• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Method of Estimating the Effect of Marine Fouling on Frictional Resistance of Ships

    2018-01-04 08:24:53MINShaosongPENGFeiWANGZhanzhiZHANGTao
    船舶力學(xué) 2017年12期
    關(guān)鍵詞:工程系污損摩擦阻力

    MIN Shao-song,PENG Fei,WANG Zhan-zhi,ZHANG Tao

    (1.Department of Naval Architecture,Naval University of Engineering,Wuhan 430033,China;2.The 91872th Unit of PLA,Beijing 102442,China)

    Method of Estimating the Effect of Marine Fouling on Frictional Resistance of Ships

    MIN Shao-song1,PENG Fei1,WANG Zhan-zhi1,ZHANG Tao2

    (1.Department of Naval Architecture,Naval University of Engineering,Wuhan 430033,China;2.The 91872th Unit of PLA,Beijing 102442,China)

    Marine fouling has a severe adverse effect on the hydrodynamics of a ship’s hull.In this paper,the marine fouling was approached as a type of hull roughness,and the use of the integral method in estimating its effect on the frictional resistance of ships was studied.Through the calculation of the friction factor of a smooth surface,the accuracy of the integral method was verified and confirmed.The integral method was then adopted to calculate the friction factor of a U.S.Navy FFG-7 class ship under three different calcareous fouling conditions,which gave a result consistent with that from other researchers,indicating the feasibility and accuracy of the integral method in estimating the effect of marine fouling on hull resistance.The result using the integral method for a FFG-7 ship was compared with result from the 1957-ITTC equation and its roughness allowance ΔCf.The result shows that the ΔCfequation proposed by ITTC is not applicable to characterize the impact of fouling on hull resistance.

    marine fouling;frictional resistance;hull roughness;boundary layer integral method

    0 Introduction

    Marine fouling has long been a more problematic issue compared with corrosion.The robust vitality of fouling organism has made fouling problem a formidable barrier for human to conquer the ocean[1].Marine fouling organisms comprise a wide range of organisms,including all animals,plants,and microorganisms that are attached to the surfaces of immersed objects.Fouling results in an uneven hull surface,largely increasing the roughness of the hull and,hence,the frictional resistance.According to monitoring data of ship resistance from different countries,the total resistance of a ship could increase by up to 60%when severely fouled by calcareous organisms[2].For a newly built ship,a roughness allowance,ΔCf,is usually used to calculate the impact of surface roughness on frictional resistance.Further research shows thatΔCfincludes not only the increase of resistance from surface roughness,but also the difference from various friction equations,scale functions,and the efficiency,wake,and thrust-deduction factor of propellers[3].

    Since fouling has a very negative impact on hull resistance,many researchers have been studying the effect of fouling and its estimation method.Townsin[4]summarized the previous studies,suggested a better method of understanding and estimating the effect of fouling,and determined that the effect of calcareous fouling(such as that caused by barnacles)is easier to estimate than bacterial or botanical fouling.Schultz[5]compared the results from studying fouling by barnacles with different sizes and coverages,and found that the size of the barnacle is the dominant factor determining the resistance.Based on the resistance data on the experimental scale and on the similarity law of boundary layers,Schultz[6]estimated a ship’s resistance and power loss under many different fouling conditions.Schultz[7]analyzed the economic loss of fouling on U.S.Navy DDG-51 class ships,and showed that current fouling conditions could result in a ~$560 million annual economic loss.However,the reliability of Schultz’s estimation method needs further verification.

    This work investigated a method of estimating a ship’s frictional resistance under fouling conditions based on the integral method of boundary layers.Taking a U.S.Navy ‘Perry’class corvette(aka a ‘FFG-7’ ship)as the object of study,the ship’s resistance was estimated and analyzed under three different calcareous fouling conditions.

    1 Estimation method

    In addition to conventional physical roughness,fouling can also be considered as hull roughness.In this work,fouling is treated as a type of hull roughness for further study.Previous workers[8]estimated and analyzed the development of a turbulent boundary layer on a rough surface based on the integral method,and the same method is adopted in this work to estimate a ship’s resistance under fouling conditions.

    1.1 Characterization of fouling effect

    The main effect of roughness on the flow near a surface is to change its average velocity distribution[9].Therefore,the decrease of average velocity distribution can be used as a parameter to characterize the effect of roughness on surface flow,as a roughness function ΔU+.According to Coles’equation,which describes the average velocity distribution of flow near a smooth surface,and combining it with the roughness function ΔU+,the velocity distribution in a turbulent boundary layer near a rough surface,U+,can be described as

    where y is the horizontal axis in the boundary layer with the plate surface as the origin,uτis the friction velocity,δ is the boundary-layer thickness,B0is the logarithmic intercept of the smooth surface,κ is Kármán’s constant(usually taken as 0.41),υ is the kinetic viscosity of fluid,and Π is wake parameter that is usually a function of x and dependent on the pressure gradient in the flow direction and on the surface roughness,is a function referred to the ‘law of the wake’.

    The roughness function ΔU+is dependent on the substantial characteristics of the rough surface and the Reynolds number[10].The format of the roughness function is usually considered to have a logarithmic relationship with respect to the roughness factor,described as

    where h′is the roughness factor and B and C are constants that depend on particular conditions of roughness.There are many methods of characterizing the roughness factor h′,such as the height,interval,and shape features of the roughness element.

    Therefore,the effect of roughness is represented in the equation of velocity distribution within a turbulent boundary layer,directly and indirectly,as the roughness function ΔU+and wake parameter Π,respectively.

    1.2 Numerical method of calculating the turbulent boundary layer of the fouling surface

    (1)Characteristic parameter relationship of the fouling surface

    When y=δ,U=Ue,U is the average velocity at position y,Ueis the free velocity,the velocity of the rough surface,Eq.(1),is converted to

    Letting Eq.(3)subtract Eq.(1),anduτ/Ue,in which Cfis the local friction coefficient,the boundary layer can be derived into another form:

    The relationship between displacement of boundary-layer thickness δ*and momentum thickness θ can be further derived into

    (2)Momentum integral equation

    The two-dimensional momentum integral equation at zero-pressure gradients is

    For the equilibrium boundary layer,the wake parameter Π is independent of x,i.e.,dΠ/dx=0.By substituting the characteristic parameter equation of the boundary layer,Eq.(5),into Eq.(6),an ordinary differential equation can be derived as

    in which

    (3)Rough surface equation

    A rough surface equation is derived according to the velocity distribution within the boundary layer from Eqs.(1)and(2):

    By substituting the characteristic parameter equation of the boundary layer,Eq.(5),into Eq.(9)and performing a derivation to x,an ordinary differential equation can be derived as

    in which

    (4)Friction coefficient of fouling surface

    Combining Eqs.(7)and(10),linear equations can be obtained with dδ/dx and dw/dx as variables.Ordinary differential equations with respect to δ and w can be solved using the Crammer principle.Given a known roughness function ΔU+and velocity distribution at initial conditions,the distribution of δ and w at the rough surface in the flow direction can be calculated by the numerical integral method,resulting in the distribution of the local friction coefficient Cfialong the flow direction.The local frictional resistance fican be further calculated.Integration of fialong the flow direction gives the frictional resistance F and friction coefficient CF.

    where Usiis the potential velocity at position xiand V the velocity.

    2 Verification of the method

    To verify the accuracy of the integral method,the frictional resistance of a smooth surface is calculated before estimating the frictional resistance of a fouled hull.The result is compared with the 1957-ITTC equation,as shown in Fig.1.For a smooth surface,the roughness function ΔU+equals 0.The boundary-layer thickness δ0at the beginning position of the integral(x0)is estimated based on the power-law empirical equation of the smooth surface.As seen in Fig.1,when the Reynolds number ReL(ReL=UL/v,in which U is velocity and L is length)is greater than 106,the result from the integral method matches that from the 1957-ITTC equation.Therefore,the integral method proposed in this work has high accuracy for estimating resistance for regular ships.

    Fig.1 Comparison of frictional resistance coefficient on smooth plates between the integral method and 1957-ITTC formula

    3 Cases

    According to the evaluation method set forth in Naval Ships’Technical Manuals(NSTMs)[11],hull fouling is classified into 10 fouling ratings(FRs),in which FR10-FR30 are membrane or grass fouling,or soft fouling;FR40-FR100 are hard fouling and composite fouling.Since the dominant form in this latter category is calcareous species such as barnacles and tubeworms,fouling in this category is collectively called calcareous fouling,which is the object of study in this work.Schultz et al[6]measured the roughness factor of surfaces subject to different calcareous fouling conditions,as shown in Tab.1,Rtm5( )0 is maximum peak to trough height over a 50 mm sampling length,seen in Ref.

    [12].

    Tab.1 Roughness factor under different calcareous fouling conditions

    Since the barnacle is the dominant species in the biotic community germane to this study,it was chosen as our object of research.The usual shape of a barnacle is conical,and the diameter of its opening is smaller than that of the substrate(the intersection angle between wall and substrate is less than 90°)[13],here,the geometrical setting for a barnacle is a tangent value of intersection angle between wall and substrate of 2.5 and a diameter of the substrate being 3 times the diameter of the opening.According to the definition of the roughness factor h′by the Ship Performance Group at the University of Newcastle upon Tyne(United Kingdom)[14],the roughness factor h′can be calculated as

    where Rqis root mean square roughness height(μm),Sais mean slope of the surface profile.

    Fig.2 The shapes of barnacles(Left:the barnacles attached to hull surfaces;Right:modeling of barnacles)

    Since we cannot obtain the roughness function ΔU+of a barnacle,the constants B and C in the ΔU+equation have to be estimated.Considering that the conical shape of a barnacle is similar to a pyramid,and assuming that a barnacle is firmly attached to the hull,the adhesion shape of a barnacle can be regarded to have the same roughness as that of the experimental surface described in Ref.

    [15].The constants B and C in the ΔU+equation can be assigned values of 0.32 and-2.78,respectively.ΔU+is thus derived as

    Schultz studied the resistance of a ‘Perry’class corvette under different fouling conditions[6].Taking a FFG-7 class ship as the object of our study,the friction coefficient is estimated under three calcareous fouling conditons using the integral method and roughness function.The friction coefficient Cfis calculated under three calcareous fouling conditions using the integral method.The total coefficient CTis then calculated based on the composition of resistance of a FFG-7 ship.The coefficient increase of Cfand CTcaused by fouling is then calculated and compared with the result from Schultz’s research,as shown in Tab.2.

    As seen in the table,at 15 kns,moderate calcareous fouling on a FFG-7 ship increases CTby 53.7%;at 30 kns,the value is 35.9%for CT.Schultz’s results show that moderate calcareous fouling on a FFG-7 ship increases CTby 52%at 15 kns and by 36%at 30 knots[16].Calculational results in this work match Schultz’s results well.Therefore,the integral method proposed in this work shows good feasibility and accuracy in estimating the effect of fouling on hull resistance.

    Tab.2 Comparison of results obtained from integral method and from Schultz’s research

    Fig.3 compared the aforementioned result of the friction coefficient Cfof a FFG-7 ship with the result of 1957-ITTC equation,along with 1957-ITTC result added the roughness allowance ΔCfsuggested by ITTC.As shown in Fig.3,the roughness allowance suggested by ITTC is much larger than that calculated by the integral method,and it is independent of Reynolds number(the line of 1957-ITTC equation is parallel to the line of 1957-ITTC result added the roughness allowance ΔCfsuggested by ITTC).Therefore,the roughness allowance suggested by ITTC is not applicable to the evaluation of the effect of fouling on hull resistance.

    4 Conclusions

    In this work,marine fouling is treated as a category of ship roughness worthy of study.Based on the integral method of turbulent boundary layers on a rough surface,the effect of fouling on hull resistance is studied and estimated.For a smooth surface,the friction coefficient calculated using the integral method exhibits good consistency with that calculated using the 1957-ITTC equation for ships of regular size.The integral method is then used to study the hull resistance of a FFG-7 ship under three calcareous fouling conditions caused by barnacles,and the results are in good agreement with those of other research groups.This demonstrates that the integral method has good feasibility and accuracy for estimating the effect of fouling on hull resistance.The integral method result has been compared to that obtained using the 1957-ITTC equation as well as the roughness allowance,ΔCf,equation,showing that the ΔCfvalue obtained by using the ITTC equation is much larger than that obtained by using the integral method.Therefore,the roughness allowance suggested by the ITTC equation is not applicable for evaluating the effect of fouling on hull resistance.

    Acknowledgements

    We thank LetPub(www.letpub.com)for its linguistic assistance during the preparation of this manuscript.

    [1]Horne R A.Marine chemistry,the structure of water and chemistry of hydrosphere[M].Wiley Interscience,1969.

    [2]Institute W H O.Marine fouling and its prevention[M].Woods Hole:George Banta Publishing Company,1952.

    [3]Sheng Zhenbang,Liu Yingzhong.Chuan bo yuan li[M].Shanghai:Shanghai Jiao Tong University Press,2004.(in Chinese)[4]Townsin R L.The ship hull fouling penalty[J].Biofouling,2003,19(suppl):9-16.

    [5]Schultz M P.Frictional resistance of antifouling coating systems[J].ASME Journal of Fluids Engineering,2004,126(6):1039-1048.

    [6]Schultz M P.Effects of coating roughness and biofouling on ship resistance and powering[J].Biofouling,2007,23(5):331-341.

    [7]Schultz M P,Bendickb J A,Holmb E R,et al.Economic impact of biofouling on a naval surface ship[J].Biofouling,2011,27(1):87-98.

    [8]Zhang Tao,Zhu Xiaojun,Peng Fei,et al.Prediction of the development of turbulent boundary layers on rough walls based on the integration method[J].Chinese Journal of Ship Research,2014,9(5):39-43.

    [9]Jimenéz J.Turbulent flows over rough walls[J].Annu.Rev.Fluid Mech.,2004,36:173-196.

    [10]Schultz M P.Comparison of three roughness function determination methods[J].Experiments in Fluids,2003,35(4):372-379.

    [11]Manual N S T.Waterborne underwater hull cleaning of navy ships[M].Washington:Naval Sea system Command,2006.

    [12]Schultz M P.Frictional resistance of antifouling coating systems[J].Journal of Fluids Engineering,2004,126:1039-1047.

    [13]Huang Zongguo.Marine fouling and its prevention[M].Beijing:Ocean Press,2011.(in Chinese)

    [14]Townsin R L,Spencer D S,Mosaad M.Rough propeller penalties[J].Trans SNAME93,1985,93:165-187.

    [15]Schultz M P,Flack K A.Turbulent boundary layers on a systematically varied rough wall[J].Physics of Fluids,2009,21(015104):1-9.

    [16]Schultz M P.Effects of coating roughness and biofouling on ship resistance and powering[J].Biofouling,2007,23(5):331-341.

    海洋污損對船體摩擦阻力影響的預(yù)測方法

    閔少松1,彭 飛1,王展智1,張 濤2

    (1.海軍工程大學(xué) 艦船工程系,武漢430033;2.中國人民解放軍91872部隊,北京102442)

    海洋污損對船體阻力具有嚴(yán)重的不利影響。文章將海洋污損歸類到船體粗糙度的范疇內(nèi),基于邊界層積分法研究了污損對船體摩擦阻力影響的預(yù)測方法。通過對光滑平板摩擦阻力系數(shù)的計算驗證了積分法的準(zhǔn)確性。然后采用積分法對美軍FFG-7艦在3種鈣質(zhì)污損狀況下的摩擦阻力系數(shù)進行了計算,計算結(jié)果與國外學(xué)者的研究結(jié)論吻合得較好,說明了積分法預(yù)測污損對船體摩擦阻力的影響具有可行性,且準(zhǔn)確性較高。最后將積分法在FFG-7艦的計算結(jié)果與19 57-ITTC公式及其粗糙度補貼系數(shù)ΔCf進行了對比,結(jié)果表明ITTC提出的ΔCf公式不適于表征污損對船體阻力的影響。

    海洋污損;摩擦阻力;船體粗糙度;邊界積分法

    U661.3

    A

    國家自然科學(xué)基金資助(51479207);海洋工程國家重點實驗室基金資助(1514)

    閔少松(1978-),男,博士,海軍工程大學(xué)艦船工程系講師;

    彭 飛(1975-),男,博士,海軍工程大學(xué)艦船工程系副教授;

    王展智(1986-),男,博士,海軍工程大學(xué)艦船工程系講師;

    張 濤(1987-),男,博士,中國人民解放軍91872部隊工程師。

    U661.3 Document code:A

    10.3969/j.issn.1007-7294.2017.12.002

    date:2017-09-03

    Supported by the National Natural Science Foundation of China(Grant No.51479207);the State Key Laboratory of Ocean Engineering(Grant No.1514)

    Biography:MIN Shao-song(1978-),male,Ph.D.,lecturer of Naval University of Engineering,

    E-mail:minshaosong@163.com;PENG Fei(1975-),male,Ph.D.,associate professor of

    Naval University of Engineering.

    1007-7294(2017)12-1460-08

    猜你喜歡
    工程系污損摩擦阻力
    基于視覺顯著度的污損圖像缺陷識別方法研究
    計算機仿真(2022年9期)2022-10-25 12:14:48
    空間機構(gòu)用推力滾針軸承摩擦阻力矩分析
    軸承(2022年6期)2022-06-22 08:54:52
    污損的成績單
    航空發(fā)動機起動過程摩擦阻力矩計算分析
    污損土地修復(fù)現(xiàn)狀與發(fā)展趨勢研究
    污損土地修復(fù)發(fā)展前景探究
    電子信息工程系
    超大型集裝箱船靠泊分析
    中國水運(2017年6期)2017-06-13 01:22:52
    機電工程系簡介
    穿行:服裝工程系畢業(yè)設(shè)計作品
    国产亚洲精品久久久久久毛片| 久热爱精品视频在线9| 日韩精品青青久久久久久| 精品一区二区三区四区五区乱码| 天堂动漫精品| 此物有八面人人有两片| 在线十欧美十亚洲十日本专区| 亚洲精品国产一区二区精华液| 久久久久久久精品吃奶| 国产精品av视频在线免费观看| 身体一侧抽搐| 一级毛片精品| 1024手机看黄色片| 国产一区二区激情短视频| 97碰自拍视频| 香蕉久久夜色| 99久久国产精品久久久| 少妇裸体淫交视频免费看高清 | 午夜免费成人在线视频| 亚洲一区二区三区色噜噜| 国产熟女xx| 久久久久性生活片| 日本a在线网址| 草草在线视频免费看| 妹子高潮喷水视频| 在线国产一区二区在线| 亚洲欧美日韩高清在线视频| 日本三级黄在线观看| 三级毛片av免费| 又大又爽又粗| 亚洲欧美一区二区三区黑人| 久久久久久久午夜电影| 一个人免费在线观看的高清视频| 国产一区二区激情短视频| 国产精品一区二区三区四区久久| 国产精品av视频在线免费观看| 国产又色又爽无遮挡免费看| 亚洲中文字幕一区二区三区有码在线看 | av国产免费在线观看| 91字幕亚洲| 黄色成人免费大全| 窝窝影院91人妻| 亚洲免费av在线视频| 欧美日韩乱码在线| 男女下面进入的视频免费午夜| netflix在线观看网站| 欧美黄色淫秽网站| 欧美zozozo另类| 搡老岳熟女国产| 亚洲专区国产一区二区| 欧美国产日韩亚洲一区| 99久久国产精品久久久| 欧美黄色淫秽网站| 国产高清有码在线观看视频 | 99国产极品粉嫩在线观看| 亚洲中文字幕一区二区三区有码在线看 | 亚洲九九香蕉| www.999成人在线观看| 亚洲男人天堂网一区| 国产一区二区在线av高清观看| 国产精品免费一区二区三区在线| 香蕉av资源在线| 国产蜜桃级精品一区二区三区| 18禁黄网站禁片免费观看直播| 亚洲 国产 在线| 老熟妇仑乱视频hdxx| 国产男靠女视频免费网站| 亚洲精品一区av在线观看| 久久久久久人人人人人| 夜夜看夜夜爽夜夜摸| 精品一区二区三区av网在线观看| 国产激情久久老熟女| 首页视频小说图片口味搜索| 在线看三级毛片| 国产高清有码在线观看视频 | 免费高清视频大片| 搡老岳熟女国产| 欧美精品亚洲一区二区| 中文字幕高清在线视频| svipshipincom国产片| 亚洲人成电影免费在线| 黄频高清免费视频| 亚洲男人天堂网一区| 在线观看一区二区三区| 国产男靠女视频免费网站| 亚洲精品在线观看二区| 日韩中文字幕欧美一区二区| 亚洲中文字幕日韩| 动漫黄色视频在线观看| 我的老师免费观看完整版| 亚洲va日本ⅴa欧美va伊人久久| 看免费av毛片| 亚洲国产欧美网| 亚洲午夜理论影院| 欧美日韩国产亚洲二区| 精品福利观看| 韩国av一区二区三区四区| 麻豆一二三区av精品| 日日摸夜夜添夜夜添小说| 欧美最黄视频在线播放免费| 国产成人一区二区三区免费视频网站| 久9热在线精品视频| 18禁国产床啪视频网站| 亚洲无线在线观看| 国产高清有码在线观看视频 | 久久午夜亚洲精品久久| 欧美成人一区二区免费高清观看 | 国产精品久久久人人做人人爽| 免费看a级黄色片| 在线a可以看的网站| 亚洲精品久久国产高清桃花| 亚洲精品美女久久久久99蜜臀| 国产不卡一卡二| 国产三级中文精品| 在线观看www视频免费| 亚洲色图av天堂| 男男h啪啪无遮挡| 国产在线精品亚洲第一网站| 色av中文字幕| xxxwww97欧美| 午夜精品久久久久久毛片777| 国产精品久久视频播放| 听说在线观看完整版免费高清| 亚洲精品色激情综合| 国产欧美日韩精品亚洲av| 国产一区二区激情短视频| 亚洲人成77777在线视频| 亚洲七黄色美女视频| 男女之事视频高清在线观看| 亚洲aⅴ乱码一区二区在线播放 | 国产精品亚洲美女久久久| 亚洲av五月六月丁香网| 熟妇人妻久久中文字幕3abv| 一本综合久久免费| 又黄又粗又硬又大视频| av福利片在线观看| 亚洲国产高清在线一区二区三| 麻豆久久精品国产亚洲av| 日韩欧美 国产精品| 美女午夜性视频免费| 中文字幕人成人乱码亚洲影| 91麻豆精品激情在线观看国产| 视频区欧美日本亚洲| 国产成人精品久久二区二区91| 真人一进一出gif抽搐免费| a在线观看视频网站| 97超级碰碰碰精品色视频在线观看| 婷婷丁香在线五月| 免费在线观看亚洲国产| 亚洲一卡2卡3卡4卡5卡精品中文| 又大又爽又粗| 国产精品久久视频播放| av超薄肉色丝袜交足视频| 亚洲av第一区精品v没综合| 精品久久久久久久毛片微露脸| 国产成年人精品一区二区| 久久精品夜夜夜夜夜久久蜜豆 | a级毛片a级免费在线| 制服丝袜大香蕉在线| 俺也久久电影网| 很黄的视频免费| 亚洲男人的天堂狠狠| 久久久精品大字幕| 欧美日韩瑟瑟在线播放| 日韩中文字幕欧美一区二区| 亚洲精品中文字幕在线视频| 嫩草影视91久久| 色哟哟哟哟哟哟| 日韩欧美 国产精品| 欧美+亚洲+日韩+国产| 国产男靠女视频免费网站| 亚洲片人在线观看| 亚洲精品色激情综合| 叶爱在线成人免费视频播放| 一个人免费在线观看电影 | 亚洲av第一区精品v没综合| 给我免费播放毛片高清在线观看| 又爽又黄无遮挡网站| 久久久精品大字幕| 成人永久免费在线观看视频| 成人特级黄色片久久久久久久| 国产真人三级小视频在线观看| 男女床上黄色一级片免费看| 日日干狠狠操夜夜爽| 亚洲人成伊人成综合网2020| 免费看日本二区| 高潮久久久久久久久久久不卡| 国内精品一区二区在线观看| 人妻夜夜爽99麻豆av| 18禁观看日本| 亚洲真实伦在线观看| 免费av毛片视频| 天堂√8在线中文| 51午夜福利影视在线观看| 中国美女看黄片| 久久中文字幕一级| 俺也久久电影网| 国产午夜精品久久久久久| 国产高清有码在线观看视频 | www.精华液| 日本熟妇午夜| 久久国产精品影院| 久久婷婷成人综合色麻豆| 悠悠久久av| 午夜影院日韩av| 午夜福利欧美成人| 欧美午夜高清在线| 波多野结衣高清作品| 国产成人精品久久二区二区91| 欧美3d第一页| 怎么达到女性高潮| 国产精品99久久99久久久不卡| 亚洲 国产 在线| 岛国视频午夜一区免费看| 免费搜索国产男女视频| 女警被强在线播放| 亚洲avbb在线观看| 好看av亚洲va欧美ⅴa在| 黄色 视频免费看| 美女大奶头视频| 久久精品综合一区二区三区| 黄色片一级片一级黄色片| 亚洲avbb在线观看| 不卡av一区二区三区| 身体一侧抽搐| 久久99热这里只有精品18| 久久久久久大精品| 国模一区二区三区四区视频 | 久久久国产精品麻豆| 亚洲九九香蕉| 最近最新免费中文字幕在线| 亚洲欧美日韩高清专用| 麻豆国产av国片精品| 精品无人区乱码1区二区| 久久草成人影院| 正在播放国产对白刺激| 亚洲av中文字字幕乱码综合| 免费在线观看视频国产中文字幕亚洲| 国产精品一区二区精品视频观看| 熟女电影av网| 亚洲全国av大片| 国产在线观看jvid| 国产精品一及| 亚洲av日韩精品久久久久久密| 日韩 欧美 亚洲 中文字幕| 国产免费av片在线观看野外av| 欧美黄色片欧美黄色片| a级毛片a级免费在线| a在线观看视频网站| 亚洲avbb在线观看| 岛国在线观看网站| 人人妻,人人澡人人爽秒播| 久久久水蜜桃国产精品网| 男女视频在线观看网站免费 | 久久久久久免费高清国产稀缺| 国产主播在线观看一区二区| 免费搜索国产男女视频| 成人亚洲精品av一区二区| 亚洲av中文字字幕乱码综合| 亚洲 欧美 日韩 在线 免费| av在线播放免费不卡| 亚洲狠狠婷婷综合久久图片| 日本 欧美在线| 最新在线观看一区二区三区| 高潮久久久久久久久久久不卡| 日本熟妇午夜| 男女午夜视频在线观看| 在线免费观看的www视频| 一个人观看的视频www高清免费观看 | 丁香六月欧美| 在线观看免费视频日本深夜| 国产av在哪里看| 午夜免费观看网址| 我要搜黄色片| 国产欧美日韩一区二区精品| 成年女人毛片免费观看观看9| 50天的宝宝边吃奶边哭怎么回事| 熟妇人妻久久中文字幕3abv| 国产精品久久久久久久电影 | bbb黄色大片| 亚洲欧洲精品一区二区精品久久久| 亚洲av片天天在线观看| 在线观看66精品国产| 男女午夜视频在线观看| 深夜精品福利| 色播亚洲综合网| 国产日本99.免费观看| 精品第一国产精品| 日本熟妇午夜| 欧美又色又爽又黄视频| 国产欧美日韩精品亚洲av| 母亲3免费完整高清在线观看| 国产麻豆成人av免费视频| 制服人妻中文乱码| 超碰成人久久| 999久久久国产精品视频| 精品乱码久久久久久99久播| 免费人成视频x8x8入口观看| 免费在线观看亚洲国产| 成人精品一区二区免费| 亚洲成人免费电影在线观看| avwww免费| 国产黄色小视频在线观看| 午夜激情福利司机影院| 日本在线视频免费播放| 国产av一区在线观看免费| 日韩欧美在线乱码| 黑人操中国人逼视频| 少妇粗大呻吟视频| 国产一区二区在线av高清观看| 一本一本综合久久| 99热这里只有精品一区 | 国产视频内射| 日韩精品中文字幕看吧| 国产真人三级小视频在线观看| 俄罗斯特黄特色一大片| 国产97色在线日韩免费| 日韩国内少妇激情av| 午夜a级毛片| 色精品久久人妻99蜜桃| 脱女人内裤的视频| 免费在线观看影片大全网站| 欧美日韩中文字幕国产精品一区二区三区| 后天国语完整版免费观看| 国产aⅴ精品一区二区三区波| 免费无遮挡裸体视频| 啦啦啦免费观看视频1| 日本 欧美在线| 国产成人啪精品午夜网站| 黄色成人免费大全| 久久精品国产亚洲av香蕉五月| 18禁美女被吸乳视频| 色av中文字幕| 国产精品99久久99久久久不卡| 亚洲国产看品久久| 黄频高清免费视频| 欧洲精品卡2卡3卡4卡5卡区| 国产乱人伦免费视频| 国产真人三级小视频在线观看| 制服丝袜大香蕉在线| 国产成人欧美在线观看| 香蕉久久夜色| 亚洲片人在线观看| 中国美女看黄片| 国产探花在线观看一区二区| av中文乱码字幕在线| 亚洲九九香蕉| 欧美成人免费av一区二区三区| 亚洲一区二区三区不卡视频| 人人妻,人人澡人人爽秒播| 亚洲精品中文字幕一二三四区| 婷婷丁香在线五月| 日韩精品中文字幕看吧| 国产蜜桃级精品一区二区三区| 99riav亚洲国产免费| 久久久精品大字幕| www.自偷自拍.com| 午夜福利免费观看在线| e午夜精品久久久久久久| 亚洲一区二区三区不卡视频| 久久人人精品亚洲av| 日本免费a在线| 国产区一区二久久| 久久精品人妻少妇| 久久香蕉国产精品| 热99re8久久精品国产| 91九色精品人成在线观看| 国产精品久久久av美女十八| 黄片大片在线免费观看| 看黄色毛片网站| 无遮挡黄片免费观看| 国产精品久久视频播放| 看免费av毛片| 亚洲专区中文字幕在线| 91成年电影在线观看| 成人国语在线视频| 亚洲专区国产一区二区| 久久精品夜夜夜夜夜久久蜜豆 | 丝袜美腿诱惑在线| 日本撒尿小便嘘嘘汇集6| 中文字幕高清在线视频| 久久欧美精品欧美久久欧美| 国产精品免费一区二区三区在线| 男女视频在线观看网站免费 | 国产精品久久久久久亚洲av鲁大| 国产黄a三级三级三级人| 久久香蕉激情| 午夜久久久久精精品| av福利片在线观看| 丰满的人妻完整版| 又大又爽又粗| 成人18禁高潮啪啪吃奶动态图| 精品少妇一区二区三区视频日本电影| 亚洲国产看品久久| 最近最新中文字幕大全免费视频| 夜夜夜夜夜久久久久| 91在线观看av| 精品久久久久久,| 亚洲欧美一区二区三区黑人| 中出人妻视频一区二区| 国内精品一区二区在线观看| 99re在线观看精品视频| 欧美在线一区亚洲| 欧美中文综合在线视频| 一二三四在线观看免费中文在| 少妇被粗大的猛进出69影院| 久久久久九九精品影院| 亚洲专区字幕在线| 18禁国产床啪视频网站| 18禁黄网站禁片午夜丰满| 亚洲国产精品合色在线| 麻豆国产97在线/欧美 | 精品少妇一区二区三区视频日本电影| 一夜夜www| 啦啦啦观看免费观看视频高清| 欧美黑人精品巨大| 少妇的丰满在线观看| 麻豆久久精品国产亚洲av| 日本 欧美在线| 不卡av一区二区三区| 极品教师在线免费播放| 午夜成年电影在线免费观看| 免费看a级黄色片| 成人av在线播放网站| 亚洲中文字幕日韩| 国产精品 国内视频| 女人爽到高潮嗷嗷叫在线视频| 免费高清视频大片| 日韩欧美国产在线观看| 国产精品久久久久久亚洲av鲁大| 男人的好看免费观看在线视频 | 俄罗斯特黄特色一大片| 国产激情欧美一区二区| 国产私拍福利视频在线观看| 99热这里只有精品一区 | 成年版毛片免费区| 99国产综合亚洲精品| 中文字幕高清在线视频| 巨乳人妻的诱惑在线观看| 亚洲国产欧美一区二区综合| 久久久久免费精品人妻一区二区| 国产一区在线观看成人免费| 国产精品 国内视频| 亚洲国产欧美网| 久久精品影院6| 法律面前人人平等表现在哪些方面| 午夜视频精品福利| 性色av乱码一区二区三区2| 夜夜躁狠狠躁天天躁| 88av欧美| 国产成人啪精品午夜网站| 母亲3免费完整高清在线观看| 这个男人来自地球电影免费观看| 国产成人av激情在线播放| 久久久久久人人人人人| 国产黄色小视频在线观看| 婷婷丁香在线五月| 精品不卡国产一区二区三区| 老汉色av国产亚洲站长工具| 在线看三级毛片| 免费一级毛片在线播放高清视频| 欧美+亚洲+日韩+国产| 大型av网站在线播放| 欧美久久黑人一区二区| 欧美+亚洲+日韩+国产| 日韩高清综合在线| 亚洲欧美日韩高清在线视频| 99re在线观看精品视频| 青草久久国产| 成人国产综合亚洲| 亚洲中文av在线| 亚洲第一欧美日韩一区二区三区| 动漫黄色视频在线观看| 俄罗斯特黄特色一大片| 国产人伦9x9x在线观看| 日韩精品青青久久久久久| 欧美黑人巨大hd| 国产精品电影一区二区三区| 一级a爱片免费观看的视频| 又大又爽又粗| 亚洲精品av麻豆狂野| 亚洲国产精品sss在线观看| 精品久久久久久久末码| 高潮久久久久久久久久久不卡| av中文乱码字幕在线| a在线观看视频网站| 黑人操中国人逼视频| 国产一区在线观看成人免费| 嫁个100分男人电影在线观看| 色综合婷婷激情| 男人舔女人下体高潮全视频| 高清毛片免费观看视频网站| 中文字幕高清在线视频| 国产一区在线观看成人免费| 国产亚洲av嫩草精品影院| 欧美性猛交黑人性爽| 精品久久蜜臀av无| 久久久久久人人人人人| 成人午夜高清在线视频| 啦啦啦韩国在线观看视频| 美女免费视频网站| 国产精品美女特级片免费视频播放器 | 国产欧美日韩一区二区三| 很黄的视频免费| 国产一级毛片七仙女欲春2| 亚洲av熟女| 日日爽夜夜爽网站| 男人舔女人下体高潮全视频| 可以在线观看的亚洲视频| 免费无遮挡裸体视频| 国产精品自产拍在线观看55亚洲| 伦理电影免费视频| 日本五十路高清| 黄片大片在线免费观看| 天天一区二区日本电影三级| 亚洲av成人av| 国产精品久久电影中文字幕| 老熟妇仑乱视频hdxx| 国产高清有码在线观看视频 | 国产亚洲精品av在线| 宅男免费午夜| 亚洲第一欧美日韩一区二区三区| 一区二区三区高清视频在线| a级毛片在线看网站| 欧美性长视频在线观看| 国产精品日韩av在线免费观看| 国产高清videossex| 精品久久久久久,| bbb黄色大片| 久久久久久免费高清国产稀缺| 日日干狠狠操夜夜爽| 麻豆一二三区av精品| 久久中文看片网| 少妇的丰满在线观看| 午夜福利高清视频| 免费看十八禁软件| 成人永久免费在线观看视频| 亚洲精品美女久久久久99蜜臀| 欧美日韩亚洲国产一区二区在线观看| 久久久久久人人人人人| 国产成人影院久久av| 天天一区二区日本电影三级| 欧美一区二区国产精品久久精品 | 午夜精品一区二区三区免费看| 午夜福利欧美成人| 亚洲人成电影免费在线| 黄色成人免费大全| 少妇裸体淫交视频免费看高清 | 欧美绝顶高潮抽搐喷水| 亚洲精品粉嫩美女一区| 国产人伦9x9x在线观看| 亚洲国产看品久久| 亚洲一区高清亚洲精品| 日韩欧美国产一区二区入口| 精品欧美国产一区二区三| 亚洲午夜精品一区,二区,三区| 极品教师在线免费播放| 免费一级毛片在线播放高清视频| 亚洲,欧美精品.| √禁漫天堂资源中文www| 午夜影院日韩av| 99精品久久久久人妻精品| 日本成人三级电影网站| 亚洲欧美一区二区三区黑人| 色综合婷婷激情| 国产欧美日韩精品亚洲av| 欧美国产日韩亚洲一区| 2021天堂中文幕一二区在线观| 国产亚洲av嫩草精品影院| 婷婷亚洲欧美| 欧美性猛交╳xxx乱大交人| 窝窝影院91人妻| 男女床上黄色一级片免费看| 欧美中文综合在线视频| 亚洲精品在线观看二区| av福利片在线| 不卡一级毛片| 又大又爽又粗| av福利片在线观看| 欧美zozozo另类| 又黄又爽又免费观看的视频| 亚洲欧美一区二区三区黑人| 欧美性长视频在线观看| 免费观看人在逋| 啦啦啦韩国在线观看视频| 亚洲av美国av| 精品第一国产精品| 欧美黄色片欧美黄色片| 亚洲人成网站高清观看| 亚洲av美国av| 国内精品久久久久精免费| 亚洲av日韩精品久久久久久密| 中文字幕久久专区| www.999成人在线观看| 国产人伦9x9x在线观看| 欧美午夜高清在线| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久人人做人人爽| 美女扒开内裤让男人捅视频| 国产真人三级小视频在线观看| 老司机午夜福利在线观看视频| 午夜福利18| 首页视频小说图片口味搜索| 国产亚洲av高清不卡| 51午夜福利影视在线观看| 亚洲电影在线观看av| 欧美日韩瑟瑟在线播放| 99久久国产精品久久久| 欧美午夜高清在线| 特大巨黑吊av在线直播| 亚洲成人中文字幕在线播放| 日本熟妇午夜| 久久久久九九精品影院| 精品人妻1区二区| 小说图片视频综合网站|