張雨晴 張旭霞 劉毅 李傳友
·綜述
核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體對(duì)結(jié)核分枝桿菌免疫應(yīng)答研究的新進(jìn)展
張雨晴 張旭霞 劉毅 李傳友
結(jié)核分枝桿菌(Mycobacteriumtuberculosis,MTB)是引發(fā)結(jié)核病的主要病原菌。宿主對(duì)MTB的免疫應(yīng)答在結(jié)核病發(fā)病過程中有重要地位,該過程主要通過模式識(shí)別受體(pattern recognition receptor,PPR)進(jìn)行。核苷酸結(jié)合寡聚化結(jié)構(gòu)域(nucleotide-binding oligomerization domain,NOD)樣受體(NOD-like receptor,NLR)是其中的一種重要PPR,在MTB感染和發(fā)病中扮演重要角色,目前已發(fā)現(xiàn)有20多種。NLR主要針對(duì)胞內(nèi)的細(xì)菌和病毒進(jìn)行免疫應(yīng)答,同時(shí)對(duì)它們釋放或降解的產(chǎn)物也產(chǎn)生免疫反應(yīng)。NLR在MTB感染早期固有免疫系統(tǒng)對(duì)病原菌的識(shí)別和清除,以及啟動(dòng)適應(yīng)性免疫應(yīng)答和分泌細(xì)胞因子、介導(dǎo)炎癥和細(xì)胞自噬等過程中都有重要作用。近幾年,NLR在這些功能研究上有新進(jìn)展,筆者就NLR介導(dǎo)的對(duì)MTB感染的免疫應(yīng)答過程,以及其與結(jié)核病發(fā)病關(guān)系研究的新動(dòng)態(tài)進(jìn)行綜合分析,以期為MTB和宿主細(xì)胞的相互作用研究提供新提示。
受體,模式識(shí)別; 受體, 蛋白酶激活; 分枝桿菌,結(jié)核; 感染; 免疫
結(jié)核分枝桿菌(MTB)是導(dǎo)致結(jié)核病的主要病原菌,其生長過程極其緩慢,感染發(fā)病過程不同于常見的細(xì)菌和病毒。研究顯示,結(jié)核病的發(fā)病與否及嚴(yán)重程度與宿主的免疫系統(tǒng)和免疫狀態(tài)有很大關(guān)系,宿主的免疫應(yīng)答在發(fā)病過程中占有重要地位[1]。因此,研究免疫應(yīng)答在結(jié)核病發(fā)病和進(jìn)展中所起的作用十分重要。
MTB感染宿主后,細(xì)胞的模式識(shí)別受體(PRR) 首先識(shí)別MTB表面的病原相關(guān)分子模式(pathogen-associated molecular pattern,PAMP)[2],進(jìn)而啟動(dòng)下一步的免疫應(yīng)答和免疫反應(yīng),該系統(tǒng)的啟動(dòng)與否或者激活的程度對(duì)于抑制早期細(xì)菌復(fù)制和啟動(dòng)適應(yīng)性免疫應(yīng)答具有重要的作用。核苷酸結(jié)合寡聚化結(jié)構(gòu)域(nucleotide-binding oligomerization domain,NOD)樣受體(NOD-like receptor,NLR)是PAMP和損傷相關(guān)分子模式(damage-associated molecular pattern,DAMP)的重要胞內(nèi)識(shí)別受體,參與多種信號(hào)轉(zhuǎn)導(dǎo)通路,在免疫、疾病、凋亡、胚胎發(fā)育等方面都有重要的作用[3]。
NLR家族由20多種蛋白組成[4],參與的主要功能和機(jī)制見表1[3, 5-6]。它們廣泛表達(dá)于多種細(xì)胞內(nèi),如免疫系統(tǒng)巨噬細(xì)胞、中性粒細(xì)胞和樹突狀細(xì)胞(dendritic cells,DC)等[7]。NLR分子主要由3種結(jié)構(gòu)域組成:位于分子中央的核苷酸結(jié)合寡聚化結(jié)構(gòu)域(nucleotide binding and oligomerization domain,NOD),對(duì)NLR的寡聚化和活化起作用;C端的富含亮氨酸(leucine rich repeat, LRR)結(jié)構(gòu)域,負(fù)責(zé)識(shí)別配體;N端的半胱天冬酶活化募集結(jié)構(gòu)域(caspase recruitment domain, CARD)或熱蛋白結(jié)構(gòu)域(pyrin domain,PYD),負(fù)責(zé)募集下游效應(yīng)信號(hào)分子[8]。
NLR在宿主識(shí)別MTB激活免疫應(yīng)答過程及防御MTB感染中發(fā)揮有重要作用,目前NLR和結(jié)核病的相互關(guān)系研究有眾多新進(jìn)展,筆者主要就NLR在免疫應(yīng)答和免疫調(diào)控方面的最新研究結(jié)果進(jìn)行總結(jié)分析。
NLR主要識(shí)別細(xì)菌胞壁肽聚糖、胞壁酰二肽(muramyl dipeptide,MDP)或者其他降解的片段等[9]。受到外源性刺激后的NLR可激活核轉(zhuǎn)錄因子-κB (nuclear transcription factor-kappa B,NF-κB)或絲裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)信號(hào)通路[10],在免疫反應(yīng)中扮演重要角色。NLR與相應(yīng)配體結(jié)合,通過NOD結(jié)構(gòu)域寡聚體化,經(jīng)CARD-CARD相互作用活化受體相互作用蛋白2(receptor interacting protein 2,RIP2),RIP2與CARD結(jié)合激活轉(zhuǎn)錄因子 NF-κB,使NF-κB轉(zhuǎn)移進(jìn)入核內(nèi),誘導(dǎo)細(xì)胞因子、趨化因子等多種物質(zhì)的表達(dá)。NLR也激活MAPK信號(hào)通路中的p38、細(xì)胞外信號(hào)調(diào)節(jié)蛋白激酶(extracellular signal-regulated kinase,ERK)和c-jun 氨基末端激酶(c-Jun N-terminal kinase,JNK)信號(hào),引起促炎因子和抗菌肽的釋放[11],同時(shí)與NF-κB信號(hào)通路相互影響和作用發(fā)揮生物學(xué)功能。
1. NLR的重要功能:目前在MTB感染和結(jié)核病發(fā)病過程中對(duì)NLR的重要成員NOD1和NOD2的免疫功能研究較為深入。有研究表明,NOD1基因缺失的巨噬細(xì)胞感染MTB時(shí),細(xì)胞因子分泌水平可能無明顯變化,NF-κB和MAPK信號(hào)通路受影響不明顯,但NOD1缺失同時(shí)合并NOD2或Toll樣受體(Toll-like receptor, TLR)缺失時(shí),細(xì)胞因子分泌水平明顯下降。這表明NOD1可能以與NOD2和TLR協(xié)同作用的方式在MTB感染免疫應(yīng)答中發(fā)揮重要作用,其具體功能和機(jī)制有待進(jìn)一步研究[12]。另有研究表明,NOD2沉默時(shí),MTB生長水平明顯升高[13]。當(dāng)MTB感染時(shí),可經(jīng)由NOD2受體,通過RIP2依賴方式促進(jìn)巨噬細(xì)胞炎癥介質(zhì)腫瘤壞死因子α(tumor necrosis factor-alpha, TNF-α)和白細(xì)胞介素1β(interleukin-1beta, IL-1β)的產(chǎn)生,也可通過激活下游信號(hào)通路,引起多種炎癥因子和趨化因子的產(chǎn)生[14],調(diào)控細(xì)胞的免疫狀態(tài)和免疫應(yīng)答過程。而NOD2基因缺失后,巨噬細(xì)胞的免疫功能減弱,MTB刺激引起的TNF-α 和IL-1β分泌水平明顯下降,RIP2磷酸化水平降低,抑制MTB增殖的因素減弱。還有報(bào)道指出,NOD2敲除時(shí)巨噬細(xì)胞誘導(dǎo)型NO合酶(inducible nitric oxide synthase, iNOS)表達(dá)也明顯下調(diào)[15]。這些研究說明,NLR可通過調(diào)節(jié)信號(hào)通路,改變細(xì)胞因子分泌水平,介導(dǎo)NO生成等多種途徑在MTB的感染和致病中發(fā)揮重要的作用。
表1 目前已知的NLR家族成員的生物學(xué)功能及在相關(guān)疾病中的研究報(bào)道
注a:有與結(jié)核病相關(guān)的研究報(bào)道;b:功能未知或未見有相關(guān)疾病的研究報(bào)道
2. NLR基因和TB易感性:研究也表明,NLR基因的缺失和宿主對(duì)MTB的易感性密切相關(guān)。Hall等[16]首先報(bào)道了NOD1多態(tài)性和結(jié)核病之間的關(guān)系,為NOD受體與結(jié)核病之間的關(guān)系提供了研究方向和思路。NOD2基因中的研究表明,P268S、R702W和A725G等位置的單核苷酸多態(tài)性(single nucleotide polymorphisms,SNP)與結(jié)核病易感性有關(guān)[17]。P268S 和 R702W位點(diǎn)的突變可有效提高NOD2結(jié)構(gòu)的穩(wěn)定性及其與MTB的結(jié)合,進(jìn)而有助于對(duì)結(jié)核病的防御;A725G位點(diǎn)的多態(tài)性與MTB易感性升高有關(guān)[18]。另有報(bào)道認(rèn)為,NOD2基因中R587R (CGT→CGG) 的多態(tài)性和中國漢族人群的結(jié)核病易感性密切相關(guān)[19];Pan等[20]也報(bào)道NOD2基因中rs7194886位點(diǎn)的SNP可能與中國漢族人群對(duì)MTB的易感性變化有關(guān)。
NOD1和NOD2識(shí)別MTB的免疫機(jī)制研究讓我們對(duì)NLR在MTB感染和結(jié)核病發(fā)病過程的作用有初步認(rèn)識(shí),更說明了NLR的重要作用和地位,進(jìn)一步就NLR對(duì)MTB免疫應(yīng)答的過程進(jìn)行總結(jié)分析,將對(duì)于結(jié)核病發(fā)病和致病機(jī)制有更深入的理解。
NLR在MTB感染中可識(shí)別其胞壁成分,介導(dǎo)固有免疫反應(yīng)對(duì)MTB的殺傷作用和生長抑制,引起多種細(xì)胞因子的產(chǎn)生,介導(dǎo)自噬、炎癥小體的形成以及啟動(dòng)適應(yīng)性免疫應(yīng)答,參與宿主對(duì)結(jié)核病的免疫和防御反應(yīng)[21]。
1.介導(dǎo)NO對(duì)MTB的殺傷作用:活性氧簇(reactive oxy-gen species,ROS)和活性氮簇(reactive nitrogen species,RNS)在結(jié)核病的免疫應(yīng)答中起重要作用。NO作為重要的RNS 物質(zhì),在防御MTB感染中有重要作用。MTB感染后由肺泡巨噬細(xì)胞吞噬,激活的巨噬細(xì)胞產(chǎn)生iNOS,可誘導(dǎo)NO的產(chǎn)生。這些RNS通過對(duì)MTB的核酸、蛋白質(zhì)、脂質(zhì)和碳水化合物等多種分子起調(diào)控作用,殺傷MTB,參與對(duì)MTB感染的防御反應(yīng)[8]。
NOD2作為重要的胞內(nèi)PRR,與分枝桿菌細(xì)胞壁成分MDP結(jié)合,通過NF-κB通路可上調(diào)iNOS的表達(dá),促進(jìn)NO產(chǎn)生。NO在固有免疫反應(yīng)中,對(duì)抑制MTB的生長有重要作用[22]。NOD2不僅是巨噬細(xì)胞內(nèi)抵抗細(xì)菌的重要防線,在早期感染中對(duì)細(xì)菌的殺傷也有重要作用。
2.介導(dǎo)細(xì)胞因子的產(chǎn)生和表達(dá)水平變化:MTB感染時(shí) NOD2介導(dǎo)巨噬細(xì)胞及DC產(chǎn)生炎癥因子如TNF-α、IL-6和IL-1β。其中,NLR參與形成的炎癥小體對(duì)IL-1β的分泌有重要意義。NOD2與NLRP1導(dǎo)致含半胱氨酸的天冬氨酸蛋白水解酶1(cysteinyl aspartate specific proteinase1,caspase-1)激活介導(dǎo)炎癥發(fā)生,通過炎癥清除作用抑制細(xì)菌生長[23]。
MTB感染時(shí)NOD1和NOD2還通過協(xié)同作用介導(dǎo)巨噬細(xì)胞產(chǎn)生炎癥因子和趨化因子等細(xì)胞因子,引起炎癥反應(yīng)清除細(xì)菌感染。雖然NOD1和NOD2可以通過協(xié)同作用刺激IL-6和IL-1β的產(chǎn)生,但實(shí)驗(yàn)顯示僅NOD1缺陷時(shí),細(xì)胞因子水平無明顯變化,而NOD1和NOD2雙缺陷的巨噬細(xì)胞內(nèi)IL-6和IL-1β水平的降低程度比NOD2單缺陷的細(xì)胞降低程度大。這表明NOD1在免疫反應(yīng)中細(xì)胞因子的產(chǎn)生過程中也有一定的作用,其在細(xì)胞因子產(chǎn)生中的作用有待進(jìn)一步研究和闡釋[12]。
3.介導(dǎo)和參與炎癥小體產(chǎn)生:炎癥小體是多種蛋白構(gòu)成的復(fù)合物,對(duì)于caspase-1的激活與成熟IL-1β的產(chǎn)生非常重要,其與宿主免疫防御和病原體清除有關(guān),在固有免疫中發(fā)揮重要作用[24]。NLR家族中NLRP1b、NLRP3、NLRC4都參與形成炎癥小體。最近報(bào)道NLRP6 和 NLRP12 也參與炎癥小體的形成[25]。其中NLRP3是危險(xiǎn)信號(hào)的胞內(nèi)感受器,NLRP3炎癥小體是最具特征性的炎癥小體,由NLRP3骨架,包含半胱天冬酶招募結(jié)構(gòu)域適配器的凋亡顆粒蛋白和caspase-1組成。
MTB感染與炎癥小體之間的關(guān)系非常復(fù)雜。結(jié)核感染時(shí),NOD2識(shí)別MTB胞壁成分MDP,誘導(dǎo)巨噬細(xì)胞和DC內(nèi)NLRP3炎癥小體的形成,促進(jìn)炎癥因子IL-1β和IL-18的釋放。另外,NO也可通過抑制NLRP3炎癥小體依賴的IL-1β 產(chǎn)生,調(diào)控結(jié)核的免疫反應(yīng)[26],MTB感染導(dǎo)致的炎癥小體的激活也會(huì)受到DNA甲基化的修飾調(diào)控。
4.介導(dǎo)細(xì)胞自噬調(diào)控對(duì)MTB的清除和殺傷:研究表明,在肺泡巨噬細(xì)胞內(nèi),NOD1激活引起的依賴RIP2方式的自噬激活是固有免疫受體介導(dǎo)的重要抗菌機(jī)制之一,是抑制MTB進(jìn)入肺泡的重要機(jī)制[27]。NOD1介導(dǎo)肺泡巨噬細(xì)胞內(nèi)自噬相關(guān)蛋白免疫相關(guān)鳥苷三磷酸酶家族M蛋白(immunity-related GTPase family M protein,IRGM)的過表達(dá),介導(dǎo)自噬而且協(xié)同清除胞內(nèi)病原體,對(duì)MTB的殺傷有重要作用。
MTB感染后NOD2和MDP結(jié)合,引起自噬相關(guān)蛋白IRGM、抗菌肽蛋白輕鏈3(light chain3,LC3)和自噬相關(guān)16樣蛋白1(autophagy-related protein 16 like protein 1,ATG16L1)被募集到吞噬細(xì)菌的吞噬體和自噬小體中,參與自噬和對(duì)MTB的殺傷。這表明可通過PRR依賴機(jī)制激活自噬,而不僅由細(xì)胞因子特別是γ干擾素(interferon-γ,IFN-γ)調(diào)控。且IRGM可通過與NOD2和其他模式識(shí)別受體如NOD1、維甲酸誘導(dǎo)基因-Ⅰ(retinoic acid-inducible gene-Ⅰ, RIG-Ⅰ)和部分TLR相互作用轉(zhuǎn)導(dǎo)微生物信號(hào)[28]。
MTB感染時(shí),與NOD2作用相關(guān)的一個(gè)重要特征是肉芽腫的形成,肉芽腫導(dǎo)致細(xì)菌周圍低營養(yǎng)和低氧狀態(tài)。研究表明,在缺氧狀態(tài)下,NOD2可與硫酯結(jié)合誘導(dǎo)自噬,破壞缺氧細(xì)胞自噬和炎癥的平衡狀態(tài)[29]。該調(diào)控過程不通過NF-κB 通路參與反應(yīng),為結(jié)核病研究提供了新思路。
5.啟動(dòng)適應(yīng)性免疫應(yīng)答:DC不僅是固有免疫系統(tǒng)的重要組成成分,對(duì)適應(yīng)性免疫也有啟動(dòng)作用。NLR可以通過激活DC,促進(jìn)DC的遷移和成熟,刺激T細(xì)胞增殖和分泌細(xì)胞因子而啟動(dòng)適應(yīng)性免疫應(yīng)答[30]。研究表明,NLR在DC細(xì)胞中還有一個(gè)重要功能是負(fù)責(zé)主要組織相容性復(fù)合體(major histocompatibility complex,MHC)分子的轉(zhuǎn)錄,MHC分子對(duì)T細(xì)胞的分化發(fā)育有重要作用,影響T細(xì)胞的分化和成熟。其中,NLRC5上調(diào)MHCⅠ類分子的表達(dá),進(jìn)而激活CD8+T細(xì)胞,啟動(dòng)適應(yīng)性免疫應(yīng)答[31]。但最近有研究表明這種作用很弱,NLRC5啟動(dòng)T細(xì)胞是通過激活DC作用的[32]。MHC Ⅱ類分子的轉(zhuǎn)錄依賴于NLR蛋白家族CIITA,這可能與其N端效應(yīng)結(jié)構(gòu)域有關(guān)[33]。NLRP3、NLRP12 與DC的具體作用仍在研究中。通過這些機(jī)制,NLR不僅在固有免疫中扮演重要角色,也在啟動(dòng)適應(yīng)性免疫應(yīng)答方面發(fā)揮作用,這對(duì)了解在結(jié)核感染時(shí)NLR與固有免疫和適應(yīng)性免疫的關(guān)系有重要意義。
6.NLR與TLR協(xié)同發(fā)揮作用的研究:NLR與TLR作為細(xì)胞內(nèi)的兩大類重要模式識(shí)別受體,二者之間存在相互促進(jìn)和協(xié)同作用,如NOD2與TLR2、TLR9的協(xié)同作用,NOD1、NOD2與TLR4的協(xié)同作用等已經(jīng)有所研究[34]。NOD2和TLR4信號(hào)通路通過協(xié)同增強(qiáng)DC的激活,促進(jìn)細(xì)胞因子的產(chǎn)生,促進(jìn)NO生成和自噬作用殺傷細(xì)菌,增強(qiáng)DC的吞噬能力,促進(jìn)DC向淋巴結(jié)遷移,提高效應(yīng)T細(xì)胞的記憶反應(yīng),促進(jìn)IFN-γ和TNF-α的釋放,啟動(dòng)適應(yīng)性免疫應(yīng)答等多種作用,與抗結(jié)核藥物聯(lián)合使用時(shí)減少抗結(jié)核藥物的劑量,提高藥物的殺菌能力[35]。開發(fā)新疫苗的研究中也表明同時(shí)激活TLR9和NOD2受體,可加速促炎因子的釋放,提高結(jié)核DNA疫苗的免疫原性[36]。NLR與TLR的協(xié)同作用雖有眾多研究,但其在MTB感染時(shí)的作用還未充分驗(yàn)證,這種協(xié)同作用對(duì)于結(jié)核病防治的意義有待進(jìn)一步探索。
免疫系統(tǒng)對(duì)于MTB的識(shí)別過程和調(diào)控機(jī)制非常復(fù)雜,其相互作用是研究的重點(diǎn)和難點(diǎn)[37],甚至有關(guān)研究表明MTB可以通過改造PRR,逃逸宿主對(duì)其的殺傷[38],這就更說明了研究PRR對(duì)MTB的免疫應(yīng)答過程對(duì)認(rèn)識(shí)MTB感染發(fā)病過程中的重要性和意義。
目前NLR與MTB相互作用的研究仍不成熟,在MTB感染時(shí)NLR在免疫系統(tǒng)中發(fā)揮作用的時(shí)期和具體機(jī)制還不甚清楚,在對(duì)促進(jìn)細(xì)胞因子的產(chǎn)生,炎癥小體形成,介導(dǎo)NO的殺傷作用等多個(gè)方面的生物活性的研究還不充分。而NLR介導(dǎo)的自噬作用與MTB對(duì)抗自噬的生物作用的強(qiáng)弱還未充分研究,以及NLR基因多態(tài)性與結(jié)核病易感性的關(guān)系都值得深入研究。NLR作為一種模式識(shí)別受體與其他PRR之間的相互作用更有待進(jìn)一步探索。
深入開展對(duì)NLR參與免疫應(yīng)答的機(jī)制和其與結(jié)核病的復(fù)雜關(guān)系的研究,將有助于為結(jié)核病的基礎(chǔ)和應(yīng)用研究提供新靶標(biāo)和研究方向,為結(jié)核病的預(yù)防和治療奠定重要理論基礎(chǔ)。
[1] Schorey JS, Schlesinger LS. Innate immune responses to tuberculosis. Microbiol Spectr, 2016, 4(6).
[2] 吳小娥, 陳晶, 宋淑霞. 固有免疫細(xì)胞對(duì)結(jié)核分枝桿菌的免疫識(shí)別. 中國防癆雜志, 2015, 37(2):189-193.
[3] Kim YK, Shin JS, Nahm MH. NOD-like receptors in infection, immunity, and diseases. Yonsei Med J, 2016, 57(1):5-14.
[4] Ting JP, Lovering RC, Alnemri ES, et al. The NLR gene family: a standard nomenclature. Immunity, 2008, 28(3):285-287.
[5] Motta V, Soares F, Sun T, et al. NOD-like receptors: versatile cytosolic sentinels. Physiol Rev, 2015, 95(1):149-178.
[6] Zhong Y, Kinio A, Saleh M. Functions of NOD-like receptors in human diseases. Front Immunol, 2013, 4:333.
[7] Sharma N, Jha S. NLR-regulated pathways in cancer: opportunities and obstacles for therapeutic interventions. Cell Mol Life Sci, 2016, 73(9): 1741-1764.
[8] Mortaz E, Adcock IM, Tabarsi P, et al. Interaction of pattern recognition receptors withMycobacteriumtuberculosis. J Clin Immunol, 2015, 35(1):1-10.
[9] Monie TP. NLR activation takes a direct route. Trends Biochem Sci, 2013, 38(3): 131-139.
[10] Jeong YJ, Kang MJ, Lee SJ, et al. Nod2 and Rip2 contribute to innate immune responses in mouse neutrophils. Immunology, 2014, 143(2): 269-276.
[11] Saxena M, Yeretssian G. NOD-like receptors: master regulators of inflammation and cancer. Front Immunol, 2014, 5:327.
[12] Lee JY, Hwang EH, Kim DJ, et al. The role of nucleotide-binding oligomerization domain 1 during cytokine production by macrophages in response toMycobacteriumtuberculosisinfection. Immunobiology, 2016, 221(1): 70-75.
[13] Brooks MN, Rajaram MV, Azad AK, et al. NOD2 controls the nature of the inflammatory response and subsequent fate ofMycobacteriumtuberculosisand M. bovis BCG in human macrophages. Cell Microbiol, 2011, 13(3):402-418.
[14] Kim TH, Park JH, Park YM, et al. Synergistic effect of muramyl dipeptide with heat shock protein 70 fromMycobacteriumtuberculosison immune activation. Immunobiology, 2015, 220(1): 26-31.
[15] Landes MB, Rajaram MV, Nguyen H, et al. Role for NOD2 inMycobacteriumtuberculosis-induced iNOS expression and NO production in human macrophages. J Leukoc Miol, 2015, 97(6): 1111-1119.
[16] Hall NB, Igo RP Jr, Malone LL, et al. Polymorphisms inTICAM2 andIL1Bare associated with TB. Genes Immun, 2015, 16(2):127-133.
[17] Azad AK, Sadee W, Schlesinger LS. Innate immune gene poly-morphisms in tuberculosis. Infect Immun, 2012, 80(10): 3343-3359.
[18] Khalilullah SA, Harapan H, Hasan NA, et al. Host genome polymorphisms and tuberculosis infection: What we have to say? Egypt J Chest Dis Tuberc, 2014, 63(1): 173-185.
[19] Zhao M, Jiang F, Zhang W, et al. A novel single nucleotide polymorphism within the NOD2 gene is associated with pulmonary tuberculosis in the Chinese Han, Uygur and Kazak populations. BMC Infect Dis, 2012, 12:91.
[20] Pan H, Dai Y, Tang S, et al. Polymorphisms of NOD2 and the risk of tuberculosis: a validation study in the Chinese popu-lation. Int J Immunogenet, 2012, 39(3):233-240.
[21] Behr MA, Divangahi M. Freund’s adjuvant, NOD2 and mycobacteria. Curr Opin Microbiol, 2015, 23:126-132.
[23] Philpott DJ, Sorbara MT, Robertson SJ, et al. NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol, 2014, 14(1):9-23.
[24] Wei M, Wang L, Wu T, et al. NLRP3 activation was regulated by DNA methylation modification duringMycobacteriumtuberculosisinfection. Biomed Res Int, 2016, 2016: 4323281.
[25] Gurung P, Kanneganti TD. Immune responses against protozoan parasites: a focus on the emerging role of Nod-like receptors. Cell Mol Life Sci, 2016, 73(16):3035-3051.
[26] Mishra BB, Rathinam VA, Martens GW, et al. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β. Nat Immunol, 2013, 14(1): 52-60.
[27] Juárez E, Carranza C, Hernández-Sánchez F, et al. Nucleotide-oligomerizing domain-1 (NOD1) receptor activation induces pro-inflammatory responses and autophagy in human alveolar macrophages. BMC Pulm Med, 2014, 14:152.
[28] Chauhan S, Mandell MA, Deretic V. Mechanism of action of the tuberculosis and Crohn disease risk factor IRGM in autophagy. Autophagy, 2016, 12(2):429-431.
[29] Nabatov AA, Hatzis P, Rouschop KM, et al. Hypoxia induci-ble NOD2 interacts with 3-O-sulfogalactoceramide and regulates vesicular homeostasis. Biochim Biophys Acta, 2013, 1830(11): 5277-5286.
[30] Khan N, Vidyarthi A, Pahari S, et al. Signaling through NOD-2 and TLR-4 Bolsters the T cell Priming Capability of Dendritic cells by Inducing Autophagy. Sci Rep, 2016, 6:19084.
[31] Yoshihama S, Roszik J, Downs I, et al. NLRC5/MHC class Ⅰ transactivator is a target for immune evasion in cancer. Proc Natl Acad Sci U S A, 2016, 113(21):5999-6004.
[32] Rota G, Ludigs K, Siegert S, et al. T cell priming by activated Nlrc5-deficient dendritic cells is unaffected despite partially reduced MHC Class Ⅰ levels. J Immunol, 2016, 196(7):2939-2946.
[33] Neerincx A, Jakobshagen K, Utermohlen O, et al. The N-terminal domain of NLRC5 confers transcriptional activity for MHC class Ⅰ and Ⅱ gene expression. J Immunol, 2014, 193(6):3090-3100.
[34] Gause KT, Wheatley AK, Cui J, et al. Immunological principles guiding the rational design of particles for vaccine delivery. ACS Nano, 2017, 11(1):54-68.
[35] Khan N, Pahari S, Vidyarthi A, et al. NOD-2 and TLR-4 signaling reinforces the efficacy of dendritic cells and reduces the dose of TB drugs againstMycobacteriumtuberculosis. J Innate Immun, 2016, 8(3):228-242.
[36] Poecheim J, Heuking S, Brunner L, et al. Nanocarriers for DNA vaccines: co-delivery of TLR-9 and NLR-2 ligands leads to synergistic enhancement of proinflammatory cytokine release. Nanomaterials (Basel), 2015, 5(4): 2317-2334.
[37] 劉毅, 張亞莉, 張旭霞, 等. 結(jié)核分枝桿菌感染和免疫逃逸機(jī)制研究進(jìn)展. 中華微生物學(xué)和免疫學(xué)雜志, 2015, 35(5):398-400.
[38] Cambier CJ, Takaki KK, Larson RP, et al. Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature, 2014, 505(7482):218-222.
2017-04-05)
(本文編輯:李敬文)
Recentresearchprogressofthenucleotide-bindingoligomerizationdomain-likereceptorimmuneresponsetoMycobacteriumtuberculosisinfection
ZHANGYu-qing,ZHANGXu-xia,LIUYi,LIChuan-you.
DepartmentofBacterio-logyandImmunology,BeijingKeyLaboratoryforDrugResistanceTuberculosisResearch,BeijingChestHospital,CapitalMedicalUniversity,BeijingTuberculosisandThoracicTumorResearchInstitute,Beijing101149,China
s:LIUYi,Email:liuyilotus@hotmail.com;
Mycobacteriumtuberculosis(MTB) is the main pathogenic bacteria of Tuberculosis (TB). The immune responses of the host play an important role in the process of tuberculosis pathogenesis, which mainly work dependent on pattern recognition receptors (PPRs). Nucleotide-binding oligomerization domain-like receptor (NLR) is one of the important PPRs, which plays a vital role in the infection and pathogenesis of MTB. More than 20 types of NLR have been discovered hitherto. NLR primarily responses to intracellular bacteria and viruses, as well as the products released or degraded from these microorganisms. NLR functions in the process of recognition and elimination of pathogens by innate immune system in the early infection of MTB, as well as initiating adaptive immune response, secreting cytokines and inducing inflammation and autophagy. In recent years, the study of NLR has got new progress. In this paper, the immune response to MTB infection mediated by NLR and its relationship with the TB pathogenesis were analyzed comprehensively, so as to provide new clues for the study of interaction between MTB and host cells.
Receptors, pattern recognition; Receptors, proteinase-activated;Mycobacteriumtuberculosis; Infection; Immunity
10.3969/j.issn.1000-6621.2017.12.017
首都衛(wèi)生發(fā)展科研專項(xiàng)(首發(fā)2014-4-2163);北京市醫(yī)院管理局青苗計(jì)劃(QML20161601)
101149 首都醫(yī)科大學(xué)附屬北京胸科醫(yī)院 北京市結(jié)核病胸部腫瘤研究所 耐藥結(jié)核病研究北京市重點(diǎn)實(shí)驗(yàn)室細(xì)菌免疫室
劉毅,Email:liuyilotus@hotmail.com;李傳友,Email:lichuanyou6688@hotmail.com
LIChuan-you,Email:lichuanyou6688@hotmail.com