• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Time-Saving Method to Prepare Monodisperse Fe3O4 Microspheres with Controllable Sizes and Morphologies

    2018-01-12 06:09:01WANGDanLIUChuanYongLONGYueSONGKaiHUANGWei
    物理化學(xué)學(xué)報(bào) 2017年11期
    關(guān)鍵詞:三鐵醋酸鈉磁化強(qiáng)度

    WANG Dan LIU Chuan-Yong LONG Yue SONG Kai HUANG Wei

    ?

    A Time-Saving Method to Prepare Monodisperse Fe3O4Microspheres with Controllable Sizes and Morphologies

    WANG Dan1,3LIU Chuan-Yong2LONG Yue3SONG Kai3,*HUANG Wei1

    (1;2;3)

    Monodisperse Fe3O4microspheres with tunable diameters and high magnetic saturation were synthesized by a solvothermal reduction method. It was found that the morphology and structure of the Fe3O4microspheres could be tuned by simply altering the amount of the reactants such as ferric chloride, sodium acetate, water, and the reaction time. The Fe3O4microspheres obtainedthis method possessed high purity, crystallinity, and a nearly spherical shape. Furthermore, they were monodispersed and no aggregation was found. Such monodisperse Fe3O4microspheres had tunable diameters of 400–700 nm and the fabrication time was only 2–4 h. The products showed high magnetic saturation values, and their yields were typically more than 94%.

    Monodisperse Fe3O4microspheres; Solvothermal; Time-saving; Tunable

    1 Introduction

    In the past few years, magnetic microspheres have gained much attention owing to their wide application areas, such as magnetic separation1?4, targeted drug delivery5, catalyst6, magnetic resonance imaging (MRI)7,8, magnetic ink9, magneto-optical applications10and self-assembly11. As the magnetic, transportation properties, catalysis, biomedicalare directly controlled by particlesize, size distribution, shape and surface chemistry12,13, the synthesisof nanostructured magnetic materials has become aparticularly important area of research14–16. Monodisperse Fe3O4microspheres with narrow size distribution, hollow space and high magnetic saturation (σ) can provide maximum signal in liquid media and show high performance in biological, separation and optical applications10,17,18.

    Numerous approaches have been developed to synthesize nanostructured monodisperse Fe3O4microspheres including hydrothermal reactions19, co-precipitation20, microemulsion21, solvothermal reduction22, thermal decomposition23, and high-temperature hydrolysis reaction24–27. Among these methods, solvothermal reduction is one of the most frequently-used means to prepare magnetic microspheres with narrow size distribution and high magnetic saturation for it is simple and inexpensive. Li.22used the solvothermal reduction method to prepare monodisperse Fe3O4microspheres with diameters ranging from 200 to 800 nm, and the size of Fe3O4microspheres was tuned by adjusting the reaction time from 8 h to 72 h. Fu.29prepared well-crystallized Fe3O4hollow microspheres with diameters of 200–300 nm, and the reaction was completed in 12 h. Zhao.21modified solvothermal method and tuned the size of Fe3O4microspheres by varying the concentration of the reactants, obtaining the microspheres with average diameters ranging from 80 to 410 nm after 10 h reaction. Zhu.30reported a facile solvothermal method to fabricate hollow Fe3O4microspheres with the diameter of 290 nm for 10 h at 200 °C. Xia31.reported a bisolvent solvothermal processto prepare monodisperse Fe3O4microsphereswith diameters of 55–500 nm for 20 h, and the size was controlled by adjusting the volume ratio of the solvent. From the above methods, magnetic Fe3O4microspheres with different sizes and morphologies were successfully prepared. However, one drawback of the solvothermal method is that the reaction time is relatively long to prepare microspheres with large sizes, e.g. 10 h reaction is required to prepare microspheres with diameter of 400 nm; microspheres with diameters of 600 and 800 nm requires 48 and 72 h to prepare, respectively.

    Fig.1 XRD diffraction patterns of the Fe3O4 microspheres.

    Herein, the solvothermal reduction method is modified to synthesize monodisperse Fe3O4microspheres with tunable diameters, high magnetic saturation in a short reaction time. The monodisperse Fe3O4microspheres with average diameters ranging from 400 to 700 nm were successfully obtaineda 4 h reaction, and the diameter can be tuned by the amount of ferric chloride, sodium acetate and the reaction time. Moreover, Hollow structure can also be obtained by simply altering the amount of water in the reaction system.

    2 Materials and methods

    2.1 Materials

    Ferric chloride (FeCl3, anhydrous, > 98%) and sodium acetate (CH3COONa, NaAc, anhydrous, > 99%) were purchased from Acros. Ferric chloride hexahydrate (FeCl3·6H2O, > 98%), ethylene glycol (EG, > 99%) and ethanol were obtained from Beijing Chemical Works and used without further purification.Polyethylene glycol (PEG,w ~2000) was purchased from Alfa Aesar. Water used throughout all experiments was purified with the Millipore system.

    X-ray diffraction (XRD) analysis was carried out on a D/Max 2500V/PC (Japan) X-ray diffractometer (= 0.154056 nm) in the 2range of 10°–70° using Cu-Kradiation. Scanning electron microscope (SEM) images were obtained by JEOL S-4800 (Japan) field emission scanning electron microscope. Transmission electron microscope (TEM) images and high resolution (HR) TEM images were taken on JEOL JEM-2100F (Japan) transmission electron microscope. The magnetic properties of the Fe3O4microspheres were investigated by SQUID vibration sample magnetometer (VSM) (America).

    2.2 Synthesis of monodisperse Fe3O4 microspheres.

    In a typical synthesis of Fe3O4microspheres, NaAc (2.87 g) was dissolved in EG (20 mL), and the solution was kept in a water bath at 40 °C. FeCl3·6H2O (2.70 g, 10 mmol) was dissolved in EG (10 mL) to form a clear solution, followed by the addition of PEG (0.75 g). After complete dissolution, the resulting solution was slowly poured into the as-prepared NaAc solution under vigorous stirring at 40 °C. After 30 min, brownish yellow solution was produced, and transferred into a 40 mL Teflon lined stainless-steel autoclave. The autoclave was maintained at 200 °C in oven for 4 h. After cooled down to room temperature, the dark product was collected by a magnet and washed with ethanol and water several times. Finally, the product was dried in room temperature and weighed.

    2.3 Characterization of the Fe3O4 microspheres

    XRD pattern of the Fe3O4microspheres synthesized by the method in section 2.2 is shown in Fig.1. The diffraction peaks match well with the database for magnetite in the JCPDS-International Center for Diffraction Data (JCPDS Card: 79-0419) file. The specific sharp and strong diffraction peaks also confirmed the well crystallization of the product, and no impurity was observed.

    SEM and TEM images were taken to investigate the morphology and structure of theproduct, as shown in Fig.2. It can be seen from Fig.2a that the Fe3O4microspheres are spherical with a uniform size distribution and the average diameter of the spheres is ~600 nm. Rough surface morphology of the microspheres is observed from the magnified SEM image shown in Fig.2b. More details can be found by the broken spheres (observed occasionally) shown in Fig.2c that Fe3O4microspheres are comprised by many aggregated Fe3O4nanocrystals. The TEM images shown in Fig.2d and 2e further confirmed the spherical structure of Fe3O4microspheres. The detailed structure information of the Fe3O4microspheres was investigated by using HRTEM (taken from the marked area in Fig.2e). Clear lattice fringes can be observed in the HRTEM image (Fig.2f), and it also displays the high crystalline and single-crystalline nature of Fe3O4microspheres. The spacing of the lattice fringes is ~0.48 nm, which matches well with the (111) lattice planes of Fe3O4crystal.

    The magnetic properties of the Fe3O4microspheres were investigated with VSM. Fig.3 shows the hysteresis loop measured at room temperature by cycling the field between ?10 and 10 kOe. Results show that the magnetic saturation value of the microspheres at room temperature is 80 emu·g-1, and the inset curve reveals the weak ferromagnetism behavior of the product with a remanence of 2.9 emu·g-1and a coercivity of 23.7 Oe.

    3 Results and discussion

    3.1 Modifed solvthermal method

    There are two dynamical stagesin the Fe3O4microspheres formation process32. The first stage is the burst-nucleation, forming nanocrystals in the supersaturated solution. The second stage is the oriented aggregation of nanocrystals formed in the first stage to minimize the surface energy. By adjusting these two processes, the morphology and structure of the product can be tuned. In previous studies, attentions were focused on adjusting the ratio of the reactants and solvents in the synthesis system.

    However, we found that the precursor solution also has a severe impact on the final product. The conventional way to prepare the precursor solution is to dissolve the FeCl3·6H2O, NaAc solid and surfactant (PEG) consecutively in the EG solution under vigorous stirring. Here, we report a new time-saving method to prepare Fe3O4microspheres: FeCl3·6H2O was dissolved in EG firstly, and then adding PEG to form solution A. NaAc was dissolved separately in EG to form solution B, followed by the combination of solutions A and B. For comparison, precursor solutions using both the conventional method and the new method were prepared, and heated at 200 °C for4 h to produce the Fe3O4microspheres. From the SEM image in Fig.4a, it can be seen that the Fe3O4microspheres prepared by the conventional method are heterodisperesed in size with diameters ranging from a few nanometers to few hundred nanometers. In contrast, the microspheres fabricated by the time-saving method are much more monodisperse with the average diameter of ~600 nm, as seen in Fig.4b. It is widely accepted that a homogenous system is the key for the preparation of monodisperse particles33, so it is important to make a homogenous precursor solution.

    The time-saving mechanism remains unclear, while a possible one could be due to the liquid-liquid mixing strategy in our method. In the conventional method, when NaAc was added to the EG solution of FeCl3·6H2O, it started to dissolve. As NaAc is in the solid form, the dissolved NaAc will react with the FeCl3·6H2O firstly, which results in the inhomogeneous of the whole system with dissolution and reaction occurs at the same time. Therefore, the Fe3O4microspheres synthesized from this method is also inhomogeneous in size. Comparatively, in the time-saving method, FeCl3·6H2O and NaAc are dissolved separately in EG first, after combination, reaction carries out simultaneously; hence, is more likely to form a homogeneous system and consequently monodispersed microspheres. In addition, liquid-liquid mixing has larger reaction interfaces than the liquid-solid one. The interface of the following reaction enlarges correspondingly due to the increased total surface of the precursor. In turn, the whole reaction time could be reduced. Hence, in accordance with our explanation, after 4 h of reaction at 200 °C, the yield of the products prepared by the conventional process was ~85%, and the yield of the time-saving process was ~94%.

    The synthesis conditions: 2.70 g FeCl3·6H2O, 0.75 g PEG, 2.87 g NaAc, 30 mL EG, 200 °C, and 4 h.

    Fig.3 Hysteresis loop of Fe3O4 microspheres.

    3.2 Size modification of monodispersed Fe3O4 microspheres

    3.2.1 Adjusting the amount of FeCl3·6H2O

    Amount of FeCl3·6H2O in the precursor solution affects the size distribution of the Fe3O4microspheres. It was found that no Fe3O4microspheres were obtained with 1 mmol of FeCl3·6H2O added in the precursor solution. When increasing the amount of FeCl3·6H2O to 2 mmol, aggregated Fe3O4microspheres were formed, which can be seen in Fig.5a. When the amount of FeCl3·6H2O increased to 3 mmol, uniform Fe3O4microspheres were produced with the average diameter of 500 nm, as depicted in Fig.5b. As further increasing the FeCl3·6H2Ocontent to 5 and 10 mmol, Fe3O4microspheres with average diameters of 570 nm (Fig.5c) and 600 nm (Fig.5d) were produced, respectively.

    The effect of amount of FeCl3·6H2O on the formation of Fe3O4microspheres can be explained withthe help of the two-stage growth model described in section 3.1. When the amount of FeCl3·6H2O was too low, the nucleation process was impeded, which resulted in low yield. With more FeCl3·6H2O added to the precursor solution, the nucleation and formation process of nanocrystals started off. At lower rate, slow formation of the nanocrystals caused the widening of the size distribution, as shown in Fig.5a. When the amount of FeCl3·6H2O increased, the nucleation of the nanocrystals became faster, which accelerated the rate of the nanocrystals formation, and resulted in narrower sizedistribution.

    3.2.2 Adjusting the amount of NaAc

    To investigate the effect of NaAc, a series of experiments were carried out with different amount of NaAc, whereas other parameters remained constant. When the molar ratio of NaAc/ Fe3+is 1 : 1, the product was polydispersed in size, as shown in Fig.6a. After adjusting the ratio to 2 and 3, uniform microspheres were produced with the average diameters of 400 nm (Fig.6b) and 700 nm (Fig.6c), respectively. However, as the ratio increased to 3.5, the average diameter of the Fe3O4microspheres decreased to 600 nm (Fig.6d). Further reduction of the average diameters was also observed when the NaAc/Fe3+molar ratio increased to 6 (550 nm, Fig.6e) and 9 : 1 (400 nm, Fig.6f). It was also found that the yields of the first two batches (Fig.6a and 6b) are 15% and 55%, respectively, while all the others are over 94%. It can be deduced from the results that low yields of the first two batches are caused by the shortage of NaAc.

    Fig.4 SEM image of Fe3O4 microspheres prepared through different processes.

    (a) conventional method; (b) time-saving method. All scale bars are 5 μm.

    Fig.5 SEM images of Fe3O4 microspheres prepared with different amount of FeCl3·6H2O.

    (a) 2 mmol, (b) 3 mmol, (c) 5 mmol, (d) 10 mmol. All scale bars are 2 μm.

    Fig.6 SEM images of Fe3O4 microspheres prepared with different amount of NaAc.

    The molar ratio of NaAc/Fe3+: (a) 1, (b) 2, (c) 3, (d) 3.5, (e) 6, (f) 9. All scale bars are 1 μm.

    The effect of NaAc on the size of the Fe3O4microspheres can be explained that when the amount of NaAc was low, it caused the slow nucleation of the nanocrystals; hence, resulted in the wider size distribution. As the amount of NaAc increased, the nucleation rate of the nanocrystals became faster, which accelerated the formationof the Fe3O4nanocrystals and resulted in the narrow size distribution31. High amount of NaAc can act as a electrostatic stabilizer which prevents the newly formed microspheres from aggregation. This is also helpful to narrow the size distribution. With the same amount of ferric chloride, faster nucleation leads to the decrease in particle size, which can explain the decrease of size when the molar ratio further increased to 6 and 9. Moreover, electrostatic stabilization also facilitates the oriented attachment. With the increase amount of NaAc, the diffraction peaks became sharper and stronger as one can be seen from the XRD patterns (Fig.7). The corresponding grain sizes increased from 20 to 64.8 nm, which were calculated by the Scherrer equation based on the strongest peak (311) in Fig.734.

    3.2.3 Adjusting the heating time

    Heating time also affects the size of Fe3O4microspheres. Results show that no Fe3O4microspheres were formed if the heating time is less than 2 h. As the heating time increased to 2 h, Fe3O4microspheres with average diameter of 400 nm were formed (Fig.8a). When the heating time further increased to 3 and 4 h, the diameters of the Fe3O4microspheres increased to 500 nm (Fig.8b) and 600 nm (Fig.8c), respectively. However, no increase in size was found with further prolonged heating (6 h, Fig.8d). This result shows that the diameter of the Fe3O4microspheres can be tuned from 400 to 600 nm by increasing the heating time from 2 h to 4 h, which is much shorter than the reaction time reported in the previous study22.

    Fig.7 XRD diffraction patterns of the Fe3O4 microspheres prepared with different amount of NaAc.

    The molar ratio of NaAc/Fe3+and the grain sizes of peak (311): (a) 1, 20 nm; (b) 2, 22.7 nm; (c) 3, 23.2 nm; (d) 3.5, 28.3 nm; (e) 6, 31.4 nm; (f) 9, 64.8 nm.

    Fig.9 SEM images of Fe3O4 microspheres prepared with different amount of water.

    The molar ratio of H2O/Fe3+: (a) 6, (b) 9, (c) 12, (d) 18.All scale bars are 2 μm.

    3.3 Tuning the morphology of the monodisperse Fe3O4 microspheres

    The amount of water can affect the morphology of the Fe3O4microspheres, and anhydrous FeCl3was used instead of FeCl3·6H2O in the preparation process. When the molar ratio of H2O/Fe3+was 6, the product showed uniform size distribution with the average diameter of 600 nm, as shown in Fig.9a. When the molar ratio increased to 9, slight decrease in the average diameter was observed, and small holes appeared on the surface of the microspheres (Fig.9b). After further increasing the molar ratio to 12, the average diameter decreased to 500 nm, as depicted in Fig.9c. It can be seen from the inset image that some of the microspheres became hollow structured. As the molar ratio increased to 18, the average diameter remained as 500 nm. However, a greater portion of the microspheres became hollow, some were even ruptured (Fig.9d).As mentioned earlier, faster nucleation leads to the decrease in particle size. High amount of water gives rise to fast hydrolysis of FeCl3and NaAc, which accelerates the nucleation of the Fe3O4nanocrystals26. Hence, it is comprehensible that the size of the microspheres decreased with the increase amount of water. In addition, the viscosity of the solution decreases with high amount of water, which facilitates the growth and aggregation of the nanocrystals. So the aggregation process at the beginning was very fast, and there is not enough time for the aggregated nanocrystals to adjust and rotate to the suitable configuration interface. Naturally the interior aggregated nanocrystals of Fe3O4microspheres were not oriented as well as the outer ones and had relatively higher surface energy and smaller size. Therefore, they were unstable and gradually dissolved and attached to the outer nanocrystals by the driving force to reduce the overall surface energy. This “solid-solution-solid” mass transportation resulted in the hollow structure of the products35,36.

    Fig.8 SEM images of Fe3O4 microspheres prepared with different reaction time.

    (a) 2 h, (b) 3 h, (c) 4 h, (d) 6 h.All bars are 1 μm.

    4 Conclusions

    In conclusion, monodisperse Fe3O4microspheres with average diameters ranging from 400 to 700 nm were successfully synthesized by a time-saving solvothermal reaction route for 2?4 h, and the size of Fe3O4microspheres can be tuned by variousmeans: amount of ferric chloride and sodium acetate, and reaction time. Moreover, hollow structure can also be obtained by simply altering the amount of water in the reaction system. The products have high magnetic saturation values, and the yield of the products is over 94%.

    (1) Ge, J. P.; Zhang, Q.; Zhang, T. R.; Yin, Y. D.2008,, 8924. doi: 10.1002/anie.200803968.

    (2)Sheng, W.; Wei, W.; Li, J. J.; Qi, X. L.; Zuo, G. C.; Chen, Q.; Pan, X. H.; Dong, W.2016,, 1116. doi: 10.1016/j.apsusc.2016.07.061.

    (3) Yu, M.; Di, Y.; Zhang, Y.; Zhang, Y. T.; Guo, J.; Lu, H. J.; Wang, C. C.2016,, 74. doi: 10.3390/polym8030074.

    (4) Zhou, L. M.; Wang, Y. P.; Huang, Q. W.; Liu, Z. R.2007,(12), 1979. [周利民, 王一平, 黃群武, 劉峙嶸. 物理化學(xué)學(xué)報(bào), 2007,(12), 1979.]doi: 10.3866/PKU.WHXB20071228.

    (5) Jain, T. K.; Morales, M. A.; Sahoo, S. K.; Leslie-Pelecky, D. L.; Labhasetwar, V.2005,, 194. doi: 10.1021/mp0500014.

    (6) Ge, J. P.; Huynh, T.; Hu, Y. X.; Yin, Y. D.2008,, 931. doi: 10.1021/nl080020f.

    (7) Qiao, R. R.; Yang, C. H.; Gao, M. Y.2009,, 6274. doi: 10.1039/b902394a.

    (8) Kim, D. H.; Chen, J.; Omary, R. A.; Larson, A. C.2015,, 477. doi: 10.7150/thno.10823.

    (9) Ge, J. P.; Goebl, J.; He, L.; Lu, Z. D.; Yin, Y. D.2009,, 4259. doi: 10.1002/adma.200901562.

    (10) Kim, H.; Ge, J. P.; Kim, J.; Choi, S.; Lee, H.; Lee, H.; Park, W.; Yin, Y. D.; Kwon, S.2009,, 534. doi: 10.1038/NPHOTON.2009.141.

    (11) Ge, J. P.; Hu, Y. X.; Zhang, T. R.; Yin, Y. D.2007,, 8974. doi: 10.1021/ja0736461.

    (12) Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A.2000,, 1989. doi: 10.1126/science.287.5460.1989.

    (13) Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B.2001,, 12798. doi: 10.1021/ja016812s.

    (14) Yan, L.; Wang, Y. F.; Li, J.; Shen, H. D.; Wang, C.; Yang, S. B.2016,, 10616. doi: 10.1007/s10854-016-5156-3.

    (15) Bokharaei, M.; Schneider, T.; Dutz, S.; Stone, R. C.; Mefford, O. T.; Hafeli, U. O.2016,, 1. doi: 10.1007/s10404-015-1693-y.

    (16) Wang, X. M.; Huang, P. F.; Ma, X. M.; Wang, H.; Lu, X. Q.; Du, X. Z.2017,, 300. doi: 10.1016/j.talanta.2017.01.067.

    (17) Wang, Z.; Hong, R. Y.2016,, 1. doi: 10.1007/s10965-015-0897-x.

    (18) Gee, S. H.; Hong, Y. K.; Erickson, D. W.; Park, M. H.2003,, 7560. doi: 10.1063/1.1540177.

    (19) Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D.2005,, 121. doi: 10.1038/nature03968.

    (20) Kang, Y. S.; Risbud, S.; Rabolt, J. F.; Stroeve, P.1996,, 2209. doi: 10.1021/cm960157j.

    (21) Chin, A. B.; Yaacob, I. I.2007,, 235. doi: 10.1016/j.jmatprotec.2007.03.011.

    (22) Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D.;2005,, 2782. doi: 10.1002/ange.200462551.

    (23) Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X.2004,, 273. doi: 10.1021/ja0380852.

    (24) Ge, J. P.; Hu, Y. X.; Biasini, M.; Beyermann, W. P.; Yin, Y. D.2007,, 4342. doi: 10.1002/anie.200700197.

    (25) Reddy, L. H.; Arias, J. L.; Nicolas, J.; Couvreur, P.2012,, 5818. doi: 10.1021/cr300068p.

    (26) Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L. V.; Muller, R. N.2008,, 2064. doi: 10.1021/cr068445e.

    (27) Lu, A. H.; Salabas, E. L.; Schüth F.2007, 46, 1222. doi: 10.1002/anie.200602866.

    (28) Liu, J.; Sun, Z. K.; Deng, Y. H.; Zou, Y.; Li, C. Y.; Guo, X. H.; Xiong, L. Q.; Gao, Y.; Li, F. Y.; Zhao, D. Y.2009,, 5875. doi: 10.1002/anie.200901566.

    (29) Zhu, L. P.; Xiao, H. M.; Zhang, W. D.; Yang, G.; Fu, S. Y.2008,, 957. doi: 10.1021/cg700861a.

    (30) Liu, S. H.; Xing, R.M.; Lu, F.; Rana, R. K.; Zhu, J. J.2009,, 21042. doi: 10.1021/jp907296n.

    (31) Huang, Z. Z.; Wu, K. L.; Yu, Q. H.; Wang, Y. Y.; Xing, J. Y.; Xia, T. L.2016,, 219. doi: 10.1016/j.cplett.2016.10.036.

    (32) Libert, S.; Gorshkov, V.; Goia, D.; Matijevi?, E.; Privman, V.2003,, 10679. doi: 10.1021/la0302044.

    (33) Matijevi?, E.1993,, 412. doi: 10.1021/cm00028a004.

    (34) Penn, R. L.2004,, 12707. doi: 10.1021/jp036490+.

    (35) Jia, B. P.; Gao, L.2008,, 666. doi: 10.1021/jp0763477.

    (36) Lou, X. W.; Wang, Y.; Yuan, C. L.; Lee, J. Y.; Archer, L. A.2006,, 2325. doi: 10.1002/adma.200600733.

    尺寸可控的單分散四氧化三鐵微球的省時制備

    王 丹1,3劉傳勇2龍 玥3宋 愷3,*黃 維1

    (1南京郵電大學(xué)先進(jìn)生物與化學(xué)制造協(xié)同創(chuàng)新中心,有機(jī)電子與信息顯示國家重點(diǎn)實(shí)驗(yàn)室培育基地,南京 210023;2中國科學(xué)院化學(xué)研究所,北京 100190;3中國科學(xué)院理化技術(shù)研究所,北京 100190 )

    用溶劑熱法制備了單分散性較好、尺寸可控,飽和磁化強(qiáng)度高的四氧化三鐵磁性微球,并用多種手段調(diào)控制備了不同尺寸和形貌的四氧化三鐵微球,如氯化鐵、醋酸鈉、水的量以及反應(yīng)時間。結(jié)果表明所得四氧化三鐵產(chǎn)物純凈、結(jié)晶度高,形狀近乎球形、無團(tuán)聚,大小均一、具有很好的單分散性。此方法可以在2?4 h內(nèi)制備400?700 nm范圍內(nèi)尺寸可控、高飽和磁化強(qiáng)度的四氧化三鐵微球,產(chǎn)率達(dá)到了94%。

    單分散四氧化三鐵微球;溶劑熱法;省時;可控

    O649

    10.3866/PKU.WHXB201706093

    April 18, 2017;

    May 29, 2017;

    June 9, 2017.

    Corresponding author. Email: songkai@mail.ipc.ac.cn; Tel: +86-10-82543658.

    The project was supported by the National Natural Science Foundation of China (U1430128).

    國家自然科學(xué)基金(U1430128)資助

    猜你喜歡
    三鐵醋酸鈉磁化強(qiáng)度
    最近鄰弱交換相互作用對spin-1納米管磁化強(qiáng)度的影響
    納米級四氧化三鐵回收水中鉛離子實(shí)驗(yàn)
    無水醋酸鈉結(jié)構(gòu)及熱穩(wěn)定性
    淡水磁化灌溉對棉花出苗率·生長及干物質(zhì)量的影響
    磁性四氧化三鐵氮摻雜石墨烯磁性固相萃取測定水樣中的6種醛酮化合物
    Identifying vital edges in Chinese air route network via memetic algorithm
    二氯醋酸鈉提高膠質(zhì)母細(xì)胞瘤U251細(xì)胞的放療敏感性
    磁性四氧化三鐵制備及對廢水重金屬離子凈化*
    淺談對磁場強(qiáng)度H和磁感應(yīng)強(qiáng)度B的認(rèn)識
    水溶性四氧化三鐵納米粒子制備及其在大鼠體內(nèi)分布
    中文字幕人妻熟人妻熟丝袜美| 国产不卡一卡二| 哪里可以看免费的av片| 禁无遮挡网站| 国产高清三级在线| av在线蜜桃| 国产免费av片在线观看野外av| 偷拍熟女少妇极品色| 午夜爱爱视频在线播放| 免费观看精品视频网站| 成人毛片a级毛片在线播放| 亚洲av.av天堂| 色播亚洲综合网| 麻豆av噜噜一区二区三区| 日日夜夜操网爽| 在线观看66精品国产| 97人妻精品一区二区三区麻豆| 亚洲av成人av| 中文字幕熟女人妻在线| 99国产精品一区二区蜜桃av| 国产精品伦人一区二区| 少妇高潮的动态图| 99久久精品热视频| 春色校园在线视频观看| 国产高清三级在线| 国产极品精品免费视频能看的| 他把我摸到了高潮在线观看| 国产精品免费一区二区三区在线| 少妇猛男粗大的猛烈进出视频 | 深爱激情五月婷婷| 如何舔出高潮| .国产精品久久| 午夜a级毛片| 成人午夜高清在线视频| 蜜桃久久精品国产亚洲av| 国产精品亚洲美女久久久| 午夜免费成人在线视频| 国内毛片毛片毛片毛片毛片| 中出人妻视频一区二区| 欧美绝顶高潮抽搐喷水| 一a级毛片在线观看| 国产黄色小视频在线观看| 亚洲成a人片在线一区二区| 日韩欧美在线乱码| 少妇人妻一区二区三区视频| 少妇裸体淫交视频免费看高清| 日本撒尿小便嘘嘘汇集6| 欧美潮喷喷水| 久久久午夜欧美精品| 少妇的逼好多水| 在现免费观看毛片| 日韩大尺度精品在线看网址| 此物有八面人人有两片| 午夜亚洲福利在线播放| 亚洲av电影不卡..在线观看| 久久香蕉精品热| 精品乱码久久久久久99久播| 久久久久久久精品吃奶| 国产 一区 欧美 日韩| 国产视频一区二区在线看| 香蕉av资源在线| 在线观看午夜福利视频| 啦啦啦观看免费观看视频高清| 麻豆久久精品国产亚洲av| 亚洲av免费在线观看| 欧美成人一区二区免费高清观看| 精品久久久噜噜| 精品一区二区三区人妻视频| 我要看日韩黄色一级片| 内地一区二区视频在线| 永久网站在线| 欧美日韩中文字幕国产精品一区二区三区| 麻豆av噜噜一区二区三区| 伦精品一区二区三区| 国产一区二区三区av在线 | 五月玫瑰六月丁香| 美女 人体艺术 gogo| 国产精品人妻久久久久久| av在线观看视频网站免费| 欧美性感艳星| 亚洲精品乱码久久久v下载方式| 色综合色国产| 最新中文字幕久久久久| 午夜精品在线福利| 亚洲,欧美,日韩| 18禁黄网站禁片免费观看直播| 久久6这里有精品| 日韩欧美在线二视频| av福利片在线观看| 麻豆国产97在线/欧美| 非洲黑人性xxxx精品又粗又长| 真人做人爱边吃奶动态| 久久国产乱子免费精品| 国产精品久久视频播放| 日韩一区二区视频免费看| 91午夜精品亚洲一区二区三区 | 婷婷精品国产亚洲av| 久久这里只有精品中国| 午夜精品在线福利| 欧美激情国产日韩精品一区| 精品国产三级普通话版| 精品欧美国产一区二区三| 免费人成在线观看视频色| 一进一出抽搐gif免费好疼| or卡值多少钱| 免费看av在线观看网站| 国产视频一区二区在线看| 国产精品一区二区三区四区久久| 亚洲欧美激情综合另类| 欧美精品啪啪一区二区三区| 久久久久久久久久黄片| 熟女人妻精品中文字幕| 久久精品国产亚洲av涩爱 | 亚洲欧美日韩无卡精品| 嫩草影院入口| 真人做人爱边吃奶动态| 日韩精品有码人妻一区| 久99久视频精品免费| 国产亚洲精品综合一区在线观看| 久久精品久久久久久噜噜老黄 | 国产乱人视频| 日日干狠狠操夜夜爽| 色尼玛亚洲综合影院| 国产熟女欧美一区二区| 国内毛片毛片毛片毛片毛片| 亚洲国产精品久久男人天堂| 动漫黄色视频在线观看| 麻豆国产97在线/欧美| 亚洲人与动物交配视频| 成年版毛片免费区| 国产精品人妻久久久影院| 亚洲国产色片| 搞女人的毛片| 99热网站在线观看| 国产精品美女特级片免费视频播放器| 久久久久国产精品人妻aⅴ院| 一a级毛片在线观看| www.www免费av| 成人综合一区亚洲| 亚洲自拍偷在线| 一夜夜www| 高清在线国产一区| 夜夜看夜夜爽夜夜摸| 亚洲熟妇熟女久久| 一卡2卡三卡四卡精品乱码亚洲| 精品不卡国产一区二区三区| 狂野欧美激情性xxxx在线观看| 亚洲精品456在线播放app | 一个人观看的视频www高清免费观看| 级片在线观看| 人人妻人人澡欧美一区二区| 欧美成人一区二区免费高清观看| 欧美最黄视频在线播放免费| 成人三级黄色视频| 一本一本综合久久| 亚洲欧美日韩东京热| 3wmmmm亚洲av在线观看| 简卡轻食公司| 欧美不卡视频在线免费观看| 九色成人免费人妻av| xxxwww97欧美| 亚洲专区国产一区二区| a级毛片a级免费在线| 精品午夜福利视频在线观看一区| 国产女主播在线喷水免费视频网站 | 人人妻人人澡欧美一区二区| 男插女下体视频免费在线播放| 成人精品一区二区免费| 精品一区二区免费观看| 久久精品国产亚洲网站| 国产亚洲精品久久久久久毛片| 丰满乱子伦码专区| 尤物成人国产欧美一区二区三区| 三级男女做爰猛烈吃奶摸视频| 在线免费观看的www视频| 别揉我奶头~嗯~啊~动态视频| 中文资源天堂在线| 国产男人的电影天堂91| 欧美成人免费av一区二区三区| 婷婷精品国产亚洲av| 亚洲18禁久久av| 无人区码免费观看不卡| 亚洲色图av天堂| 亚洲18禁久久av| 干丝袜人妻中文字幕| 国产高清不卡午夜福利| 观看美女的网站| 蜜桃久久精品国产亚洲av| 动漫黄色视频在线观看| 国产高清有码在线观看视频| 国产在线男女| 九九久久精品国产亚洲av麻豆| 午夜爱爱视频在线播放| 在线观看免费视频日本深夜| 校园人妻丝袜中文字幕| 真实男女啪啪啪动态图| 午夜福利18| 俺也久久电影网| 日韩在线高清观看一区二区三区 | bbb黄色大片| 国产精品一区二区三区四区免费观看 | 国产黄a三级三级三级人| 成人二区视频| 成人av一区二区三区在线看| 色播亚洲综合网| 看片在线看免费视频| 日韩中字成人| 亚洲人与动物交配视频| 国产午夜福利久久久久久| 观看美女的网站| 精品久久久噜噜| av国产免费在线观看| av女优亚洲男人天堂| 欧美不卡视频在线免费观看| 99九九线精品视频在线观看视频| 联通29元200g的流量卡| 草草在线视频免费看| 人妻少妇偷人精品九色| 亚洲经典国产精华液单| 国产伦人伦偷精品视频| 联通29元200g的流量卡| 美女黄网站色视频| 内地一区二区视频在线| 成人三级黄色视频| 国产成人aa在线观看| 婷婷精品国产亚洲av| 亚洲最大成人av| 久久久久久久久久久丰满 | 99在线视频只有这里精品首页| 亚洲欧美日韩东京热| 国产黄a三级三级三级人| 中文字幕免费在线视频6| 99久久久亚洲精品蜜臀av| 亚洲欧美日韩卡通动漫| 久久久久免费精品人妻一区二区| 床上黄色一级片| 亚洲美女搞黄在线观看 | 日韩强制内射视频| 国产精品电影一区二区三区| 国产精品国产三级国产av玫瑰| 欧美中文日本在线观看视频| 国产爱豆传媒在线观看| 桃红色精品国产亚洲av| 亚洲精品一卡2卡三卡4卡5卡| 国产精品爽爽va在线观看网站| 国产又黄又爽又无遮挡在线| 国产不卡一卡二| 国产中年淑女户外野战色| 熟女电影av网| 亚洲七黄色美女视频| 国产精品电影一区二区三区| 日本精品一区二区三区蜜桃| 黄色丝袜av网址大全| 精品人妻视频免费看| 亚洲国产色片| 999久久久精品免费观看国产| 丝袜美腿在线中文| 国产精品不卡视频一区二区| 成人特级av手机在线观看| 在线播放国产精品三级| eeuss影院久久| 狂野欧美白嫩少妇大欣赏| av福利片在线观看| 一个人免费在线观看电影| 精品国内亚洲2022精品成人| 国产成年人精品一区二区| 特大巨黑吊av在线直播| 日韩欧美精品v在线| 麻豆成人午夜福利视频| 国产一级毛片七仙女欲春2| 久久6这里有精品| 在线播放无遮挡| 欧美黑人欧美精品刺激| 黄色丝袜av网址大全| 午夜影院日韩av| 别揉我奶头~嗯~啊~动态视频| 变态另类成人亚洲欧美熟女| 亚洲黑人精品在线| 欧美激情久久久久久爽电影| 深爱激情五月婷婷| 韩国av一区二区三区四区| 亚洲av成人av| 亚洲欧美日韩高清在线视频| 99久久中文字幕三级久久日本| 亚洲精品456在线播放app | 九九爱精品视频在线观看| 欧美日本亚洲视频在线播放| 一级黄片播放器| 国产熟女欧美一区二区| 日韩高清综合在线| 一级黄色大片毛片| 国模一区二区三区四区视频| 色5月婷婷丁香| 天堂√8在线中文| 亚洲精品乱码久久久v下载方式| 深夜a级毛片| 亚洲人与动物交配视频| 身体一侧抽搐| 99久久精品国产国产毛片| 亚洲专区国产一区二区| 最近最新免费中文字幕在线| 免费看光身美女| a级毛片免费高清观看在线播放| 十八禁国产超污无遮挡网站| 久久精品国产亚洲av香蕉五月| 女人被狂操c到高潮| 一区二区三区高清视频在线| 久久久国产成人免费| 小说图片视频综合网站| 最后的刺客免费高清国语| 国内精品一区二区在线观看| 免费观看人在逋| 日韩欧美在线乱码| 我要看日韩黄色一级片| 国产在线男女| 亚洲国产欧美人成| 日韩一区二区视频免费看| 日韩欧美三级三区| 最近最新中文字幕大全电影3| 少妇被粗大猛烈的视频| 亚洲人成网站在线播| 亚洲自拍偷在线| 久久精品国产亚洲网站| 久久欧美精品欧美久久欧美| 亚洲人成伊人成综合网2020| 麻豆国产97在线/欧美| av在线老鸭窝| 亚洲国产欧洲综合997久久,| 国产探花在线观看一区二区| 麻豆国产97在线/欧美| 啦啦啦观看免费观看视频高清| 亚洲av美国av| 精品人妻一区二区三区麻豆 | 国产精品三级大全| 国产精品野战在线观看| 久久久久久久午夜电影| 少妇的逼水好多| 婷婷色综合大香蕉| 麻豆精品久久久久久蜜桃| 国产精品综合久久久久久久免费| 一区二区三区免费毛片| av天堂中文字幕网| 男插女下体视频免费在线播放| 国产精品1区2区在线观看.| 亚洲av第一区精品v没综合| 伦精品一区二区三区| 国产一区二区三区在线臀色熟女| 在线国产一区二区在线| 深爱激情五月婷婷| 亚洲,欧美,日韩| 久久久精品欧美日韩精品| 在线国产一区二区在线| 国产精品自产拍在线观看55亚洲| 日韩在线高清观看一区二区三区 | 国产在线精品亚洲第一网站| 97超视频在线观看视频| 观看免费一级毛片| 日本精品一区二区三区蜜桃| 日日夜夜操网爽| 欧美精品国产亚洲| 欧美最黄视频在线播放免费| 麻豆国产97在线/欧美| 成人综合一区亚洲| 国产成人福利小说| 日韩一区二区视频免费看| 国产一区二区激情短视频| 国产探花在线观看一区二区| 色哟哟·www| 免费观看精品视频网站| 成人特级av手机在线观看| 99精品在免费线老司机午夜| 麻豆国产97在线/欧美| 免费人成在线观看视频色| 国产精品三级大全| 午夜免费男女啪啪视频观看 | 久久久久性生活片| 国产av在哪里看| 免费在线观看成人毛片| 免费看a级黄色片| 一级黄片播放器| 国产精品久久久久久亚洲av鲁大| 国内精品久久久久久久电影| 午夜影院日韩av| 国产69精品久久久久777片| 日日啪夜夜撸| 亚洲成a人片在线一区二区| 亚洲真实伦在线观看| 97超级碰碰碰精品色视频在线观看| 欧美一区二区精品小视频在线| 欧美色视频一区免费| 欧美三级亚洲精品| 久久午夜亚洲精品久久| 在线观看av片永久免费下载| 午夜激情欧美在线| 精品人妻1区二区| 国产成人av教育| 成人国产一区最新在线观看| 能在线免费观看的黄片| 夜夜看夜夜爽夜夜摸| 亚洲aⅴ乱码一区二区在线播放| 人妻丰满熟妇av一区二区三区| 日韩中字成人| 精品久久久久久成人av| 村上凉子中文字幕在线| 久久午夜亚洲精品久久| 欧美一区二区精品小视频在线| av女优亚洲男人天堂| 三级国产精品欧美在线观看| 亚洲最大成人手机在线| 不卡一级毛片| 乱系列少妇在线播放| 91久久精品电影网| 国产美女午夜福利| 自拍偷自拍亚洲精品老妇| 在线看三级毛片| 2021天堂中文幕一二区在线观| 99热这里只有是精品在线观看| 精品人妻1区二区| 干丝袜人妻中文字幕| 亚洲成人中文字幕在线播放| 如何舔出高潮| 国产精品一及| 亚洲在线自拍视频| 亚洲精品国产成人久久av| 人人妻人人看人人澡| 久久婷婷人人爽人人干人人爱| 日本在线视频免费播放| 精品乱码久久久久久99久播| 国产精品电影一区二区三区| 久久久久久久午夜电影| 亚洲成av人片在线播放无| 乱人视频在线观看| 欧美日韩瑟瑟在线播放| 一本久久中文字幕| 一区二区三区高清视频在线| 国产中年淑女户外野战色| 国产男靠女视频免费网站| 老司机午夜福利在线观看视频| 精品久久久久久,| 国产精品伦人一区二区| 婷婷六月久久综合丁香| 亚洲人成网站高清观看| 国产精品爽爽va在线观看网站| 在线观看舔阴道视频| 亚洲av一区综合| 免费看光身美女| 欧美在线一区亚洲| 亚洲专区国产一区二区| 亚洲四区av| 身体一侧抽搐| 国产免费av片在线观看野外av| 九九爱精品视频在线观看| 男女下面进入的视频免费午夜| 亚洲图色成人| 精品乱码久久久久久99久播| 窝窝影院91人妻| 九九热线精品视视频播放| 免费av观看视频| 美女xxoo啪啪120秒动态图| 亚洲最大成人中文| 久久久久九九精品影院| 两个人的视频大全免费| 亚洲一区高清亚洲精品| 国产精品久久久久久精品电影| 中文在线观看免费www的网站| 国产精品一及| 免费一级毛片在线播放高清视频| 俄罗斯特黄特色一大片| 免费无遮挡裸体视频| 桃红色精品国产亚洲av| 22中文网久久字幕| 极品教师在线视频| 久久精品国产清高在天天线| 日日夜夜操网爽| 久久久精品欧美日韩精品| 欧美人与善性xxx| 99国产精品一区二区蜜桃av| 亚洲中文字幕一区二区三区有码在线看| 国产亚洲av嫩草精品影院| 一区二区三区高清视频在线| 韩国av在线不卡| 日本色播在线视频| 精品久久久久久久久久久久久| 欧美精品国产亚洲| 国产精品不卡视频一区二区| 久久6这里有精品| 999久久久精品免费观看国产| aaaaa片日本免费| 97人妻精品一区二区三区麻豆| 欧洲精品卡2卡3卡4卡5卡区| 国产成人福利小说| 特级一级黄色大片| 少妇猛男粗大的猛烈进出视频 | 在线国产一区二区在线| 亚洲黑人精品在线| 日本-黄色视频高清免费观看| 韩国av在线不卡| 五月伊人婷婷丁香| 中文在线观看免费www的网站| 天堂√8在线中文| 国产亚洲精品综合一区在线观看| 亚洲aⅴ乱码一区二区在线播放| 小说图片视频综合网站| 精品人妻熟女av久视频| 国产一区二区三区av在线 | 国内精品久久久久久久电影| 搡女人真爽免费视频火全软件 | 亚洲中文日韩欧美视频| 狠狠狠狠99中文字幕| 一级黄色大片毛片| 日韩 亚洲 欧美在线| 美女免费视频网站| 久久精品国产亚洲av天美| 国产精品人妻久久久影院| av在线亚洲专区| 欧美成人一区二区免费高清观看| 亚洲精品亚洲一区二区| 亚洲精品456在线播放app | 真实男女啪啪啪动态图| a级毛片免费高清观看在线播放| 成人永久免费在线观看视频| 天天躁日日操中文字幕| 免费观看在线日韩| 美女高潮的动态| 日韩欧美三级三区| 中文资源天堂在线| 中亚洲国语对白在线视频| 两个人的视频大全免费| 啦啦啦啦在线视频资源| 国产精品久久久久久精品电影| 99精品在免费线老司机午夜| 欧美性感艳星| av天堂中文字幕网| 非洲黑人性xxxx精品又粗又长| 美女大奶头视频| 国产综合懂色| av在线天堂中文字幕| 国产熟女欧美一区二区| 久久久国产成人精品二区| 国产精品av视频在线免费观看| a级一级毛片免费在线观看| 欧美日韩乱码在线| 99视频精品全部免费 在线| 少妇人妻精品综合一区二区 | 国产探花极品一区二区| 在线观看午夜福利视频| 国产精品久久久久久亚洲av鲁大| 日本三级黄在线观看| 有码 亚洲区| 日韩精品中文字幕看吧| bbb黄色大片| eeuss影院久久| 精品久久久久久久久久久久久| 久久久精品欧美日韩精品| 亚洲经典国产精华液单| 国产美女午夜福利| 欧美bdsm另类| 国内精品久久久久精免费| 亚洲av第一区精品v没综合| 在线观看免费视频日本深夜| 色视频www国产| 免费电影在线观看免费观看| 国产伦一二天堂av在线观看| 国产亚洲av嫩草精品影院| 97人妻精品一区二区三区麻豆| 成人美女网站在线观看视频| 欧美激情在线99| 亚洲 国产 在线| 直男gayav资源| 欧美性猛交╳xxx乱大交人| 成人特级黄色片久久久久久久| 桃色一区二区三区在线观看| 免费电影在线观看免费观看| 亚洲无线观看免费| 给我免费播放毛片高清在线观看| 村上凉子中文字幕在线| 成人综合一区亚洲| 欧美在线一区亚洲| 中文字幕av成人在线电影| 直男gayav资源| 欧美性猛交╳xxx乱大交人| 中文亚洲av片在线观看爽| 最新在线观看一区二区三区| 久久久久久久久久黄片| 亚洲va日本ⅴa欧美va伊人久久| 国产精品一区www在线观看 | 亚洲在线自拍视频| av视频在线观看入口| 亚洲专区中文字幕在线| 日本三级黄在线观看| 综合色av麻豆| 久久香蕉精品热| 欧美成人免费av一区二区三区| 久久人人爽人人爽人人片va| 日日夜夜操网爽| 亚洲最大成人av| 日本熟妇午夜| 亚洲精品影视一区二区三区av| 不卡一级毛片| 欧美成人免费av一区二区三区| 麻豆国产97在线/欧美| 三级男女做爰猛烈吃奶摸视频| 两人在一起打扑克的视频| 国产av不卡久久| .国产精品久久| 国产69精品久久久久777片| 亚洲国产欧洲综合997久久,| 色综合色国产| 亚洲成a人片在线一区二区| 日本精品一区二区三区蜜桃| 成人国产综合亚洲| 美女 人体艺术 gogo| 97超视频在线观看视频| 少妇熟女aⅴ在线视频| 热99re8久久精品国产|