• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      氧化石墨烯的制備及結(jié)構(gòu)研究進(jìn)展

      2018-01-08 05:56:18朱宏文段正康
      材料科學(xué)與工藝 2017年6期
      關(guān)鍵詞:插層含氧濃硫酸

      朱宏文,段正康,張 蕾,尹 科

      (湘潭大學(xué) 化工學(xué)院,湖南 湘潭 411105)

      氧化石墨烯的制備及結(jié)構(gòu)研究進(jìn)展

      朱宏文,段正康,張 蕾,尹 科

      (湘潭大學(xué) 化工學(xué)院,湖南 湘潭 411105)

      氧化石墨烯是一種表面含有豐富的含氧官能團(tuán)石墨烯衍生物.氧化石墨烯擁有較大的比表面積、良好的親水性和生物親和性,被廣泛應(yīng)用于傳感器、儲能材料、藥物載體、催化等領(lǐng)域.本文介紹了近幾年氧化石墨烯的制備方法,簡述了由Hummers法制備氧化石墨烯的生成機(jī)理,主要概括了氧化石墨烯新的結(jié)構(gòu)模型,提出尋找高效綠色的氧化劑是制備氧化石墨烯的關(guān)鍵,確定氧化石墨烯的結(jié)構(gòu)對其表面改性及在復(fù)合材料的應(yīng)用和發(fā)展有重要的影響.

      氧化石墨烯;制備;機(jī)理;結(jié)構(gòu);石墨烯

      氧化石墨烯(GO)是氧化改性的石墨烯衍生物,通常碳氧的原子個數(shù)比為 2.0~3.0[1].GO的石墨片層兩側(cè)含有羥基、環(huán)氧基,邊緣附有羧基[2],這些含氧基團(tuán)使GO易與有機(jī)小分子、聚合物等通過共價或非共價相互作用形成改性氧化石墨烯(MGO)[3-4].GO優(yōu)異的理化性質(zhì)使其被廣泛應(yīng)用于傳感器[5]、藥物載體[6-7]、儲能材料[8]和催化[9]等領(lǐng)域.GO與水分子反應(yīng)能釋放出質(zhì)子降低電阻,由此原理制備的濕敏傳感器響應(yīng)時間只有30 ms[5].納米氧化石墨烯具有良好的水溶性和生物親和性,在藥物載體方向有很大的應(yīng)用前景[6-7].GO因具有較大的比表面積和豐富的含氧官能團(tuán)而被應(yīng)用于催化劑和催化劑載體.GO作為吸附劑、電子受體、光敏劑,有效地增強(qiáng)了TiO2對乙烷的光解催化作用[9].通過化學(xué)還原[10]、熱處理等方式將GO碳原子層上的含氧基團(tuán)脫去形成還原氧化石墨烯(rGO)[11],這是工業(yè)化大規(guī)模生產(chǎn)石墨烯最前景的方法.

      本文介紹了近幾年氧化石墨烯的制備方法,簡述了由Hummers法制備氧化石墨烯的生成機(jī)理,主要概括了氧化石墨烯新的結(jié)構(gòu)模型.最后,提出尋找高效綠色的氧化劑是制備氧化石墨烯的關(guān)鍵,確定氧化石墨烯的結(jié)構(gòu)對其表面改性及在復(fù)合材料的應(yīng)用和發(fā)展有重要的影響.

      1 氧化石墨烯的制備方法及機(jī)理

      1.1 氧化石墨烯的制備方法

      Brodie最早于1859年采用發(fā)煙硝酸和KClO3氧化制備GO,在此基礎(chǔ)上發(fā)展出了Staudenmaier法和Hummers法[12].Brodie法和Staudenmaier法使用濃HNO3/KClO3體系,在反應(yīng)過程中有爆炸的危險,會產(chǎn)生有毒氣體(NOx、ClO2),反應(yīng)時間較長.相較于前2種方法,Hummers法因反應(yīng)時間短、無有毒氣體ClO2而被廣泛使用,且以KMnO4為氧化劑制備的GO含氧量更高,羰基和羧基的比例更大[13].表1列出了一些常用的制備GO的方法[14-22].

      常規(guī)的Hummers法使用NaNO3/KMnO4為氧化劑,在濃硫酸的環(huán)境中具有極強(qiáng)的氧化性,但反應(yīng)時間較長,反應(yīng)過程中產(chǎn)生NO2、N2O4及重金屬污染,產(chǎn)品中的Na+和NO3-不易除去[23],且KMnO4在冷的濃硫酸中反應(yīng)[24],產(chǎn)生的Mn2O7在55 ℃以上有爆炸的危險.

      表1 氧化石墨烯的制備方法[12, 14-22]

      作為制備石墨烯的前驅(qū)體,GO必須滿足結(jié)構(gòu)規(guī)整、無孔洞缺陷的要求.對于Hummers法的改進(jìn)主要集中在氧化劑的選取上,氧化劑要滿足效率高、無危險、無有毒氣體排放[17]等條件.NaNO3通常被認(rèn)為與濃硫酸反應(yīng)生成具有氧化作用的HNO3,起到促進(jìn)氧化的作用.但最新研究發(fā)現(xiàn),HNO3的氧化作用與濃硫酸相比微乎其微[25].在反應(yīng)體系中不添加NaNO3,可以有效避免有毒氣體(NOx)的產(chǎn)生,對于反應(yīng)過程中產(chǎn)生的廢液進(jìn)行堿化沉積能降低Mn2+對環(huán)境的污染[26].以過氧化苯甲酰粉末作為氧化劑[15],在不加入任何溶劑的條件下110 ℃反應(yīng)10 min即可得到產(chǎn)品GO,雖然這種方法有效地提高了氧化效率,但反應(yīng)溫度較高,且過氧化苯甲酰極不穩(wěn)定,在加熱過程中有爆炸的危險.Marcano等[20]采用H2SO4/H3PO4的混合酸體系,沒有常規(guī)Hummers法的高溫反應(yīng),降低了生產(chǎn)能耗,反應(yīng)過程中無有毒氣體,制備的GO氧化程度更高,結(jié)構(gòu)更加規(guī)整,但KMnO4和濃硫酸的量是常規(guī)Hummers法的2倍和5倍,增加了原料和廢液處理的成本.不使用KMnO4/H2SO4體系作為氧化劑可以有效降低反應(yīng)的危險性和污染程度,以HNO3為氧化劑制備GO副產(chǎn)物少,提純相對簡單,但依舊有有毒氣體的產(chǎn)生和反應(yīng)時間長的缺點(diǎn)[18].因此,選用一種高效、安全的氧化劑顯得尤為重要.采用K2FeO4作為制備GO的氧化劑[17],在室溫環(huán)境下1h就能制備出產(chǎn)品,是一種安全無毒的方法.Yu等[27]用雙氧水代替濃硫酸,相比于高粘度的濃硫酸,水分子插層進(jìn)入石墨層間有助于Fe(VI)更好地在層間分散.雖然K2FeO4在酸性環(huán)境中有很強(qiáng)的氧化性,但穩(wěn)定性很弱,僅保持?jǐn)?shù)秒便會分解,這也限制了K2FeO4作為氧化劑制備GO的發(fā)展[28].

      除氧化劑外,石墨原料的性質(zhì)和反應(yīng)過程中條件的改變也會影響到GO的性質(zhì).結(jié)晶度高的石墨粉制備的GO具有更強(qiáng)的極性、更大的比表面積,但含有的羥基和羧酸基團(tuán)相對較少[29].Hummers法氧化反應(yīng)的低溫和中溫階段主要發(fā)生石墨的插層和氧化反應(yīng),在反應(yīng)過程中進(jìn)行超聲可以有效增加產(chǎn)物的層間距[30].GO的孔洞缺陷主要源于過度氧化產(chǎn)生CO2,當(dāng)溫度高于50 ℃時GO便會不穩(wěn)定[31].通過將反應(yīng)溫度控制在10 ℃以下并延長反應(yīng)時間,制備的GO孔洞缺陷比例小于0.01%[16],對于還原法制備高質(zhì)量的石墨烯有重要的意義.

      1.2 氧化石墨烯的形成機(jī)理

      不同方法制備的GO其形成過程有所差異,但其機(jī)理可總結(jié)為:插層—氧化—剝離3個階段.插層劑(如:濃硫酸[12]、過氧化苯甲酰[15])在氧化劑的協(xié)同作用下進(jìn)入石墨層間,這一過程伴隨著輕微的氧化.隨著加水和溫度的升高,氧化劑的強(qiáng)氧化作用使石墨開始大量氧化,表面形成含氧官能團(tuán)并增大層間距,最后在超聲或者熱作用下氧化石墨剝離形成GO.

      傅玲等[32]將常規(guī)Hummers法制備GO的過程分為低溫插層、中溫氧化和高溫水解剝離3個階段.此后許多改良的Hummers法雖然沒有低溫、高溫過程,但都必須經(jīng)過插層—氧化—剝離3個階段.對制備GO的機(jī)理研究以常規(guī)Hummers法為例[25, 33-37]:插層階段通常處于低溫環(huán)境下,KMnO4首先與冷的濃硫酸反應(yīng)生成氧化活性成分Mn2O7[24]或MnO3+[37].濃硫酸與石墨不能自發(fā)進(jìn)行插層反應(yīng)[38],必須借助電化學(xué)或者化學(xué)氧化(硝酸、KMnO4等)的方法.在濃硫酸和KMnO4的協(xié)同作用下,石墨的邊緣和孔洞缺陷部位輕微氧化并增大層間距以便硫酸和硫酸根離子插層,3~5 min內(nèi)可形成一階硫酸—石墨層間化合物(H2SO4-GIC),其形成速度與反應(yīng)環(huán)境的電化學(xué)勢相關(guān)[37].

      氧化階段分為2個部分,中溫反應(yīng)到加去離子水之前為氧化階段第1部分,加入去離子水后到加雙氧水之前為氧化階段第2部分.第1階段的氧化成分為Mn2O7[24]或MnO3+[37].隨著反應(yīng)的進(jìn)行,邊緣部分和缺陷部分的羥基氧化反應(yīng)生成酮基和羧酸基團(tuán)[39],而石墨層上的部分羥基會轉(zhuǎn)化為羧基.硫酸或硫酸氫根離子與環(huán)氧基團(tuán)發(fā)生親核取代反應(yīng),生成少量的二取代共價硫酸鹽[35, 40],這是GO顯酸性的原因之一.這個過程是整個Hummers法的速度控制階段,其反應(yīng)速度與原料石墨的結(jié)晶度[29]和粒度[21]有關(guān),結(jié)晶度越低、粒度越小的石墨反應(yīng)速度越快.這一過程的產(chǎn)物在不加入大量水的情況下可以穩(wěn)定存在幾個月[37].

      剝離階段,在反應(yīng)物中添加適量的雙氧水,溶液變?yōu)榱咙S色,未反應(yīng)的KMnO4和MnO2被還原形成無色可溶的MnSO4.隨著使用去離子水重復(fù)清洗,溶液顏色慢慢變深,最終變?yōu)樯钭厣玔35],而使用有機(jī)溶劑清洗氧化石墨,顏色變?yōu)樯铧S色.這意味著氧化石墨在水洗的過程中發(fā)生了化學(xué)變化,增加了π鍵相互作用使得顏色變深[35].GO在水溶液中慢慢剝離,使用超聲的方法可以加快這種進(jìn)程[45-46].

      2 氧化石墨烯的結(jié)構(gòu)

      GO是一種多分散性的物質(zhì),其非化學(xué)計量結(jié)構(gòu)和制備方法的影響導(dǎo)致了它的精確結(jié)構(gòu)依舊難以確定[4, 47].隨著表征技術(shù)的進(jìn)步, GO的結(jié)構(gòu)也在不斷完善.基于固體核磁共振(NMR)[48-49]、X射線光電子能譜(XPS)、傅里葉變換紅外光譜(FTIR)[50]、拉曼光譜、密度泛函理論[51]等對GO的分析,環(huán)氧基團(tuán)、羥基、羰基、內(nèi)酯、酮等含氧基團(tuán)被陸續(xù)發(fā)現(xiàn)存在于GO片層上.表2列出了GO的一些結(jié)構(gòu)模型.

      表2 氧化石墨烯的結(jié)構(gòu)模型[34, 49, 52-55]

      2.1 L-K模型

      Lerf等[49,56-57]使用13C和1H NMR確定了GO上羥基、環(huán)氧基團(tuán)、碳碳雙鍵的存在,并提出了現(xiàn)在被廣泛認(rèn)可的L-K模型的雛形.GO分為2個區(qū)域:未被氧化的苯環(huán)區(qū)域和被氧化的脂肪族六元環(huán)區(qū)域,2個區(qū)域的相對大小取決于氧化程度并且隨機(jī)分布在GO上[58].除了連接羥基使得平面輕微扭曲形成褶皺外,GO基本上仍是平面二維結(jié)構(gòu).1,3-環(huán)氧基團(tuán)和羥基分布在氧化石墨烯片層上,并推測在邊緣分布著因量太少而未被檢測到的羧酸基團(tuán).

      隨著檢測方法的不斷進(jìn)步,對于GO結(jié)構(gòu)的研究也有著重要的影響.FT-IR、XANES等檢測[59]表明,環(huán)氧基團(tuán)、羥基、酮基、硫酸酯[40]等官能團(tuán)存在GO上.通過SEM對GO片層觀察發(fā)現(xiàn)[60],GO不僅有高度無序的氧化區(qū)域、未氧化的石墨區(qū)域,還有過度氧化和片層剝離時形成的孔洞缺陷[61].

      L-K結(jié)構(gòu)模型的缺陷在于忽略了原料石墨[62]、氧化劑[13]、氧化方法對于GO結(jié)構(gòu)的影響[24].

      2.2 動態(tài)結(jié)構(gòu)模型(DSM)

      L-K模型中,羧酸基團(tuán)存在于GO片層和孔洞的邊緣,這推測常常被用于解釋GO水溶液的酸性.實際上,GO每25個碳原子有1個酸位,GO片層和孔洞的邊緣無法提供對應(yīng)量的羧酸基團(tuán),而且NMR和XPS并沒有確定羧酸基團(tuán)的存在[34].

      Dimiev等[35]發(fā)現(xiàn),GO的酸性來源于氧化石墨與水的反應(yīng),通過使用Boehm滴定法研究GO的PH變化時發(fā)現(xiàn),NaOH能促進(jìn)GO產(chǎn)生質(zhì)子,因此GO的酸性不僅僅來源于通常認(rèn)為的羧酸官能團(tuán),由此提出了GO的動態(tài)結(jié)構(gòu)模型(DSM).

      DSM認(rèn)為,GO水溶液中的官能團(tuán)并不是一成不變的,而是隨著時間變化,GO與水發(fā)生一系列的反應(yīng)并產(chǎn)生質(zhì)子并逐漸轉(zhuǎn)變?yōu)轭惛乘幔@是GO顯酸性的主要原因[34,63-64].由Hummers法制備的GO中含有少量的共價硫酸鹽,其水解產(chǎn)生硫酸也是GO顯酸性的原因之一[40].

      2.3 二元結(jié)構(gòu)模型

      GO分散液在堿性條件下反應(yīng),環(huán)氧基團(tuán)和羥基大幅度減少,sp2雜化碳原子增加,層間距減小[65],在水溶液中的溶解度大大降低,分離后得到的黑色固體被命名為bwGO(base washed GO),從GO上剝離的小分子被稱之為氧化碎片(OD).通過研究bwGO和OD的性質(zhì)及類比碳納米管的結(jié)構(gòu),Rourke等[55]提出了GO的二元結(jié)構(gòu)模型.GO由高度氧化的OD和低氧化度的bwGO構(gòu)成,見圖1.

      OD是從GO上堿洗脫離下來的小碎片[66],約占整個氧化石墨烯質(zhì)量的1/3.OD被認(rèn)為是類富里酸和腐殖酸的小分子,通過HRTEM可以觀察到OD存在于GO上[66].OD的量與氧化的方法有關(guān),Hummers法中的KMnO4氧化性比Brodie法的KClO3高,產(chǎn)生的OD也更多[67].中性或者酸性環(huán)境下,OD以π-π共軛、范德華相互作用和氫鍵緊密地連接在石墨片層上[66, 68].堿性環(huán)境下,OD上官能團(tuán)的去質(zhì)子化使其與bwGO因靜電相互作用而分離[64],伴隨著有機(jī)硫化物的水解和C-C鍵的斷裂,并在新形成的石墨層邊緣產(chǎn)生酮基[69].類似于化學(xué)還原法制備石墨烯的過程,但還原程度相對較低,片層上仍帶有一定量的含氧官能團(tuán)[70].一旦分離后,OD與bwGO將不會復(fù)合在一起,這說明GO本身一種相對穩(wěn)定的狀態(tài).

      圖1 氧化石墨烯的二元結(jié)構(gòu)模型[55]

      OD類似于GO的表面活性劑,一旦剝離,bwGO將不再溶于水[55].通過超聲可以將氧化石墨剝離形成單層的GO,也可以將OD從石墨片層上剝離,超聲的時間越長剝離越完全.隨著GO剝離程度的增大,其固有的電化學(xué)活性降低,這說明OD是GO上電化學(xué)活性的關(guān)鍵[71].最近研究發(fā)現(xiàn),OD與GO的熒光現(xiàn)象有關(guān)[72].雖然OD在GO上的熒光現(xiàn)象機(jī)理仍不明確,但當(dāng)OD被移除后,GO失去了熒光性.GO與納米Ag顆粒的復(fù)合機(jī)理通常被認(rèn)為與含氧官能團(tuán)(羧基、羥基和環(huán)氧基團(tuán)等)有關(guān)[66, 73].當(dāng)OD被移除后,由bwGO制備的復(fù)合物中的納米銀顆粒尺寸明顯變大,結(jié)晶度更高,胺類氧化耦合反應(yīng)制備的亞胺催化效果更好[74],對有機(jī)分子額有更強(qiáng)的化學(xué)吸附能力[75].OD還影響著GO的磁化強(qiáng)度[76]和生物相容性[77].

      3 結(jié) 語

      以GO為前驅(qū)體大規(guī)模制備石墨烯具有很好地發(fā)展前景,但現(xiàn)有的制備GO的方法普遍存在產(chǎn)品難提純、缺陷多等缺點(diǎn).由此制備的還原氧化石墨烯與機(jī)械剝離的石墨烯在結(jié)構(gòu)、性質(zhì)上存在很大的差異.GO因表面豐富的含氧基團(tuán)而具有廣泛的催化性能,但復(fù)雜的結(jié)構(gòu)導(dǎo)致難以明確GO的催化活性中心和催化反應(yīng)機(jī)理.因此,對于氧化石墨烯制備方法、結(jié)構(gòu)等方面的研究顯得尤為重要:

      1)GO的結(jié)構(gòu)隨著表征技術(shù)的進(jìn)步而不斷完善,但GO上含氧基團(tuán)的催化機(jī)理和生理毒性仍不明確.確定氧化石墨烯的結(jié)構(gòu)對促進(jìn)改性氧化石墨烯在催化、藥物載體等方向的應(yīng)用有很大影響.

      2)使用KMnO4、KClO3等氧化劑制備會產(chǎn)生大量對環(huán)境有害物質(zhì),并且過強(qiáng)的氧化性會使石墨過度氧化產(chǎn)生孔洞缺陷,尋找一種環(huán)境友好、氧化程度可控的氧化方法對于大規(guī)模制備GO有很重要的作用.

      [1] BIANCO A, CHENG H M, ENOKI T, et al. All in the graphene family: a recommended nomenclature for two-dimensional carbon materials[J]. Carbon, 2013, 65(5696): 1-6.

      [2] YANG D, VELAMAKANNI A, BOZOKLU G, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy[J]. Carbon, 2009, 47(1): 145-152.

      [3] CHEN D, FENG H, LI J. Graphene oxide: preparation, functionalization, and electrochemical applications[J]. Chem Rev, 2012, 112(11): 6027-6053.

      [4] DREYER D R, TODD A D, BIELAWSKI C W. Harnessing the chemistry of graphene oxide[J]. Chem Soc Rev, 2014, 43(15): 5288-5301.

      [5] BORINI S, WHITE R, WEI D, et al. Ultrafast graphene oxide humidity sensors[J]. ACS Nano, 2013, 7(12): 11166-11173.

      [6] RAHMANIAN N, HAMISHEHKAR H, DOLATABADI J E, et al. Nano graphene oxide: a novel carrier for oral delivery of flavonoids[J]. Colloids & Surf B Biointerfaces, 2014, 123: 331-338.

      [7] BAO H, PAN Y, PING Y, et al. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery[J]. Small, 2011, 7(11): 1569-1578.

      [8] 朱平,蔡婷. MEMS超級電容器膜電極材料的表面改性[J]. 材料科學(xué)與工藝, 2015, 23(3): 102-106.

      ZHU Ping, CAI Ting. Modification of polyrrole film for the MEMS surpercapacitors[J]. Materials Science and Technology, 2015, 23(3): 102-106.

      [10] 萬武波,趙宗彬,胡涵,等. 檸檬酸鈉綠色還原制備石墨烯[J]. 新型炭材料,2011,26(1): 16-20.

      WAN Wubo, ZHAO Zongbin, HU Han, et al. "Green" reduction of graphene oxide to graphene by sodium citrate[J]. New Carbon Meterials, 2011, 26(1): 16-20.

      [11] MAO S, PU H, CHEN J. Graphene oxide and its reduction: modeling and experimental progress[J]. RSC Advances, 2012, 2(7): 2643-2662.

      [12] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.

      [13] CHUA C K, SOFER Z, PUMERA M. Graphite oxides: effects of permanganate and chlorate oxidants on the oxygen composition[J]. Chemistry-A European Journal, 2012, 18(42): 13453-13459.

      [14] OBATA S, SAIKI K, TANIGUCHI T, et al. Graphene oxide: a fertile nanosheet for various applications[J]. Journal of the Physical Society of Japan, 2015, 84(12): 121012.

      [15] SHEN J, HU Y, SHI M, et al. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets[J]. Chemistry of Materials, 2009, 21(15): 3514-3520.

      [16] EIGLER S, ENZELBERGER-HEIM M, GRIMM S, et al. Wet chemical synthesis of graphene[J]. Advanced Materials, 2013, 25(26): 3583-3587.

      [17] PENG L, XU Z, LIU Z, et al. An iron-based green approach to 1-h production of single-layer graphene oxide[J]. Nature Communications, 2015, 6: 5716.

      [18] ROSILLO-LOPEZ M, SALZMANN C G. A simple and mild chemical oxidation route to high-purity nano-graphene oxide[J]. Carbon, 2016, 106: 56-63.

      [19] SU C Y, XU Y, ZHANG W, et al. Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers[J]. Chemistry of Materials, 2009, 21(23): 5674-5680.

      [20] MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved synthesis of graphite oxide[J]. ACS Nano, 2010, 4(8): 4806-4814.

      [21] SUN L, FUGETSU B. Mass production of graphene oxide from expanded graphite[J]. Materials Letters, 2013, 109: 207-210.

      [22] PANWAR V, CHATTREE A, PAL K. A new facile route for synthesizing of graphene oxide using mixture of sulfuric-nitric-phosphoric acids as intercalating agent[J]. Physica E: Low-dimensional Systems and Nanostructures, 2015, 73: 235-241.

      [23] SHAMAILA S, SAJJAD A K L, IQBAL A. Modifications in development of graphene oxide synthetic routes[J]. Chemical Engineering Journal, 2016, 294: 458-477.

      [24] DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2009, 39(1): 228-240.

      [25] 任小孟,王源升,何特. Hummers法合成石墨烯的關(guān)鍵工藝及反應(yīng)機(jī)理[J]. 材料工程,2013(1): 1-5.

      REN Xiaomeng, WANG Yuansheng, HE Te. Key processes and mechanism for preparing graphene by hummers method[J]. Journal of Materials Engineering, 2013(1): 1-5.

      [26] CHEN J, YAO B, LI C, et al. An improved Hummers method for eco-friendly synthesis of graphene oxide[J]. Carbon, 2013, 64: 225-229.

      [27] YU C, WANG C F, CHEN S. Facile access to graphene oxide from ferro-induced oxidation[J]. Scientific Reports, 2016, 6: 17017.

      [28] SOFER Z, LUXA J, JANKOVSKY O, et al. Synthesis of graphene oxide by oxidation of graphite with ferrate(VI) compounds: myth or reality?[J]. Angewandte Chemie International Edition, 2016, 55(39): 11965-11969.

      [30] 鄒正光,俞惠江,龍飛,等. 超聲輔助Hummers法制備氧化石墨烯[J]. 無機(jī)化學(xué)學(xué)報,2011,27(9):1753-1757.

      ZOU Zhengguang, YU Huijiang, LONG Fei, et al. Preparation of graphene oxide by ultrasound-assisted hummers methods[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(9): 1753-1757.

      [31] EIGLER S, DOTZER C, HIRSCH A, et al. Formation and decomposition of CO2intercalated graphene oxide[J]. Chemistry of Materials, 2012, 24(7): 1276-1282.

      [32] 傅玲,劉洪波,鄒艷紅,等. Hummers法制備氧化石墨時影響氧化程度的工藝因素研究[J].炭素,2005(4): 10-14.

      FU Ling, LIU Hongbo, ZOU Yanhong, et al. Technology research on oxidative degree of graphite oxide prepared by hummers methods[J]. Carbon, 2005(4): 10-14.

      [33] SHAO G, LU Y, WU F, et al. Graphene oxide: the mechanisms of oxidation and exfoliation[J]. Journal of Materials Science, 2012, 47(10): 4400-4409.

      [34] DIMIEV A M, ALEMANY L B , TOUR J M. Graphene oxide. origin of acidity, its instability in water, and a new dynamic structural model[J]. ACS Nano, 2012, 7(1): 576-588.

      [35] DIMIEV A, KOSYNKIN D V, ALEMANY L B, et al. Pristine graphite oxide[J]. Journal of the American Chemical Society, 2012, 134(5): 2815-2822.

      [36] OGINO I, YOKOYAMA Y, MUKAI S R. Sonication-free exfoliation of graphite oxide via rapid phase change of water[J]. Topics in Catalysis, 2015, 58(7/8/9): 522-528.

      [37] DIMIEV A M, TOUR J M. Mechanism of graphene oxide[J]. ACS Nano, 2014, 8(3): 3060-3068.

      [38] DIMIEV A M, BACHILO S M, SAITO R, et al. Reversible formation of ammonium persulfate/sulfuric acid graphite intercalation compounds and their peculiar Raman spectra[J]. ACS Nano, 2012, 6(9): 7842-7849.

      [39] ROSILLO-LOPEZ M, LEE T J, BELLA M, et al. Formation and chemistry of carboxylic anhydrides at the graphene edge[J]. RSC Advances, 2015, 5(126): 104198-104202.

      [40] EIGLER S, DOTZER C, HOF F, et al. Sulfur species in graphene oxide[J]. Chemistry-A European Journal, 2013, 19(29): 9490-9496.

      [41] KANG J H, KIM T, CHOI J, et al. Hidden second oxidation step of hummers method[J]. Chemistry of Materials, 2016, 28(3): 756-764.

      [42] BOUKHVALOV D W. Oxidation of a graphite surface: the role of water[J]. The Journal of Physical Chemistry C, 2014, 118(47): 27594-27598.

      [43] LEE D W, SEO J W. Formation of phenol groups in hydrated graphite oxide[J]. Journal of Physical Chemistry C, 2011, 115(25): 12483-12486.

      [44] SHIN Y R, JUNG S M, JEON I Y, et al. The oxidation mechanism of highly ordered pyrolytic graphite in a nitric acid/sulfuric acid mixture[J]. Carbon, 2013, 52: 493-498.

      [45] LEI Z, MITSUI T, NAKAFUJI H, et al. Achieving 100% utilization of reduced graphene oxide by layer-by-layer assembly: insight into the capacitance of chemically derived graphene in a monolayer state[J]. The Journal of Physical Chemistry C, 2014, 118(13): 6624-6630.

      [46] JOSHI R K, CARBONE P, WANG F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172): 752-754.

      [47] YOU S, LUZAN S M, SZABO T, et al. Effect of synthesis method on solvation and exfoliation of graphite oxide[J]. Carbon, 2013, 52: 171-180.

      [48] VIEIRA M A, GONALVES G R, CIPRIANO D F, et al. Synthesis of graphite oxide from milled graphite studied by solid-state13C nuclear magnetic resonance[J]. Carbon, 2016, 98: 496-503.

      [49] HE H, RIEDL T, LERF A, et al. Solid-state NMR studies of the structure of graphite oxide[J]. The Journal of Physical Chemistry, 1996, 100(51): 19954-19958.

      [50] ZHANG C, DABBS D M, LIU L M, et al. Combined effects of functional groups, lattice defects, and edges in the infrared spectra of graphene oxide[J]. The Journal of Physical Chemistry C, 2015, 119(32): 18167-18176.

      [51] XING Y, LU P, WANG J, et al. Defect-induced selective oxidation of graphene: a first-principles study[J]. Applied Surface Science, 2016, 396: 243-248.

      [52] HOFMANN U, HOLST R. über die S?urenatur und die methylierung von graphitoxyd[J]. Berichte Der Deutschen Chemischen Gesellschaft (A and B Series), 1939, 72(4): 754-771.

      [53] RUSS G. über das graphitoxyhydroxyd (graphitoxyd)[J]. Monatshefte für Chem Verwandte Teile anderer Wissenschaften, 1947, 76(3/4/5): 381-417.

      [54] SCHOLZ W, BOEHM H P. Untersuchungen am graphitoxid. VI. Betrachtungen zur struktur des graphitoxids[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 1969, 369(3/4/5/6): 327-340.

      [55] ROURKE J P, PANDEY P A, MOORE J J, et al. The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets[J]. Angewandte Chemie, 2011, 50(14): 3231-3235.

      [56] LERF A, HE H, FORSTER M, et al. Structure of graphite oxide revisited[J]. The Journal of Physical Chemistry B, 1998, 102(23): 4477-4482.

      [57] HE H, KLINOWSKI J, FORSTER M, et al. A new structural model for graphite oxide[J]. Chemical Physics Letters, 1998, 287(1): 53-56.

      [58] KRISHNAMOORTHY K, VEERAPANDIAN M, YUN K, et al. The chemical and structural analysis of graphene oxide with different degrees of oxidation[J]. Carbon, 2013, 53: 38-49.

      [59] LEE D W, DE LOS SANTOS V L, SEO J W, et al. The structure of graphite oxide: investigation of its surface chemical groups[J]. The Journal Physical Chemistry B, 2010, 114(17): 5723-5728.

      [60] ERICKSON K, ERNI R, LEE Z, et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide[J]. Advanced Materials, 2010, 22(40): 4467-4472.

      [61] EIGLER S, HIRSCH A. Chemistry with graphene and graphene oxide-challenges for synthetic chemists[J]. Angewandte Chemie International Edition, 2014, 53(30): 7720-7738.

      [62] JASIM D A, LOZANO N, KOSTARELOS K. Synthesis of few-layered, high-purity graphene oxide sheets from different graphite sources for biology[J]. 2D Materials, 2016, 3(1): 014006.

      [63] DAVE S H, GONG C, ROBERTSON A W, et al. Chemistry and structure of graphene oxide via direct imaging[J]. ACS Nano, 2016, 10(8): 7515-7522.

      [64] WANG Z, SHIRLEY M D, MEIKLE S T, et al. The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions[J]. Carbon, 2009, 47(1): 73-79.

      [65] FAN X, PENG W, LI Y, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation[J]. Advanced Materials, 2008, 20(23): 4490-4493.

      [66] CHEN X, CHEN B. Direct observation, molecular structure, and location of oxidation debris on graphene oxide nanosheets[J]. Environ Science & Technology, 2016, 50(16): 8568-8577.

      [67] RODRIGUEZ-PASTOR I, RAMOS-FERNANDEZ G, VARELA-RIZO H, et al. Towards the understanding of the graphene oxide structure: how to control the formation of humic-and fulvic-like oxidized debris[J]. Carbon, 2015, 84: 299-309.

      [68] SPYROU K, CALVARESI M, DIAMANTI E K, et al. Graphite oxide and aromatic amines: size matters[J]. Advanced Functional Materials, 2015, 25(2): 263-269.

      [69] DIMIEV A M, POLSON T A. Contesting the two-component structural model of graphene oxide and reexamining the chemistry of graphene oxide in basic media[J]. Carbon, 2015, 93: 544-554.

      [70] THOMAS H R, DAY S P, WOODRUFF W E, et al. Deoxygenation of graphene oxide: reduction or cleaning?[J]. Chemistry of Materials, 2013, 25(18): 3580-3588.

      [71] BONANNI A, AMBROSI A, CHUA C K, et al. Oxidation debris in graphene oxide is responsible for its inherent electroactivity[J]. ACS Nano, 2014, 8(5): 4197-4204.

      [72] THOMAS H R, VALLES C, YOUNG R J, et al. Identifying the fluorescence of graphene oxide[J]. Journal of Materials Chemistry C, 2013, 1(2): 338-342.

      [73] FARIA A F, MARTINEZ D S T, MORAES A C M, et al. Unveiling the role of oxidation debris on the surface chemistry of graphene through the anchoring of Ag nanoparticles[J]. Chemistry of Materials, 2012, 24(21): 4080-4087.

      [74] SU C, ACIK M, TAKAI K, et al. Probing the catalytic activity of porous graphene oxide and the origin of this behaviour[J]. Nature Communications, 2012, 3: 1298.

      [75] MA D, DONG L, ZHOU M, et al. The influence of oxidation debris containing in graphene oxide on the adsorption and electrochemical properties of 1,10-phenanthroline-5,6-dione [J]. Analyst, 2016, 141(9): 2761-2766.

      [76] TANG T, LIU F, LIU Y, et al. Identifying the magnetic properties of graphene oxide[J]. Applied Physics Letters, 2014, 104(12): 123104.

      [77] PATTAMMATTEL A, WILLIAMS C L, PANDE P, et al. Biological relevance of oxidative debris present in as-prepared graphene oxide[J]. RSC advances, 2015, 5(73): 59364-59372.

      Reviewonpreparationandstructureofgrapheneoxide

      ZHU Hongwen, DUAN Zhengkang, ZHANG Lei, YIN Ke

      (College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China)

      Graphene oxide is a kind of graphene derivatives, containing rich oxygen with functional groups. Graphene oxide possesses large specific surface area, excellent hydrophilicity and biological affinity, and can be widely used in sensor, energy storage, catalysis, drug carrier and other fields. This article reviews the preparation of graphene oxide. This article also briefly describes the formation mechanism of graphene oxide prepared by Hummers method, and summarizes the new structure models of graphene oxide. Finally, this article suggests that seeking high efficient green oxidant is the key to prepare graphene oxide, and makes sure that the structure of graphene oxide has important influence on the surface modification, and its development and applications in composite materials.

      graphene oxide;preparation;mechanism;structure;graphene

      2016-11-10. < class="emphasis_bold">網(wǎng)絡(luò)出版時間

      時間: 2017-07-17.

      國家自然科學(xué)基金資助項目(21576229)

      朱宏文(1992—),男,碩士研究生.

      段正康, E-mail:dzk0607@163.com.

      10.11951/j.issn.1005-0299.20160400

      TB332

      A

      1005-0299(2017)06-0082-07

      (編輯程利冬)

      猜你喜歡
      插層含氧濃硫酸
      有關(guān)烴的含氧衍生物的“反應(yīng)原理”薈萃
      紫外吸收劑插層蒙脫土對瀝青老化性能的影響
      “硫酸”的六種考查方式賞析
      一問一答話硫酸
      CO2插層作用下有機(jī)蒙脫土膨脹/結(jié)構(gòu)行為的分子模擬
      烴的含氧衍生物知識測試題
      烴的含氧衍生物知識鏈接
      十四烷酸插層稀土類水滑石的合成及其對PVC的熱穩(wěn)定作用
      中國塑料(2015年6期)2015-11-13 03:03:11
      “銅和濃硫酸反應(yīng)”演示實驗的改進(jìn)與組合
      新型插層聚合物研制與性能評價
      松阳县| 闽侯县| 项城市| 松潘县| 阳江市| 石嘴山市| 林甸县| 湘潭县| 贺州市| 噶尔县| 白玉县| 南安市| 松江区| 平顶山市| 洪雅县| 格尔木市| 中超| 绩溪县| 邮箱| 安仁县| 启东市| 临澧县| 绥宁县| 金川县| 明溪县| 江华| 郯城县| 丰都县| 垫江县| 鸡泽县| 崇阳县| 雷波县| 泸西县| 永城市| 新竹县| 沾化县| 聂荣县| 衡山县| 固阳县| 铜川市| 闽清县|