達(dá)速率分別具有下界和上界。在竊聽(tīng)者竊聽(tīng)信號(hào)的過(guò)程中,信源以及到中繼到竊聽(tīng)者的信道信息部分已知,總結(jié)為一個(gè)魯棒優(yōu)化問(wèn)題。為求解該問(wèn)題,我們利用了放縮的技巧將問(wèn)題近似,并消除了不確定的參數(shù)。放縮后,我們得到了一個(gè)二次約束二次規(guī)劃問(wèn)題,并運(yùn)用半定規(guī)劃松弛算法、秩一分解定理求得其最優(yōu)解。從數(shù)值模擬的結(jié)果來(lái)看,我們的方法與信道完全已知的情形所得的結(jié)果接近,這說(shuō)明了我們方法的有效性。
[1] 雷維嘉, 左莉杰, 江雪,等. 中繼網(wǎng)絡(luò)中不準(zhǔn)確信道狀態(tài)信息下抗多竊聽(tīng)者的物理層安全方案[J]. 電子與信息學(xué)報(bào),2015, 37(9): 2191-2197.
[2] 果真, 艾文寶. 雙向中繼網(wǎng)絡(luò)中安全波束成形向量設(shè)計(jì)[J].軟件, 2015(9): 1-4.
[3] 艾文寶, 鄭大戶. 信道不確定下的竊聽(tīng)者魯棒性優(yōu)化算法研究[J]. 軟件, 2016, 37(6): 7-10.
[4] 張雅媛. 3D MIMO信道建模及性能分析[J]. 軟件, 2014,35(9): 115-119.
[5] 袁亞湘、孫文瑜.《最優(yōu)化理論與方法》.科學(xué)出版社.1997.
[6] Yang Y, Sun C, Zhao H, et al. Algorithms for Secrecy Guarantee With Null Space Beamforming in Two-Way Relay Networks[J].IEEE Transactions on Signal Processing, 2014, 62(8): 2111- 2126.
[7] Tian M, Huang X, Zhang Q, et al. Robust AN-Aided Secure Transmission Scheme in MISO Channels with Simultaneous Wireless Information and Power Transfer[J]. IEEE Signal Processing Letters, 2015, 22(6): 723-727.
[8] 秦浩浩, 陳翔, 周春暉,等. OFDM竊聽(tīng)信道中定時(shí)魯棒性人造噪聲設(shè)計(jì)[J]. 清華大學(xué)學(xué)報(bào)(自然科學(xué)版), 2013(7):1005-1010.
[9] Shi Q, Razaviyayn M, Luo Z Q, et al. An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel[C]// IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE,2011: 4331-4340.
[10] Zhang M, Huang J, Yu H, et al. QoS-Based Source and Relay Secure Optimization Design with Presence of Channel Uncertainty[J]. IEEE Communications Letters, 2013, 17(8):1544-1547.
[11] Wang D, Bai B, Chen W, et al. Achieving High Energy Efficiency and Physical-Layer Security in AF Relaying[J]. IEEE Transactions on Wireless Communications, 2016, 15(1): 740-752.
[12] Liu T, Shamai S. A Note on the Secrecy Capacity of the Multiple-Antenna Wiretap Channel[J]. IEEE Transactions on Information Theory, 2009, 55(6): 2547-2553.
[13] Goel S, Negi R. Guaranteeing Secrecy using Artificial Noise[J]. IEEE Transactions on Wireless Communications,2008, 7(6): 2180-2189.
[14] Wang X, Zhang Z, Long K. Robust relay beamforming for multiple-antenna amplify-and-forward relay system in the presence of eavesdropper[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2014:5710-5714.
[15] Ai W, Huang Y, Zhang S. New results on Hermitian matrix rank-one decomposition[J]. Mathematical Programming, 2011,128(1-2): 253-283.
Design of Beamforming in Two-way Relay Network with Imperfect CSI
LIU Ke, AI Wen-bao
(Beijing University of Posts and Telecommunications, Beijing 100876, China)
This paper considers a two-way relay network where two source nodes exchange messages through several relays and each node has a single antenna. In the network, there exists a single-antenna eavesdropper who eavesdrops messages from the two source nodes and relays. In order to improve the quality of service of the two users and reduce the probability of the eavesdropper to decode the signals, we propose a model to minimize the total relay transmit power. Since the channel state information (CSI) of the eavesdropper is imperfectly known, the model is summarized as a robust optimization problem. After we tighten the constraints and eliminate the parameters with uncertainty, it becomes a quadratic constrained quadratic programming problem. Then we use the semi-definite relaxation method and rank one decomposition theorem to solve the problem. Finally, the optimal solution of the tightened problem is obtained. Simulation results imply that the proposed algorithm is efficient.
: Two-way relay network; Semi-infinite programming; Physical layer security; Quadratic constrained quadratic programming
TN929.5
A
10.3969/j.issn.1003-6970.2017.10.004
本文著錄格式:劉克,艾文寶. 不確定信道的雙向中繼通信系統(tǒng)波束成形設(shè)計(jì)[J]. 軟件,2017,38(10):18-22
中國(guó)國(guó)家自然科學(xué)基金(11471052, 11771056, 11401039, 91630202)
劉克(1992-),男,碩士研究生,主要研究方向:非線性最優(yōu)化,MIMO系統(tǒng);艾文寶,男,教授,研究方向:最優(yōu)化理論在通信中的應(yīng)用。