周思政 綜述 李青峰 審校
人皮膚深層創(chuàng)傷后通過纖維性修復的方式進行愈合[1]。該過程中,創(chuàng)面基底肉芽組織增生,支持創(chuàng)緣表皮增殖,并向創(chuàng)面中央遷移,最終覆蓋創(chuàng)面,完成愈合[2-3]。由于皮膚的修復能力有一定的限度,大面積皮膚缺損往往愈合時間較長;同時,一些基礎疾病可能會干擾創(chuàng)傷愈合的進程,使傷口遷延不愈,這些問題目前在臨床上仍缺乏良好的對策[4-5]。皮膚傷口的纖維性修復雖然恢復了皮膚的完整性和表皮的屏障作用,但主要是通過肉芽組織增生填補皮膚的缺損,愈合后不可避免地遺留瘢痕[6]。皮膚傷口愈合后產(chǎn)生的普通瘢痕,在形成后迅速進入成熟期,期間細胞發(fā)生凋亡、膠原重排、血管密度降低,瘢痕顏色逐漸變淡、質(zhì)地變軟[7-8]。若皮膚創(chuàng)傷愈合過程中炎癥反應過度[9-10],或創(chuàng)面受到機械張力牽拉[11],則可能誘導增生性瘢痕的產(chǎn)生。增生性瘢痕的增生期明顯,期間細胞增殖活躍、膠原大量沉積、多種生長因子(如轉(zhuǎn)化生長因子β1、胰島素樣生長因子1等)異常高表達[12-13],導致瘢痕隆起、顏色發(fā)紅、質(zhì)地變硬、易產(chǎn)生攣縮,可導致患者局部外觀和功能受損,并產(chǎn)生嚴重的心理影響,是臨床一大難題[14]。
長期以來,大量的研究針對皮膚創(chuàng)面愈合、瘢痕形成的病理生理機制及治療方法進行探索。由于人皮膚創(chuàng)面和瘢痕標本在臨床的取材常常受到限制,因此這一領域的大部分研究需建立實驗動物模型。但是,種系間的差異使得常用的實驗動物從皮膚結構、創(chuàng)面愈合過程到瘢痕形成、瘢痕增生等多個環(huán)節(jié),均與人體存在較大差別[15],為實驗研究帶來了很大的困難。本文針對目前皮膚創(chuàng)傷愈合和增生性瘢痕動物模型的研究進展進行綜述,以期為最終攻克瘢痕難題提供線索。
嚙齒類動物易管理,建模方法相對簡便,基因編輯、在體示蹤等生物學技術在該類動物中的應用日趨成熟。因此,嚙齒類動物的創(chuàng)傷模型在實驗研究中最為常用。在上世紀40年代即有報道利用小鼠觀察致癌物對皮膚創(chuàng)傷愈合的影響[16],之后SD大鼠、Lewis大鼠、BALB/c小鼠、C57BL/6小鼠等均用于建立皮膚創(chuàng)傷愈合模型[17-20]。在嚙齒類動物中建立的模型包括線性切割傷口模型、皮膚切除創(chuàng)傷模型、熱損傷模型、感染性創(chuàng)面模型等。
線性切割傷口模型、皮膚切除創(chuàng)傷模型通常于嚙齒類動物背部皮膚進行,傷口大小不一、深度各異。除了應用手術刀、手術剪制造傷口外,為了提高建模的穩(wěn)定性和使傷口標準化,皮膚打孔器[21]、植皮刀[22]等亦常用于該類模型的建立。熱損傷模型有多種建模方式,有將動物皮膚浸泡于熱水中引起皮膚燙傷的[23],亦有應用加熱的金屬對皮膚進行熱損傷的[24]。感染性創(chuàng)面的建模,則通過局部涂抹或注射微生物懸液制備,較多的是采用金黃色葡萄球菌[25]和銅綠假單胞菌[26]。
嚙齒類動物皮膚創(chuàng)傷愈合模型被用于觀察傷口愈合過程及新治療方法的效果。但是,嚙齒類動物皮膚伸縮性較強,皮膚與皮下組織間較為疏松,皮下存在易于收縮的肉膜層,導致了創(chuàng)面形成后創(chuàng)緣容易收縮[22,27],使創(chuàng)面縮小。Chen等[28]報道小鼠背部傷口愈合過程中,傷口閉合約60%的力量來自于創(chuàng)緣收縮。因此,嚙齒類動物創(chuàng)面閉合的速度相對較快,愈合過程中肉芽增生較弱,病理生理過程與人體差異較大。另外,嚙齒類動物在皮膚愈合后,創(chuàng)面瘢痕會繼續(xù)收縮,出現(xiàn)明顯的萎縮,大創(chuàng)面愈合后約2個月時可出現(xiàn)毛囊再生等現(xiàn)象[29],與人體皮膚存在根本性地差異。應用藥物或基因敲除技術可建立糖尿病小鼠或大鼠模型[30-31],這類動物皮膚創(chuàng)面的愈合功能受損,創(chuàng)面收縮減弱,但由于動物存在基礎疾病,使這類動物模型的應用受到限制。Wu等[32]在大鼠背部傷口皮下植入明膠海綿,使傷口的炎癥反應加重,愈合后瘢痕的寬度擴大了11倍,但該方法在創(chuàng)面引入了異物,對創(chuàng)面修復的過程形成了干擾。Wang等[33]提出,在背部創(chuàng)面周圍使用一硅膠圈防止創(chuàng)緣收縮,可更好地模擬人創(chuàng)面愈合、瘢痕形成的過程,但嚙齒類動物較為活躍,實驗過程中硅膠圈易損壞或脫落,導致建模的穩(wěn)定性欠佳。
常用于建立皮膚創(chuàng)傷愈合模型的豬種包括約克郡豬[34]、杜洛克豬[35]和體型較小的尤卡坦豬[36]、漢福德豬[37]等。豬皮膚創(chuàng)傷愈合模型包括皮膚切除模型和熱損傷模型,與嚙齒類動物建模方式類似,分別用手術器械、皮膚打孔器、植皮刀或加熱后的金屬來制造損傷。
豬皮膚創(chuàng)傷愈合模型的最大優(yōu)勢在于豬皮膚的結構、創(chuàng)傷愈合過程與人皮膚較為接近。豬皮膚表皮與真皮厚度之比和毛發(fā)密度等,與人皮膚接近,且表皮、真皮細胞表達標志物與人皮膚細胞有一定的相似性[38],其創(chuàng)傷愈合過程以肉芽組織增生與表皮再生為主,與人創(chuàng)傷纖維性修復的模式也較為接近。同時,豬皮膚創(chuàng)傷愈合后可形成較明顯的皮膚瘢痕[15]。Sullivan等總結了180篇文獻,發(fā)現(xiàn)78%以豬為實驗動物的創(chuàng)面研究結果與臨床研究結果一致,這一比例高于小動物實驗(53%)與體外實驗(57%)[39]。但是,豬作為實驗動物,其飼養(yǎng)、管理條件和經(jīng)濟成本較高,更為重要的是很多新興的生物學手段,如基因編輯技術等,在豬模型上應用較少,不利于對創(chuàng)面愈合的基因、分子機制進行深入研究[40],因此豬皮膚創(chuàng)傷愈合模型并未獲得大量的應用。
增生性瘢痕是皮膚創(chuàng)傷愈合過程中修復反應過度而產(chǎn)生的病理性瘢痕,病理生理機制尚不明確。目前認為增生性瘢痕的產(chǎn)生與過度炎癥反應[41]和機械張力作用有關[11,42]。一般的實驗動物創(chuàng)面愈合后形成的瘢痕不明顯,而且消退較快,因此增生性瘢痕模型的建立是該領域的一大難題。
Morris等[43]發(fā)現(xiàn)兔耳皮膚創(chuàng)傷愈合后可自發(fā)形成較為穩(wěn)定、持久的增生性瘢痕,有69%的兔耳創(chuàng)面愈合后形成明顯隆起的瘢痕,且可持續(xù)90 d,組織學染色提示瘢痕組織明顯高于周邊正常皮膚,具備人增生性瘢痕的組織學特點。Kloeters等[44]改進了此模型,使形成的增生性瘢痕更加穩(wěn)定。他們在兔耳上建立直徑為7 mm的創(chuàng)面,并去除兔耳的軟骨膜,使創(chuàng)面收縮變緩、愈合速度減慢,成纖維細胞持續(xù)在創(chuàng)面張力的作用下,最終導致增生性瘢痕的發(fā)生。進一步研究表明,直徑7 mm的兔耳創(chuàng)面與5 mm的創(chuàng)面相比,在瘢痕過程中表達的Ⅰ型膠原和TGF-β1顯著升高[45],提示適當擴大創(chuàng)面、延遲創(chuàng)面愈合可形成更明顯的增生性瘢痕。Qian等[41]在兔耳創(chuàng)面中加入病原體相關分子模式和損傷相關分子模式,使創(chuàng)面持續(xù)發(fā)生炎癥反應,創(chuàng)面多核白細胞數(shù)量、白介素-6表達明顯升高,創(chuàng)面愈合延遲,創(chuàng)面愈合后形成的增生性瘢痕隆起更為明顯,中性粒細胞浸潤增多,該模型可用于炎癥性創(chuàng)面與增生性瘢痕的研究。Friedrich等[46]在兔耳上建立燒傷創(chuàng)面,與皮膚切除創(chuàng)面相比,其形成的瘢痕面積顯著增加,適合用于燒傷病理生理過程、燒傷后瘢痕形成的研究。
但是,兔耳模型暴露了兔耳的軟骨,使得創(chuàng)面基底與一般情況下人皮膚創(chuàng)面的基底條件有差異;另外,兔耳瘢痕增生的同時出現(xiàn)了軟骨的增生[44],提示兔耳瘢痕增生的機制可能與人增生性瘢痕形成的機制存在差別。
Polo等[47]成功地將人增生性瘢痕標本移植至免疫缺陷小鼠皮下,移植的瘢痕組織可保留人增生性瘢痕的特點。隨后,Momtazi等[48-49]指出,將人刃厚皮片移植至免疫缺陷小鼠背部皮膚缺損處亦可產(chǎn)生瘢痕,瘢痕組織內(nèi)可見成纖維細胞、肥大細胞浸潤,同時decorin表達下降、二聚糖表達上升,符合人增生性瘢痕的特點。他們還發(fā)現(xiàn)該模型在TCRαβ-/-γδ-/-、RAG-1-/-和RAG-2-/-γc-/-免疫缺陷小鼠中均可建立,有利于研究不同類型的免疫細胞(T細胞、B細胞、自然殺傷細胞)在增生性瘢痕形成中的作用[50]。Zhu等[51]在此類模型中應用氯膦酸二鈉脂質(zhì)體誘導裸鼠體內(nèi)巨噬細胞凋亡,發(fā)現(xiàn)瘢痕內(nèi)的肌成纖維細胞數(shù)量、膠原合成均下降,提示巨噬細胞促進裸鼠皮片移植導致的增生性瘢痕形成。
此類模型中,移植的增生性瘢痕所處的微環(huán)境與人增生性瘢痕差異較大,瘢痕的形成由皮膚移植而非創(chuàng)傷愈合導致。同時,裸鼠免疫系統(tǒng)存在缺陷,所以該類模型亦存在局限性。
雌性杜洛克豬皮膚具有和人皮膚類似的皮膚錐體結構,其皮膚創(chuàng)面愈合后可形成纖維增生性的瘢痕[52-53],所形成的瘢痕在膠原排列、膠原表達、生長因子(TGF-β1、IGF-1、VEGF)表達,以及蛋白聚糖表達、一氧化氮(NO)表達、神經(jīng)密度和微血管密度等方面,與人增生性瘢痕有較高的相似性[53-57]。研究提示,雌性杜洛克豬皮膚創(chuàng)傷后第2天、第4天可在創(chuàng)面處檢測到與組織纖維化相關的纖維細胞[58]。體外實驗表明,雌性杜洛克豬與約克郡豬相比,其皮膚中的成纖維細胞黏附性、收縮性較強,遷移減弱,同時TGF-β1、α-SMA及Ⅰ型膠原表達上升、decorin表達下降,成纖維細胞的這些促纖維化特性可能導致了杜洛克豬易于形成增生性瘢痕[59]。Travis等[60]發(fā)現(xiàn)杜洛克豬瘢痕外周色素加深,該區(qū)域中黑色素、α-黑素細胞刺激素等表達升高,黑色素細胞的激活更為顯著,提示該模型亦可用于研究創(chuàng)傷愈合和瘢痕形成中黑色素細胞的作用。
盡管豬瘢痕模型在組織學、病理生理學方面與人體較為接近,但其形成的瘢痕在外觀上并未發(fā)紅、隆起,豬深層創(chuàng)面愈合需要約3個月,建模時間較長;另外,動物管理、費用等問題,亦限制了此模型的廣泛應用。
臨床觀察發(fā)現(xiàn),人體皮膚傷口受到機械牽張與增生性瘢痕的發(fā)生具有相關性,應用減張的方法可有效減少增生性瘢痕的發(fā)生[61]。因此,Arabi等[11]在小鼠背部安裝一皮膚牽張器,對小鼠背部切割傷口在愈合后施加10 d的機械牽張力,誘導了增生性瘢痕的產(chǎn)生,并符合人皮膚增生性瘢痕的特點。該研究證實,在此模型中,機械張力使瘢痕內(nèi)成纖維細胞凋亡受到抑制,從而使膠原沉積、瘢痕增生。同時,他們發(fā)現(xiàn)機械張力通過輔助T細胞介導小鼠瘢痕內(nèi)出現(xiàn)持續(xù)慢性炎癥反應,巨噬細胞、成纖維細胞募集增多,促纖維化生長因子表達升高,導致增生性瘢痕的產(chǎn)生[62],提示該模型在增生性瘢痕形成的免疫學機制上與人有相似之處。進一步的研究中,他們還利用基因芯片分析,發(fā)現(xiàn)機械張力激活一類與細胞連結、遷移相關的分子——局部粘著斑激酶(FAK),通過FAKERK-MCP-1信號傳導通路,導致瘢痕內(nèi)炎癥反應加重,瘢痕增生[63]。該發(fā)現(xiàn)將增生性瘢痕發(fā)生的二大因素——機械力與炎癥反應相聯(lián)系,一定程度上解釋了生物力學在瘢痕增生中所起的具體作用,該模型成為目前較為常用的增生性瘢痕模型。但由于小鼠活動活躍,建模過程中牽張器經(jīng)常受損脫落,導致模型建立不穩(wěn)定,影響實驗研究的可重復性。
博來霉素被用于建立肺纖維化、硬皮病的動物模型[64-65]。因此,Cameron等[66]在BALB/c小鼠背部皮下置入微泵,以恒定的速度注入博來霉素,發(fā)現(xiàn)可誘導皮膚產(chǎn)生增生性瘢痕,所產(chǎn)生的瘢痕組織具備人皮膚增生性瘢痕的特點,認為此模型可用于增生性瘢痕的研究。但是,這樣的瘢痕并非由皮膚損傷發(fā)展而來,其形成過程與人皮膚增生性瘢痕相差較遠,并且皮下應用博來霉素后,可能與瘢痕的藥物治療、細胞治療等發(fā)生相互作用,影響實驗的科學性。另外,博來霉素停止輸注后,模型的瘢痕組織可能消退,不利于長期觀察[67]。
皮膚創(chuàng)傷愈合、瘢痕形成一直是臨床試圖攻克的難點,良好的動物模型是深入研究的基礎,對研究結果的可靠性有重要影響。然而,由于創(chuàng)傷愈合、瘢痕形成有明顯的種系特異性,纖維性修復、瘢痕增生等過程往往在實驗動物上難以很好地重現(xiàn),各種動物模型的優(yōu)缺點均很明顯。豬在皮膚結構、創(chuàng)傷愈合、瘢痕形成、瘢痕增生等方面與人體皮膚有較好的相似性,但新興生物學技術尚無法應用。目前針對創(chuàng)傷愈合、皮膚瘢痕化的研究已達基因和分子學層面[68-69],對于基因轉(zhuǎn)錄、信號傳導的研究常需利用基因編輯技術、在體示蹤技術,這些方面的不足限制了豬模型的應用。嚙齒類動物管理方便、費用較低、生物學技術應用廣泛,成為實驗動物的首選。但嚙齒類動物在創(chuàng)傷愈合、瘢痕增生過程中與人體皮膚存在明顯差異,為新治療方法的臨床轉(zhuǎn)化帶來了困難??偠灾?,對于皮膚創(chuàng)傷愈合和增生性瘢痕動物模型的研究仍不完善,還需要進一步的積極探索。目前,利用實驗工具(如硅膠圈、皮膚牽張器等)干預動物皮膚傷口、瘢痕,以更好地模擬人病理生理過程為建模研究的新趨勢。另外,嚙齒類動物中基因編輯技術日臻成熟,能否利用該技術在動物中重現(xiàn)人皮膚創(chuàng)傷愈合、瘢痕化的過程,值得進一步探索。
[1]Takeo M,Lee W,Ito M.Wound healing and skin regeneration[J].Cold Spring Harb Perspect Med,2015,5(1):a023267.
[2]Diegelmann RF,Evans MC.Wound healing:an overview of acute,fibrotic and delayed healing[J].Front Biosci,2004,9:283-289.
[3]Reinke JM,Sorg H.Wound repair and regeneration[J].Eur Surg Res,2012,49(1):35-43.
[4]Mahjour SB,Fu X,Yang X,et al.Rapid creation of skin substitutes from human skin cells and biomimetic nanofibers for acute fullthickness wound repair[J].Burns,2015,41(8):1764-1774.
[5]Liu H,Duan Z,Tang J,et al.A short peptide from frog skin accelerates diabetic wound healing[J].Febs J,2014,281(20):4633-4643.
[6]Zielins ER,Atashroo DA,Maan ZN,et al.Wound healing:an update[J].Regen Med,2014,9(6):817-830.
[7]Bond JS,Duncan JA,Sattar A,et al.Maturation of the human scar:an observational study[J].Plast Reconstr Surg,2008,121(5):1650-1658.
[8]Kelf TA,Gosnell M,Sandnes B,et al.Scar tissue classification using nonlinear optical microscopy and discriminant analysis[J].JBiophotonics,2012,5(2):159-167.
[9]Bai X,He T,Liu J,et al.Loureirin Binhibitsfibroblast proliferation and extracellular matrix deposition in hypertrophic scar via TGF-beta/Smad pathway[J].Exp Dermatol,2015,24(5):355-360.
[10]Stramer BM,Mori R,Martin P.The inflammation-fibrosis link?A Jekyll and Hyde role for blood cells during wound repair[J].J Invest Dermatol,2007,127(5):1009-1017.
[11]Aarabi S,Bhatt KA,Shi Y,et al.Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis[J].Faseb J,2007,21(12):3250-3261.
[12]Gao Y,Lu J,Zhang Y,et al.Baicalein attenuates bleomycininduced pulmonary fibrosis in rats through inhibition of miR-21[J].Pulm Pharmacol Ther,2013,26(6):649-654.
[13]Ghahary A,Shen YJ,Nedelec B,et al.Enhanced expression of mRNA for insulin-like growth factor-1 in post-burn hypertrophic scar tissue and its fibrogenic role by dermal fibroblasts[J].Mol Cell Biochem,1995,148(1):25-32.
[14]Xiao Z,Zhang F,Lin W,et al.Effect of botulinum toxin type A on transforming growth factor beta1 in fibroblasts derived from hypertrophic scar:a preliminary report[J].Aesthetic Plast Surg,2010,34(4):424-427.
[15]Nuutila K,Katayama S,Vuola J,et al.Human Wound-healing research:issues and perspectives for studies using wide-scale analytic platforms[J].Adv Wound Care(New Rochelle),2014,3(3):264-271.
[16]Silberberg M,Silberberg R.Course of wound healing in the skin of mice under the influence of carcinogens[J].Arch Pathol(Chic),1946,42:193-205.
[17]Perini JA,Angeli-Gamba T,Alessandra-Perini J,et al.Topical application of Acheflan on rat skin injury accelerates wound healing:ahistopathological,immunohistochemical and biochemical study[J].BMCComplement Altern Med,2015,15:203.
[18]Alves CC,Torrinhas RS,Giorgi R,et al.TGF-beta1 expression in wound healing is acutely affected by experimental malnutrition and early enteral feeding[J].Int Wound J,2014,11(5):533-539.
[19]Mehraein F,Sarbishegi M,Aslani A.Evaluation of effect of oleuropein on skin wound healing in aged male BALB/c mice[J].Cell J,2014,16(1):25-30.
[20]Okizaki S,Ito Y,Hosono K,et al.Suppressed recruitment of alternatively activated macrophages reduces TGF-beta1 and impairs wound healing in streptozotocin-induced diabetic mice[J].Biomed Pharmacother,2015,70:317-325.
[21]van Solingen C,Araldi E,Chamorro-Jorganes A,et al.Improved repair of dermal wounds in mice lacking microRNA-155[J].J Cell Mol Med,2014,18(6):1104-1112.
[22]Davidson JM.Animal models for wound repair[J].Arch Dermatol Res,1998,290 Suppl:S1-S11.
[23]Wu JC,Rose LF,Christy RJ,et al.Full-thickness thermal injury delays wound closure in a murine model[J].Adv Wound Care(New Rochelle),2015,4(2):83-91.
[24]Wang CZ,El Ayadi A,Goswamy J,et al.Topically applied metal chelator reduces thermal injury progression in a rat model of brass comb burn[J].Burns,2015,41(8):1775-1787.
[25]Eyarefe OD,Idowu A,Afolabi JM.Healing potentials of oral moringa oleifera leaves extract and tetracycline on methicillin resistant staphylococcus aureus infected wounds of Wistar rats[J].Niger JPhysiol Sci,2015,30(1-2):73-78.
[26]Kanno E,Tanno H,Suzuki A,et al.Reconsideration of iodine in wound irrigation:the effects on Pseudomonas aeruginosa biofilm formation[J].JWound Care,2016,25(6):335-339.
[27]Chen JS,Longaker MT,Gurtner GC.Murine models of human wound healing[J].Methods Mol Biol,2013,1037:265-274.
[28]Chen L,Mirza R,Kwon Y,et al.The murine excisional wound model:Contraction revisited[J].Wound Repair Regen,2015,23(6):874-877.
[29]Wang X,Hsi TC,Guerrero-Juarez CF,et al.Principles and mechanisms of regeneration in the mouse model for woundinduced hair follicle neogenesis[J].Regeneration(Oxf),2015,2(4):169-181.
[30]Ghaisas MM,Kshirsagar SB,Sahane RS.Evaluation of wound healing activity of ferulic acid in diabetic rats[J].Int Wound J,2014,11(5):523-532.
[31]Park SA,Teixeira LB,Raghunathan VK,et al.Full-thickness splinted skin wound healing models in db/db and heterozygous mice:implications for wound healing impairment[J].Wound Repair Regen,2014,22(3):368-380.
[32]Wu X,Gao Z,Song N,et al.Creating thick linear scar by inserting a gelatin sponge into rat excisional wounds[J].Wound Repair Regen,2007,15(4):595-606.
[33]Wang X,Ge J,Tredget EE,et al.The mouse excisional wound splinting model,including applications for stem cell transplantation[J].Nat Protoc,2013,8(2):302-309.
[34]Reish RG,Zuhaili B,Bergmann J,et al.Modulation of scarring in a liquid environment in the Yorkshire pig[J].Wound Repair Regen,2009,17(6):806-816.
[35]Zhu KQ,Carrougher GJ,Gibran NS,et al.Review of the female Duroc/Yorkshire pig model of human fibroproliferative scarring[J].Wound Repair Regen,2007,15 Suppl 1:S32-S39.
[36]Byl NN,McKenzie AL,West JM,et al.Pulsed microamperage stimulation:a controlled study of healing of surgically induced wounds in Yucatan pigs[J].Phys Ther,1994,74(3):201-213.
[37]Larson DL,Flugstad NA,O'Connor E,et al.Does systemic isotretinoin inhibit healing in a porcine wound model[J]?Aesthet Surg J,2012,32(8):989-998.
[38]Debeer S,Le Luduec JB,Kaiserlian D,et al.Comparative histology and immunohistochemistry of porcine versus human skin[J].Eur JDermatol,2013,23(4):456-466.
[39]Sullivan TP,Eaglstein WH,Davis SC,et al.The pig as a model for human wound healing[J].Wound Repair Regen,2001,9(2):66-76.
[40]Seaton M,Hocking A,Gibran NS.Porcine models of cutaneous wound healing[J].Ilar J,2015,56(1):127-138.
[41]Qian LW,Fourcaudot AB,Yamane K,et al.Exacerbated and prolonged inflammation impairs wound healing and increases scarring[J].Wound Repair Regen,2016,24(1):26-34.
[42]Wong VW,Rustad KC,Akaishi S,et al.Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling[J].Nat Med,2011,18(1):148-152.
[43]Morris DE,Wu L,Zhao LL,et al.Acute and chronic animal models for excessive dermal scarring:quantitative studies[J].Plast Reconstr Surg,1997,100(3):674-681.
[44]Kloeters O,Tandara A,Mustoe TA.Hypertrophic scar model in the rabbit ear:a reproducible model for studying scar tissue behavior with new observations on silicone gel sheeting for scar reduction[J].Wound Repair Regen,2007,15 Suppl 1:S40-S45.
[45]Kryger ZB,Sisco M,Roy NK,et al.Temporal expression of the transforming growth factor-Beta pathway in the rabbit ear model of wound healing and scarring[J].J Am Coll Surg,2007,205(1):78-88.
[46]Friedrich EE,Niknam-Bienia S,Xie P,et al.Thermal injury model in the rabbit ear with quantifiable burn progression and hypertrophic scar[J].Wound Repair Regen,2017,25(2):327-337.
[47]Polo M,Kim YJ,Kucukcelebi A,et al.An in vivo model of human proliferative scar[J].JSurg Res,1998,74(2):187-195.
[48]Wang J,Ding J,Jiao H,et al.Human hypertrophic scar-like nude mouse model:characterization of the molecular and cellular biology of the scar process[J].Wound Repair Regen,2011,19(2):274-285.
[49]Momtazi M,Kwan P,Ding J,et al.A nude mouse model of hypertrophic scar shows morphologic and histologic characteristics of human hypertrophic scar[J].Wound Repair Regen,2013,21(1):77-87.
[50]Momtazi M,Ding J,Kwan P,et al.Morphologic and histologic comparison of hypertrophic scar in nude mice,T-cell receptor,and recombination activating gene Knockout mice[J].Plast Reconstr Surg,2015,136(6):1192-1204.
[51]Zhu Z,Ding J,Ma Z,et al.Systemic depletion of macrophages in the subacute phase of wound healing reduces hypertrophic scar formation[J].Wound Repair Regen,2016,24(4):644-656.
[52]Zhu KQ,Engrav LH,Gibran NS,et al.The female,red Duroc pig as an animal model of hypertrophic scarring and the potential role of the cones of skin[J].Burns,2003,29(7):649-664.
[53]Zhu KQ,Carrougher GJ,Couture OP,et al.Expression of collagen genes in the cones of skin in the Duroc/Yorkshire porcine model of fibroproliferative scarring[J].J Burn Care Res,2008,29(5):815-827.
[54]Zhu KQ,Engrav LH,Tamura RN,et al.Further similarities between cutaneous scarring in the female,red Duroc pig and human hypertrophic scarring[J].Burns,2004,30(6):518-530.
[55]Zhu KQ,Engrav LH,Armendariz R,et al.Changes in VEGF and nitric oxide after deep dermal injury in the female,red Duroc pig-further similarities between female,Duroc scar and human hypertrophic scar[J].Burns,2005,31(1):5-10.
[56]Liang Z,Engrav LH,Muangman P,et al.Nerve quantification in femalered Duroc pig(FRDP)scar compared to human hypertrophic scar[J].Burns,2004,30(1):57-64.
[57]Xie Y,Zhu KQ,Deubner H,et al.The microvasculature in cutaneous wound healing in the female red Duroc pig is similar to that in human hypertrophic scars and different from that in the female Yorkshire pig[J].JBurn Care Res,2007,28(3):500-506.
[58]Travis TE,Mino MJ,Moffatt LT,et al.Biphasic presence of fibrocytes in a porcine hypertrophic scar model[J].J Burn Care Res,2015,36(3):e125-e135.
[59]Sood RF,Muffley LA,Seaton ME,et al.Dermal fibroblasts from the red Duroc pig have an inherently fibrogenic phenotype:an in vitro model of fibroproliferative scarring[J].Plast Reconstr Surg,2015,136(5):990-1000.
[60]Travis TE,Ghassemi P,Ramella-Roman JC,et al.A multimodal assessment of melanin and melanocyte activity in abnormally pigmented hypertrophic scar[J].JBurn Care Res,2015,36(1):77-86.[61]Gurtner GC,Dauskardt RH,Wong VW,et al.Improving cutaneous scar formation by controlling the mechanical environment:large animal and phase Istudies[J].Ann Surg,2011,254(2):217-225.
[62]Wong VW,Paterno J,Sorkin M,et al.Mechanical force prolongs acute inflammation via T-cell-dependent pathways during scar formation[J].Faseb J,2011,25(12):4498-4510.
[63]Aliprantis AO,Wang J,Fathman JW,et al.Transcription factor T-bet regulates skin sclerosis through its function in innate immunity and via IL-13[J].Proc Natl Acad Sci U SA,2007,104(8):2827-2830.
[64]Kang YY,Kim DY,Lee SH,et al.Deficiency of developmental endothelial locus-1(Del-1)aggravates bleomycin-induced pulmonary fibrosis in mice[J].Biochem Biophys Res Commun,2014,445(2):369-374.
[65]Yamamoto T,Takagawa S,Katayama I,et al.Animal model of sclerotic skin.I:Local injections of bleomycin induce sclerotic skin mimicking scleroderma[J].J Invest Dermatol,1999,112(4):456-462.
[66]Cameron AM,Adams DH,Greenwood JE,et al.A novel murine model of hypertrophic scarring using subcutaneous infusion of bleomycin[J].Plast Reconstr Surg,2014,133(1):69-78.
[67]Sacak B,Akalin BE.A novel murine model of hypertrophic scarring using subcutaneous infusion of bleomycin[J].Plast Reconstr Surg,2014,134(1):163e-164e.
[68]Miura Y,Ngo Thai Bich V,Furuya M,et al.The small G protein Arf6 expressed in keratinocytes by HGF stimulation is a regulator for skin wound healing[J].Sci Rep,2017,7:46649.
[69]Yao Z,Li H,He W,et al.P311 accelerates skin wound reepithelialization by promoting epidermal stem cell migration through RhoA and Rac1 Activation[J].Stem Cells Dev,2017,26(6):451-460.