魏佳+黃佳玥
摘 要:結(jié)合斯蒂芬森迭代和牛頓迭代,用拋物線插值函數(shù)的導(dǎo)函數(shù)取代f(x)的一階導(dǎo)數(shù),提出一種新的可達(dá)到四階收斂的迭代方法,新的迭代公式每步計(jì)算僅需計(jì)算三次函數(shù)值,且無需計(jì)算導(dǎo)函數(shù)。
關(guān)鍵詞:牛頓法;斯蒂芬森方法;拋物線插值
DOI:10.15938/j.jhust.2017.06.025
中圖分類號: O24
文獻(xiàn)標(biāo)志碼: A
文章編號: 1007-2683(2017)06-0131-03
Abstract:A new fourthorder convergent iterative method formed by Newton′s method and Steffensen method is presented to solve nonlinear equations in this paper. The new iteration formula uses derivative of quadratic interpolation as substitute for derivative of function, so it is totally free from derivatives. Furthermore, this method requires only three evaluations of the function by each iteration.
Keywords:Newton′s method; Steffensen method; quadratic interpolation
0 引 言
求解非線性方程f(x)=0是數(shù)學(xué)界經(jīng)久不衰的研究課題,究其原因就是其在科學(xué)研究以及生產(chǎn)生活中的廣泛應(yīng)用,而迭代法又是求解非線性方程最為常用的方法之一。迭代法中最為經(jīng)典的就是牛頓法,除此之外比較有代表性的還有:三階Halley迭代[1],Chebyshev迭代[2],SuperHalley迭代[3],還有四階King迭代[4]等等。前人在此領(lǐng)域也做出了大量的探索和努力,主要致力于收斂階數(shù)的提高,計(jì)算量的減少等方面[5-14]。本文結(jié)合牛頓法和斯蒂芬森法用拋物線插值函數(shù)在該點(diǎn)的導(dǎo)函數(shù)取代f(x)的一階導(dǎo),提出一種新的可達(dá)到四階收斂的迭代方法,新的迭代公式每步計(jì)算僅需計(jì)算三次函數(shù)值,且無需計(jì)算導(dǎo)函數(shù)。
1 新方法與收斂性分析
斯蒂芬森迭代法無需求導(dǎo)且能達(dá)到二階收斂,其迭代公式每步運(yùn)算需計(jì)算兩個(gè)函數(shù)值。
3 結(jié) 論
本文提出的求解非線性方程單根的四階收斂迭代方法,每步迭代過程只需計(jì)算三次函數(shù)值就能達(dá)到四階的收斂效果,而且不必計(jì)算導(dǎo)數(shù)。數(shù)值試驗(yàn)結(jié)果表明該方法具有較好的優(yōu)越性,它豐富了非線性方程求根的方法,在理論上和應(yīng)用上都具有較高的價(jià)值和意義。
參 考 文 獻(xiàn):
[1] HALLEY E. A New, Exact and Easy Method for Finding the Roots of Equations Generally and withOut Any Previous Reduction[J]. Philos. Trans. R. Soc.Lond., 1694(18): 136-148.
[2] KOU J, LI Y. Modified Chebyshev′s Method Free from Second Derivative for Nonlinear Equations[J]. J. Appl. Math. Comput., 2007, 187(2): 1027-1032.
[3] GUTIERREZ J M, HERNANDEZ M A. An Acceleration of Newton′s Method: Super Halley Method[J]. J. Appl. Math. Comput., 2001, 117(2): 223-239.
[4] KING R F. A Family of Fourth Order Methods for Nonlinear Equations[J]. SI AMJ. Numer. Anal., 1973(10): 876-879.
[5] LIU Z, ZHENG Q, ZHAO P. A Variant of Ste Ensens Method of Fourthorder Convergence and Its Applications[J]. Applied Mathematics and Computation, 2010, 216(7): 1978-1983.
[6] OSTROWSKI A M. Solutions of Equations and Systems of Equations[M]. New York, Academic Press, 1966.
[7] KUNG H T, TRAUB J F. Optimal Order of Onepoint and Multipoint Iteration[J]. J. Assoc. Comput. Mach., 1974,21: 643-651.
[8] BI W, REN H, WU Q. Threestep Iterative Methods with Eighthorder Convergence for Solving Nonlinear Equations[J]. J. Comput. Appl. Math., 2009, 255: 105-112.
[9] CORDERO A, HUESO J L, MARTNEZ E, et al. New Modifications of Po traPtks Method with Optimal Fourth and Eighth Order of Convergence[J]. J. Comput. Appl. Math., 2010, 234: 2969-2976.
[10]CORDERO A, TORREGROSA J R, Vassileva M P. A Family of Modified Ostrowskis Method with Optimal Eighth Order of Convergence[J]. Appl. Math. Lett., 2011, 24(12): 2082-2086.
[11]LIU L, WANG X. Eighthorder Methods with High Efficiency Index for Solving Nonlinear Equations[J]. Appl. Math. Comput., 2010, 215: 3449-3454.
[12]SHARMA J R, SHARMA R. A Family of Modified Ostrowskis Methods with Accelerated Eighth Order Convergence[J]. Numer. Algoritms, 2010(54): 445-458.
[13]THUKRAL R, PETKOVIC M S. A Family of Threepoint Methods of Optimal Order for Solving Nonlinear Equations[J]. J. Comput. Appl. Math., 2010, 233: 2278-2284.
[14]SOLEYMANI F, KARIMI B S, KHAN M, et al. Some Modifications of Kings Family with Optimal Eighth Order of Convergence[J]. Math. Comput. Model., 2012(55): 1373-1380.
(編輯:王 萍)endprint