• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      1型糖尿病的免疫機(jī)制研究進(jìn)展

      2017-12-19 00:23陳國(guó)軍楊中漢馮娟
      關(guān)鍵詞:性反應(yīng)胰島生長(zhǎng)因子

      陳國(guó)軍++++++楊中漢++++++馮娟

      [摘要] 1型糖尿?。═1DM)是具有遺傳傾向的自身免疫性疾病,發(fā)病率逐年遞增,其發(fā)病機(jī)制較為復(fù)雜且尚未完全闡明,涉及到T淋巴細(xì)胞和多種固有免疫細(xì)胞的相互調(diào)控。免疫細(xì)胞攻擊胰島β-細(xì)胞使其損傷或減少被認(rèn)為是T1DM的主要致病因素。目前的治療方法也有各自的局限,包括傳統(tǒng)的胰島素注射、胰島移植,以及近年來(lái)的免疫治療和干細(xì)胞治療等方法。隨著對(duì)T1DM發(fā)病機(jī)制的深入研究,將為T(mén)1DM的防治提供更為有效的靶點(diǎn)和方法。

      [關(guān)鍵詞] 1型糖尿??;胰島β-細(xì)胞;淋巴細(xì)胞;固有免疫細(xì)胞

      [中圖分類號(hào)] R58 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2017)11(b)-0039-04

      [Abstract] Type 1 diabetes mellitus (T1DM) is a kind of autoimmune disease with genetic predisposition and its incidence is gradually increasing. The pathogenesis is relatively complicated and not yet fully elucidated. It relates the mutual regulation of T lymphocytes and a variety of innate immune cells. Immune cells attack the islet beta cells reduce its damage which is regarded as a main pathogenic factor of T1DM. The current treatments of T1DM, including traditional insulin injection, islet transplantation, immunotherapy and stem cell therapy of recent years or other methods, have the limitation. With the further study of the pathogenesis of T1DM, more effective targets and methods will be provided.

      [Key words] Type 1 Diabetes Mellitus; Pancreatic β-cells; Lymphocyte; Innate immune cell

      1型糖尿?。═1DM)是一種具有遺傳傾向的促炎性自身免疫性疾病,如不及時(shí)治療,能造成糖尿病足、糖尿病腎病、糖尿病視網(wǎng)膜病變、心腦血管病變等一系列并發(fā)癥。該類型糖尿病是由胰島β-細(xì)胞受到自身免疫系統(tǒng)的攻擊導(dǎo)致胰島β-細(xì)胞的損傷或者減少,產(chǎn)生不可逆破壞所致[1-3]。胰島浸潤(rùn)的白細(xì)胞參與了胰島β-細(xì)胞的裂解,免疫炎癥細(xì)胞在胰島β-細(xì)胞的損傷中起著重要作用,介導(dǎo)胰島素依賴性糖尿病的發(fā)生[4]。

      1 胰島β-細(xì)胞損傷的免疫學(xué)機(jī)制

      T1DM的發(fā)生發(fā)展涉及到胰島β-細(xì)胞及一系列參與固有免疫和適應(yīng)性免疫的細(xì)胞之間的相互作用,主要是輔助型T細(xì)胞(Th1)介導(dǎo)的CD8+T細(xì)胞及固有免疫細(xì)胞[4]。

      1.1 淋巴細(xì)胞在T1DM發(fā)生發(fā)展中的作用

      T1DM的發(fā)生發(fā)展主要依賴于CD4+及CD8+這兩種T淋巴細(xì)胞[5],在NOD小鼠模型上發(fā)現(xiàn),只有將NOD小鼠的脾CD4+及CD8+T細(xì)胞而非其他亞型的T細(xì)胞輸注到同種免疫功能不全小鼠中才可以誘發(fā)T1DM[6],這提示了CD4+及CD8+T細(xì)胞在誘導(dǎo)β-細(xì)胞損傷中所起的重要作用。給予CD3特異性抗體誘導(dǎo)T細(xì)胞耐受后可逆轉(zhuǎn)T1DM的發(fā)生[7-8],這些研究結(jié)果都提示T細(xì)胞可作為一種抑制胰島β-細(xì)胞損傷的干預(yù)靶點(diǎn),也引出了用CD3特異性單克隆抗體對(duì)新近發(fā)生的T1DM患者進(jìn)行免疫治療的新方法[9]。

      T細(xì)胞介導(dǎo)胰島β-細(xì)胞損傷有多種方式。胰島β-細(xì)胞處于慢性炎癥狀態(tài)時(shí)會(huì)產(chǎn)生多種趨化因子,如CXCL10、CCL2、CCL20等,促進(jìn)單核巨噬細(xì)胞、淋巴細(xì)胞等免疫細(xì)胞募集到胰島細(xì)胞周?chē)@些免疫細(xì)胞產(chǎn)生的多種炎性因子,如白細(xì)胞介素1β(IL-1β)、IL-12、γ干擾素(IFN-γ),腫瘤壞死因子α(TNF-α)等本身就可以直接損傷β-細(xì)胞,誘導(dǎo)其凋亡。β-細(xì)胞抗原由MHC Ⅰ分子呈遞給致糖尿病的CD8+T細(xì)胞,并與特異性的T細(xì)胞受體(TCR)結(jié)合、相互識(shí)別,CD8+T細(xì)胞可通過(guò)MHC Ⅰ分子介導(dǎo)的細(xì)胞毒性作用殺死β-細(xì)胞。某些抗原提呈細(xì)胞如樹(shù)突狀細(xì)胞(DC)可通過(guò)MHC Ⅱ分子將β-細(xì)胞抗原呈遞給CD4+T細(xì)胞,并與其特異性的TCR結(jié)合、相互識(shí)別,促進(jìn)CD4+T細(xì)胞的增值激活。CD4+T細(xì)胞表面的FASL進(jìn)一步與β-細(xì)胞膜表面受體FAS結(jié)合啟動(dòng)細(xì)胞凋亡,通過(guò)一系列的信號(hào)傳導(dǎo)促進(jìn)β-細(xì)胞凋亡。

      雖然T細(xì)胞在啟動(dòng)T1DM的發(fā)生發(fā)展中起著關(guān)鍵作用,但其也可與某些共刺激分子一起介導(dǎo)免疫耐受,調(diào)節(jié)T細(xì)胞對(duì)β-細(xì)胞的攻擊,胰島抗原特異性的T細(xì)胞可分為致病性效應(yīng)T細(xì)胞(致糖尿病性T細(xì)胞)及具有保護(hù)作用的調(diào)節(jié)性T(Treg)細(xì)胞。研究表明FOXP3(一種與Treg功能密切相關(guān)的轉(zhuǎn)錄因子)基因突變會(huì)導(dǎo)致包括T1DM在內(nèi)的多種自身免疫性疾病的發(fā)生[10];缺乏CD28的NOD小鼠缺乏Treg細(xì)胞,從而會(huì)導(dǎo)致加重病情[11];此外,IL-2可增加Treg數(shù)量,可作為T(mén)1DM的一種潛在治療手段[12-13]。此外,β-細(xì)胞表面的程序性細(xì)胞死亡配體(PDL1)可與CD4+及CD8+T細(xì)胞表面的PD1結(jié)合,調(diào)節(jié)T細(xì)胞對(duì)β-細(xì)胞的攻擊[7,14-15]。T細(xì)胞對(duì)β-細(xì)胞的殺傷作用與保護(hù)作用會(huì)相互制約、相互平衡,如果這種平衡被打破,將會(huì)造成β-細(xì)胞的過(guò)度破壞。endprint

      1.2 固有免疫細(xì)胞與T1DM

      1.2.1 巨噬細(xì)胞與T1DM NOD小鼠模型中,促炎性巨噬細(xì)胞(M1)比T細(xì)胞更早浸潤(rùn)到胰島中,巨噬細(xì)胞產(chǎn)生的IL-1β、TNF-α、ROS等可直接損傷β-細(xì)胞,誘導(dǎo)β-細(xì)胞凋亡等[16]。除此之外,巨噬細(xì)胞產(chǎn)生的IL-12也可以促進(jìn)CD8+細(xì)胞毒性T細(xì)胞(CTL)的分化,從而導(dǎo)致T1DM發(fā)生[15,17]。從T1DM患者血液中分離出來(lái)的單核細(xì)胞能分泌IL-1β及IL-6等炎性因子,介導(dǎo)炎性反應(yīng),同時(shí)可誘導(dǎo)Th17細(xì)胞的擴(kuò)增,Th17細(xì)胞進(jìn)一步導(dǎo)致殺傷性T細(xì)胞與Treg細(xì)胞之間的失衡,啟動(dòng)后續(xù)炎性反應(yīng)及促凋亡作用。因此單核巨噬細(xì)胞產(chǎn)生的炎性因子不僅可以直接損傷胰島β-細(xì)胞,而且可通過(guò)影響CTL與Treg細(xì)胞之間的平衡來(lái)誘導(dǎo)炎性反應(yīng)和靶細(xì)胞損傷。

      然而抗炎促修復(fù)型(M2型)巨噬細(xì)胞則分泌一些抗炎因子及生長(zhǎng)因子,如血管生長(zhǎng)因子(VEGF-A)、肝細(xì)胞生長(zhǎng)因子(HGF)、血小板源生長(zhǎng)因子(PDGF-β)、轉(zhuǎn)化生長(zhǎng)因子β(TGF-β)、表皮生長(zhǎng)因子(EGF)、成纖維細(xì)胞生長(zhǎng)(FGF)、胰島素樣生長(zhǎng)因子(IGF)等,這些可以促進(jìn)皮膚、肝臟、腎臟、肌肉以及胰島β-細(xì)胞的損傷修復(fù)與再生[18-21]。因此巨噬細(xì)胞在T1DM中的作用同樣具有雙重性。

      1.2.2 NK細(xì)胞與T1DM NK細(xì)胞屬于固有免疫系統(tǒng),組成機(jī)體免疫防御的第一道防線,對(duì)外來(lái)細(xì)菌、病毒和體內(nèi)腫瘤細(xì)胞等進(jìn)行免疫防御、免疫監(jiān)視及穩(wěn)態(tài)維持。近年來(lái)的研究發(fā)現(xiàn)NK細(xì)胞也分為很多亞群,決定了其功能的多樣性,尚有多種表型及功能尚未完全闡明[22]。

      通常認(rèn)為NK細(xì)胞不僅具有細(xì)胞毒性,同時(shí)還可產(chǎn)生多種炎性因子,尤其是IFN-γ,之前也提及到IFN-γ可激活NF-κB、STAT1等信號(hào)通路,通過(guò)一系列的信號(hào)轉(zhuǎn)導(dǎo)誘導(dǎo)β-細(xì)胞凋亡。從NOD小鼠的胰島中分離出來(lái)的NK細(xì)胞表達(dá)更多的CD25、CD69、CD107a(一種顆粒胞吐標(biāo)志物),產(chǎn)生更多的IFN-γ[23-24],這說(shuō)明糖尿病小鼠胰島中的NK細(xì)胞毒性更強(qiáng)。NK細(xì)胞膜表面的兩種激活受體NKG2D、NKp46分別可與β-細(xì)胞上的配體RAE1和NKp46結(jié)合,發(fā)揮細(xì)胞毒性作用,造成β-細(xì)胞損傷[25]。在很多T1DM患者和NOD小鼠中都存在激活型受體NKG2的突變,因此可能造成NK細(xì)胞持續(xù)性激活,過(guò)度激活的NK細(xì)胞會(huì)對(duì)自身β-細(xì)胞殺傷作用,同時(shí)還可激活CD4+及CD8+T細(xì)胞進(jìn)一步對(duì)β-細(xì)胞產(chǎn)生攻擊[25]。

      然而NK細(xì)胞也具有一定的免疫調(diào)節(jié)功能,NK1.1細(xì)胞亞群表達(dá)抑制性受體NKG2A,抑制NK細(xì)胞對(duì)β-細(xì)胞的殺傷作用,并產(chǎn)生IL-22控制胰島移植術(shù)后的炎性反應(yīng)和排斥反應(yīng),從而延長(zhǎng)移植物的存活[26]。因此NK細(xì)胞的多種亞型及其功能都有待深入研究,可能成為治療T1DM及控制胰島移植術(shù)后免疫排斥反應(yīng)的作用靶點(diǎn)。

      1.2.3 樹(shù)突狀細(xì)胞與T1DM 胰島中的樹(shù)突狀細(xì)胞(DC)可以捕獲胰島β-細(xì)胞自身抗原并將其提呈給胰腺淋巴結(jié)中胰島抗原特異性的殺傷性T細(xì)胞,導(dǎo)致糖尿病性免疫反應(yīng)[15,27-28]。一些報(bào)道也認(rèn)為NOD小鼠中的DC可以通過(guò)增加IL-12和一些共刺激分子的表達(dá)來(lái)促進(jìn)效應(yīng)性T細(xì)胞的激活[29],進(jìn)而促進(jìn)T1DM的發(fā)生。

      當(dāng)然DC細(xì)胞表達(dá)的一些分子如PDL1、誘導(dǎo)型T細(xì)胞共刺激分子配體(ICOSL)、吲哚胺2,3-雙加氧酶(IDO)也可誘導(dǎo)T細(xì)胞免疫耐受[15,28,30]。因此,DC細(xì)胞在參與誘導(dǎo)T細(xì)胞耐受、T細(xì)胞清除、Treg細(xì)胞擴(kuò)增等方面也起著重要作用,從這個(gè)角度而言,DC對(duì)T1DM也具有一定的保護(hù)作用[4,15],也為T(mén)1DM提供新的治療策略。

      2 T1DM的治療

      傳統(tǒng)的治療方法有胰島素注射治療和胰腺胰島移植等,胰島素注射能短期控制血糖并延緩糖尿病并發(fā)癥,但不能根治,不能長(zhǎng)期將血糖控制在正常范圍內(nèi)。胰島或胰腺移植被認(rèn)為是治愈T1DM的有效方法之一,移植成功后移植物能產(chǎn)生具有生物活性的胰島素,但是胰島移植術(shù)后也存在一些較為棘手的問(wèn)題,如免疫排斥反應(yīng)抑制移植物的存活,免疫抑制劑的使用也有導(dǎo)致機(jī)會(huì)性感染和腫瘤發(fā)生等風(fēng)險(xiǎn)[31],同時(shí)異體移植時(shí)也存在供體來(lái)源的問(wèn)題,最主要障礙仍然是移植排斥反應(yīng)。

      由于T1DM本身也是一種長(zhǎng)期的慢性炎性反應(yīng),控制炎性反應(yīng)或許能起到一定的作用。上述提及到的導(dǎo)致胰島β-細(xì)胞損傷的多種免疫細(xì)胞都可能成為潛在的治療靶點(diǎn),如CD4+及CD8+T細(xì)胞在T1DM致病中起著重要作用,針對(duì)T細(xì)胞的CD3單克隆的抗體以及上調(diào)Treg細(xì)胞數(shù)量的IL-2是具有一定前景的免疫治療方法?,F(xiàn)在也有提出用納米顆粒、多酚等包被在胰島移植物外,抵抗免疫細(xì)胞介導(dǎo)的胰島損傷[32]。

      近幾年隨著干細(xì)胞研究的發(fā)展,誘導(dǎo)干細(xì)胞分化成分泌胰島素的類β-細(xì)胞的技術(shù)日漸完善,這為治療T1DM提供了新的思路。由于間充質(zhì)干細(xì)胞(MSC)易于分離,同時(shí)擁有較好的分化潛能,已用于很多臨床前及臨床試驗(yàn)。自體MSC誘導(dǎo)分化后移植回輸可以促進(jìn)β-細(xì)胞存活和再生,調(diào)節(jié)自身免疫反應(yīng),近年來(lái)也有一些將胰島與MSC共同移植的研究,以提高胰島移植的存活,CRISPR基因編輯技術(shù)也可對(duì)MSC進(jìn)行基因編輯以提高移植成功[33],已有一些研究項(xiàng)目已進(jìn)入臨床前研究

      3 小結(jié)

      T1DM的發(fā)生發(fā)展涉及到多種免疫細(xì)胞的相互調(diào)控,過(guò)度的自身免疫反應(yīng)或負(fù)性調(diào)節(jié)機(jī)制失衡都可導(dǎo)致β-細(xì)胞損傷。對(duì)T1DM發(fā)生的免疫學(xué)機(jī)制進(jìn)行深入地研究將為T(mén)1DM的免疫治療及改善胰島移植術(shù)后免疫排斥反應(yīng)提供新的思路及靶點(diǎn)。近年來(lái)興起的間充質(zhì)干細(xì)胞移植或?qū)⑵渑c胰島一起進(jìn)行聯(lián)合移植也是治療T1DM的一種極具前景的治療方法。

      [參考文獻(xiàn)]

      [1] Hull CM,Peakman M,Tim T. Regulatory T cell dysfunction in type 1 diabetes:what's broken and how can we fix it?[J]. Diabetologia,2017,60(10):1837-1850.endprint

      [2] Pugliese A. Autoreactive T cells in type 1 diabetes [J]. J Clin Invest,2017,127(8):2881-2891.

      [3] Ferretti C,La Cava A. Adaptive immune regulation in autoimmune diabetes [J]. Autoimmun Rev,2016,15(3):236-241.

      [4] Lehuen A,Diana J,Zaccone P,et al. Immune cell crosstalk in type 1 diabetes [J]. Nat Rev Immunol,2010,10(7):501-513.

      [5] Gomez-Tourino I,Arif S,Eichmann M,et al. T cells in type 1 diabetes:Instructors,regulators and effectors:a comprehensive review [J]. J Autoimmun,2016,66:7-16.

      [6] Phillips JM,Parish NM,Raine T,et al. Type 1 diabetes development requires both CD4+ and CD8+ T cells and can be reversed by non-depleting antibodies targeting both T cell populations [J]. Rev Diabet Stud,2009,6(2):97-103.

      [7] Mfarrej B,Keir M,Dada S,et al. Anti-CD3 mAb treatment cures PDL1-/-.NOD mice of diabetes but precipitates fatal myocarditis [J]. Clin Immunol,2011,140(1):47-53.

      [8] Hu C,Ding H,Zhang X,et al. Combination treatment with anti-CD20 and oral anti-CD3 prevents and reverses autoimmune diabetes [J]. Diabetes,2013,62(8):2849-2858.

      [9] Chatenoud L. Immune therapy for type 1 diabetes mellitus-what is unique about anti-CD3 antibodies? [J]. Nat Rev Endocrinol,2010,6(3):149-157.

      [10] Kornete M, Mason ES, Piccirillo CA. Immune Regulation in T1D and T2D:prospective role of Foxp3+ Treg cells in disease pathogenesis and treatment [J]. Front Endocrinol(Lausanne),2013,4:76.

      [11] Jain N,Miu B,Jiang JK,et al. CD28 and ITK signals regulate autoreactive T cell trafficking [J]. Nat Med,2013,19(12):1632-1637.

      [12] Dwyer CJ,Ward NC,Pugliese A,et al. Promoting immune regulation in type 1 diabetes using low-dose interleukin-2 [J]. Curr Diab Rep,2016,16(6):46.

      [13] Pham MN, von Herrath MG,Vela JL. Antigen-specific regulatory T cells and low dose of IL-2 in treatment of type 1 diabetes [J]. Front Immunol,2015,6(3):651.

      [14] El Khatib MM,Sakuma T,Tonne JM,et al. Beta-Cell-targeted blockage of PD1 and CTLA4 pathways prevents development of autoimmune diabetes and acute allogeneic islets rejection [J]. Gene Ther,2015,22(5):430-438.

      [15] Wallberg M,Cooke A. Immune mechanisms in type 1 diabetes [J]. Trends Immunol,2013,34(12):583-591.

      [16] Van Gassen N,Staels W,van Overmeire E,et al. Concise review:macrophages:versatile gatekeepers during pancreatic beta-cell development,injury,and regeneration [J]. Stem Cells Transl Med,2015,4(6):555-563.

      [17] Noble A,Mehta H,Lovell A,et al. IL-12 and IL-4 activate a CD39-dependent intrinsic peripheral tolerance mechanism in CD8(+)T cells [J]. Eur J Immunol,2016, 46(6):1438-1448.endprint

      [18] Huang H,Liu J,Hao H,et al. Preferred M2 polarization by ASC-based hydrogel accelerated angiogenesis and myogenesis in volumetric muscle loss rats [J]. Stem Cells Int,2017,2017:2 896 874.

      [19] Stefater JA 3rd,Ren S,Lang RA,et al. Metchnikoff's policemen:macrophages in development,homeostasis and regeneration [J]. Trends Mol Med,2011,17(12):743-752.

      [20] Brissova M,Aamodt K,Brahmachary P,et al. Islet microenvironment,modulated by vascular endothelial growth factor-A signaling,promotes beta cell regeneration [J]. Cell Metab,2014,19(3):498-511.

      [21] Xiao X,Gaffar I,Guo P,et al. M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7 [J]. Proc Natl Acad Sci USA,2014,111(13):E1211-E1220.

      [22] Moretta L,Montaldo E,Vacca P,et al. Human natural killer cells:origin,receptors,function,and clinical applications [J]. Int Arch Allergy Immunol,2014,164(4):253-264.

      [23] Brauner H,Elemans M,Lemos S,et al. Distinct phenotype and function of NK cells in the pancreas of nonobese diabetic mice [J]. J Immunol,2010,184(5):2272-2280.

      [24] Gur C,Porgador A,Elboim M,et al. The activating receptor NKp46 is essential for the development of type 1 diabetes [J]. Nat Immunol,2010,11(2):121-128.

      [25] Fraker C, Bayer AL. The expanding role of natural killer cells in type 1 diabetes and immunotherapy [J]. Curr Diab Rep,2016,16(11):109.

      [26] Tripathi D,Venkatasubramanian S,Cheekatla SS,et al. A TLR9 agonist promotes IL-22-dependent pancreatic islet allograft survival in type 1 diabetic mice [J]. Nat Commun,2016,7:13 896.

      [27] van Lummel M,van Veelen PA, de Ru AH,et al. Dendritic cells guide islet autoimmunity through a restricted and uniquely processed peptidome presented by high-risk HLA-DR [J]. J Immunol,2016,196(8):3253-3263.

      [28] Morel PA. Dendritic cell subsets in type 1 diabetes:friend or foe?[J]. Front Immunol,2013,4:415.

      [29] Diana J,Gahzarian L,Simoni Y,et al. Innate immunity in type 1 diabetes [J]. Discov Med,2011,11(61):513-520.

      [30] Saxena V,Ondr JK,Magnusen AF,et al. The countervailing actions of myeloid and plasmacytoid dendritic cells control autoimmune diabetes in the nonobese diabetic mouse [J]. J Immunol,2007,179(8):5041-5053.

      [31] Hope CM,Troelnikov A,Hanf W,et al. Peripheral natural killer cell and allo-stimulated T-cell function in kidney transplant recipients associate with cancer risk and immunosuppression-related complications [J]. Kidney Int, 2015,88(6):1374-1382.

      [32] Pham-Hua D,Padgett LE,Xue B, et al. Islet encapsulation with polyphenol coatings decreases pro-inflammatory chemokine synthesis and T cell trafficking [J]. Biomaterials,2017,128:19-32.

      [33] Gerace D,Martiniello-Wilks R,Nassif NT,et al. CRISPR-targeted genome editing of mesenchymal stem cell-derived therapies for type 1 diabetes:a path to clinical success?[J]. Stem Cell Res Ther,2017,8(1):62.endprint

      猜你喜歡
      性反應(yīng)胰島生長(zhǎng)因子
      臨床胰島移植發(fā)展與現(xiàn)狀
      腸道菌群失調(diào)通過(guò)促進(jìn)炎性反應(yīng)影響頸動(dòng)脈粥樣硬化的形成
      胰島β細(xì)胞中鈉通道對(duì)胰島素分泌的作用
      鼠神經(jīng)生長(zhǎng)因子對(duì)2型糖尿病相關(guān)阿爾茨海默病的治療探索
      胃癌組織中成纖維細(xì)胞生長(zhǎng)因子19和成纖維細(xì)胞生長(zhǎng)因子受體4的表達(dá)及臨床意義
      促酰化蛋白對(duì)3T3-L1脂肪細(xì)胞炎性反應(yīng)的影響
      鼠神經(jīng)生長(zhǎng)因子修復(fù)周?chē)窠?jīng)損傷對(duì)斷掌再植術(shù)的影響
      家兔胰島分離純化方法的改進(jìn)
      轉(zhuǎn)化生長(zhǎng)因子β激活激酶-1在乳腺癌組織中的表達(dá)及臨床意義
      非編碼RNA在胰島發(fā)育和胰島功能中的作用
      龙州县| 彩票| 唐河县| 南昌县| 远安县| 抚宁县| 石首市| 垣曲县| 禹州市| 青州市| 平舆县| 郓城县| 崇州市| 建阳市| 古蔺县| 孟连| 伊宁市| 大兴区| 高清| 增城市| 镇沅| 秦安县| 南陵县| 云龙县| 永福县| 荆州市| 德保县| 荔波县| 乐至县| 江津市| 宜兰县| 嘉峪关市| 萨嘎县| 锡林浩特市| 阿拉尔市| 晋城| 石首市| 北流市| 福海县| 汨罗市| 丰城市|