• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      基于發(fā)生函數(shù)的模糊多狀態(tài)復雜系統(tǒng)可靠性通用評估方法

      2018-01-15 05:37:15史躍東金家善徐一帆胡俊波
      關(guān)鍵詞:系統(tǒng)可靠性可靠性建模

      史躍東, 金家善, 徐一帆, 胡俊波

      (1. 海軍工程大學科研部, 湖北 武漢 430033; 2. 海軍工程大學管理工程系, 湖北 武漢 430033)

      0 引 言

      工程領(lǐng)域的復雜系統(tǒng)多具備組成結(jié)構(gòu)復雜、運行過程復雜、使用環(huán)境復雜等特點,且可靠性、安全性、可用性要求較高,然而鑒于其自身性能潛在的突變性、涌現(xiàn)性以及結(jié)構(gòu)敏感性等原因,前述可靠性、安全性、可用性計算分析工作難度往往較大。為此,探索一類能夠較為準確刻畫復雜系統(tǒng)運行歷程,真實映射其可靠性、安全性和可用性的通用模型和研究方法,一直備受行業(yè)研究人員關(guān)注,特別是在面臨配套保障資源籌劃、維修管理決策等與壽命周期成本密切相關(guān)的現(xiàn)實工程問題時,復雜系統(tǒng)的可靠性預測、評估技術(shù),更是解決相關(guān)問題的關(guān)鍵所在,因此成為研究熱點和難點。

      早期受到傳統(tǒng)建模理念和現(xiàn)實解算能力所限,有關(guān)復雜系統(tǒng)的可靠性研究工作,多假定系統(tǒng)性能僅為二元狀態(tài),即“正常工作”狀態(tài)和“完全失效”狀態(tài)。然而,長期的工作實踐表明,僅依賴二元狀態(tài)刻畫評估系統(tǒng)工作性能,獲取的研究結(jié)果多有欠理想,甚至與實際觀測結(jié)果大相徑庭,因此,亟待探索一類能夠較為準確刻畫系統(tǒng)真實運行狀態(tài)的建模方法。自20世紀90年代起,多狀態(tài)理論被引入復雜系統(tǒng)可靠性建模與評估研究領(lǐng)域,并被作為系統(tǒng)成本優(yōu)化、維修決策的重要輔助工具[1-3]。文獻[4-12]利用多狀態(tài)理論開展復雜系統(tǒng)失效機理研究,建立了較為理想的可靠性多狀態(tài)評估模型。文獻[13-14]針對機械多狀態(tài)系統(tǒng),提出了一類離散化的可靠性解析方法。文獻[15-16]基于貝葉斯網(wǎng)絡理論,開展了多狀態(tài)復雜系統(tǒng)的可靠性建模與評估研究。文獻[17-21]針對一類極具代表性的相鄰多狀態(tài)k/n系統(tǒng),給出了通用解算方法。文獻[22-24]則進一步探討了計及部件老化的多狀態(tài)復雜系統(tǒng)的可靠性評估特殊性。

      與二元理論相比,多狀態(tài)理論改善了系統(tǒng)建模精度,能夠更為真實地反映復雜系統(tǒng)工作歷程,但同時也在一定程度上加大了模型解算的工作量,對于包括較多構(gòu)件的大型復雜系統(tǒng)來說,解算工作量更是呈幾何級數(shù)增加。為此,一類極具計算優(yōu)勢的通用發(fā)生函數(shù)解算方法,被納入多狀態(tài)復雜系統(tǒng)可靠性評估解算體系。其中,文獻[25-30]在此方面開展了諸多工作;文獻[31-33]則在此基礎上,進一步探討了半馬爾可夫狀態(tài)躍遷假設下的復雜系統(tǒng)多狀態(tài)可靠性評估方法。

      近年來,隨著多狀態(tài)復雜系統(tǒng)建模理論的逐步完善,解算方法和解算能力的迅速提升,相關(guān)研究成果已得以成功應用于復雜系統(tǒng)的可靠性優(yōu)化設計、保障資源合理配置、維修活動科學決策等工程領(lǐng)域[34-40]。其中,文獻[41-46]給出了典型多狀態(tài)串并聯(lián)冗余系統(tǒng)的可靠性優(yōu)化分配方法;文獻[47-53]則進一步針對多狀態(tài)復雜系統(tǒng)構(gòu)件失效后的維修策略選擇問題,開展了相關(guān)深入研究。

      雖然,以多狀態(tài)理論和發(fā)生函數(shù)算法為核心的復雜系統(tǒng)建模和可靠性分析工作,已有部分研究成果,但隨著現(xiàn)代工業(yè)技術(shù)的飛速發(fā)展,產(chǎn)品研制周期越來越短,壽命周期越來越長,有些復雜系統(tǒng)尚未經(jīng)歷足夠時長的可靠性觀測,就已投入高強度使用,因此,較難獲取足量有效數(shù)據(jù),用以精確評估其不同狀態(tài)性能水平及其狀態(tài)發(fā)生概率。同時,為降低計算載荷,采用的各類復雜系統(tǒng)建模簡化方法、數(shù)值算法,也或多或少地在一定程度上降低了問題解算精度。為此,亟需進一步發(fā)展一類新技術(shù)和新理論,以彌補多狀態(tài)復雜系統(tǒng)建模理論的現(xiàn)存技術(shù)短板。模糊多狀態(tài)建模理論以及數(shù)值處理技術(shù),正是為解決前述相關(guān)問題,被嘗試引入復雜系統(tǒng)可靠性建模、分析與評估領(lǐng)域。目前,此方面的研究工作成果尚不多見[54-55]。

      本文以經(jīng)典串并混聯(lián)通用系統(tǒng)模型為研究對象,旨在綜合多態(tài)理論、模糊理論和發(fā)生函數(shù)理論的基礎上,探究一類適用于復雜系統(tǒng)可靠性建模、分析與評估的程式化解算方法,用以解決由于多態(tài)性能觀測數(shù)據(jù)有限或模型簡化處理,可能導致的解算精度下降、解算結(jié)果失真等技術(shù)難題,進而為發(fā)展多狀態(tài)復雜系統(tǒng)可靠性分析理論和解算方法提供技術(shù)借鑒。

      1 模糊多狀態(tài)系統(tǒng)

      1.1 常規(guī)多狀態(tài)系統(tǒng)

      首先,引入多狀態(tài)系統(tǒng)基本理念。不失一般性,假設任意多狀態(tài)系統(tǒng)S,由n個不同功能元件j(j=1,2,…,n)組成,且第j個元件具有kj種狀態(tài)性能,相關(guān)狀態(tài)向量gj由式(1)確定

      gj=[gj1,gj2,…,gjkj]

      (1)

      進一步,假設元件j在任意時刻t的性能狀態(tài)為Gj(t),則有Gj(t)∈gj。這里,Gj(t)為隨機變量,相關(guān)狀態(tài)取值概率向量pj,計算式為

      pj=[pj1(t),pj2(t),…,pjkj(t)]

      (2)

      綜上,如果多狀態(tài)系統(tǒng)S具有K種輸出性能狀態(tài)qi(i=1,2,…,K),則有式(3)成立。

      (3)

      式中,f(·)為由系統(tǒng)相應物理特性確定的構(gòu)型函數(shù)。

      1.2 模糊多狀態(tài)系統(tǒng)

      如前論述可知,多狀態(tài)系統(tǒng)S的輸出性能qi及其概率分布,可由系統(tǒng)組成元件j的狀態(tài)向量gj、概率向量pj以及系統(tǒng)構(gòu)型函數(shù)f(·)唯一確定。然而,鑒于觀測時間、觀測手段有限,獲取gj、pj兩類向量的精確值往往較難,而多采用區(qū)間值或模糊值代替。由此,為更加有效地基于現(xiàn)有觀測手段、觀測數(shù)據(jù),分析獲取所研多狀態(tài)系統(tǒng)的性能分布及可靠性參數(shù),模糊多狀態(tài)理論被引入其中。后續(xù)內(nèi)容,統(tǒng)一使用“~”上標符號,標識模糊數(shù)學量。

      (4)

      式中,模糊數(shù)的表達方式有多種,這里選用滿足kaufumann-gupta排序規(guī)則的三角模糊數(shù)M,數(shù)學定義為

      M=[a,b,c]

      (5)

      式中,模糊數(shù)間的排序運算,參照如下次序?qū)嵤?/p>

      (6)

      (7)

      (8)

      SRi={ri∈Ri|ri≥0}

      (9)

      由此,可將式(7)左側(cè)表達式改寫為

      (10)

      (11)

      2 發(fā)生函數(shù)法

      多狀態(tài)建模理論,與傳統(tǒng)的二元建模理論相比,關(guān)于系統(tǒng)運行歷程的刻畫,更為貼近真實工況,能夠較為準確地反映系統(tǒng)運行特性。但鑒于建模狀態(tài)增多,導致解算工作趨于復雜,對于引入模糊多狀態(tài)建模理論的復雜系統(tǒng)而言,更是如此。由此,為提升復雜系統(tǒng)可靠性建模的程式化程度,有效釋放解算資源,基于生成序列的發(fā)生函數(shù)法,被應用于可靠性分析、評估領(lǐng)域,并發(fā)揮重要作用。

      2.1 通用發(fā)生函數(shù)

      首先,給出發(fā)生函數(shù)的基本定義。不失一般性,考慮n個獨立隨機變量Xj,以及與其相關(guān)的隨機變量Y=f(X1,X2,…,Xn),其中,變量Xj存有kj種狀態(tài),且滿足概率分布

      pxj=Pr{Xj=xj}

      則可定義變量Xj的z變換函數(shù)為

      進一步,通過引入通用發(fā)生算子Ωf,則可確定關(guān)聯(lián)變量Y的z變換函數(shù)為

      (12)

      注意,若將變量Y視為系統(tǒng)輸出,Xj視為組成元件的性能輸入,f(·)視為系統(tǒng)構(gòu)型函數(shù),且按規(guī)則

      (xj,pj)=[(xj1,pj1),…,(xjkj,pjkj)]

      量化變量Xj的概率分布,則式(12)可進一步寫為

      (13)

      2.2 模糊通用發(fā)生函數(shù)

      引入模糊多狀態(tài)理論,仍針對由n個元件j組成的多狀態(tài)系統(tǒng)S,沿用式(4)中符號定義,則有元件j的模糊z變換函數(shù)uj(z)為

      (14)

      (15)

      式中,sup(·)為上確界函數(shù);min(·)為最小值函數(shù)。

      3 模糊復雜系統(tǒng)可靠性評估建模

      3.1 通用模型

      工程復雜系統(tǒng)一般多具有元件構(gòu)成多、邏輯關(guān)聯(lián)結(jié)構(gòu)多變等特征,就可靠性建模分析而言,存有串聯(lián)、并聯(lián)、串并混聯(lián)、橋聯(lián)等多種結(jié)構(gòu)可能。鑒于串聯(lián)、并聯(lián)結(jié)構(gòu)均為串并混聯(lián)結(jié)構(gòu)的一類特殊情形,橋聯(lián)結(jié)構(gòu)亦可利用數(shù)學手段轉(zhuǎn)換為串并混聯(lián)結(jié)構(gòu),考慮到模型確立的普適性,這里選用典型串并混聯(lián)結(jié)構(gòu)模型,作為文中模糊多狀態(tài)復雜系統(tǒng)可靠性分析的通用模型,如圖1所示。

      圖1 典型串并混聯(lián)結(jié)構(gòu)Fig.1 Classic series parallel hybrid structure

      圖1中,變量m,n,s,p均取自然數(shù),uij(z)為相關(guān)元件的z變換函數(shù)。

      3.2 模糊多狀態(tài)系統(tǒng)可用度評估

      (16)

      (17)

      式中

      4 典型算例

      4.1 初始假設

      以某型船用汽輪發(fā)電系統(tǒng)為例,如圖2所示,由供汽、主發(fā)電、備用發(fā)電3個子單元構(gòu)成。其中,供汽單元包括兩臺蒸汽鍋爐,負責聯(lián)合提供蒸汽工質(zhì);發(fā)電單元由汽輪機和發(fā)電機構(gòu)成,主、輔發(fā)電單元互為備用,擇一提供電力載荷。鑒于船用汽輪發(fā)電系統(tǒng),組成結(jié)構(gòu)復雜,海上運行環(huán)境惡劣,運行工況多樣,且性能狀態(tài)精確觀測不易,可將其視為模糊多狀態(tài)復雜系統(tǒng)處理,并選用三角模糊數(shù),量化描述系統(tǒng)模糊狀態(tài)。

      進一步,假定利用期望功率輸出比η,判定系統(tǒng)及其各級組成單元的性能狀態(tài)等級。對于圖2所示系統(tǒng),參照文獻[28]中穩(wěn)態(tài)計算結(jié)果,并綜合行業(yè)專家經(jīng)驗,有如下初始條件,見表1。

      圖2 船用汽輪發(fā)電系統(tǒng)組成框架Fig.2 Frame structure of marine boiler turbine generator system

      j1(鍋爐1)2(鍋爐2)pj1(0.00007,0.0001,0.00012)(0.00007,0.0001,0.00012)pj2(0.0061,0.0066,0.0070)(0.0061,0.0066,0.0070)pj3(0.9927,0.9933,0.9938)(0.9927,0.9933,0.9938)gj1(0,0,0)(0,0,0)gj2(0.5,0.6,0.7)(0.5,0.6,0.7)gj3(0.9,0.9,0.9)(0.9,0.9,0.9)j3(汽輪機1)4(發(fā)電機1)pj1(0.00015,0.0002,0.00025)(0.0025,0.003,0.0034)pj2(0.0160,0.0164,0.0169)(0.9968,0.997,0.9972)pj3(0.9829,0.9834,0.9838)-gj1(0,0,0)(0,0,0)gj2(0.73,0.8,0.88)(1.0,1.0,1.0)gj3(1.0,1.0,1.0)-j5(汽輪機2)6(發(fā)電機2)pj1(0.008,0.0083,0.0088)(0.0024,0.003,0.0035)pj2(0.9910,0.9917,0.9920)(0.9965,0.997,0.9976)pj3--gj1(0,0,0)(0,0,0)gj2(0.80,0.85,0.90)(1.0,1.0,1.0)gj3--

      由表1可知,汽輪發(fā)電系統(tǒng)中供汽鍋爐運行性能存有3種狀態(tài),即完全失效狀態(tài)、部分失效狀態(tài)和充分工作狀態(tài),且2臺供汽鍋爐運行性能完全一致;類似地,主發(fā)電單元汽輪機運行性能也存有3種狀態(tài),完全失效狀態(tài)、部分失效狀態(tài)和完全工作狀態(tài);與主發(fā)電單元不同,輔發(fā)電單元汽輪機運行性能要求較寬松,僅存有2種狀態(tài),完全失效狀態(tài)和充分工作狀態(tài);最后,主輔發(fā)電機均性能穩(wěn)定,較難發(fā)生失效,僅存有完全失效和完全工作2種狀態(tài)。

      4.2 系統(tǒng)模糊發(fā)生函數(shù)

      鑒于工程實際應用中,往往重點關(guān)注所研系統(tǒng)的穩(wěn)態(tài)輸出性能。因此,文中以下各類量化計算,均以此為基本前提,不再額外說明。

      首先,計算船用汽輪發(fā)電系統(tǒng)各組成單元的模糊z變換函數(shù)Uj(z),這里以汽輪機1和發(fā)電機1組成的主發(fā)電單元U2(z)為例,解算說明如下,其他相關(guān)單元不再贅述。

      (18)

      (0.002 6,0.003 2,0.003 7)z0+

      (0.015 9,0.016 4,0.016 9)z(0.73,0.80,0.88)+

      (0.979 8,0.980 4,0.981 0)z1

      (19)

      類似地,可求供汽單元和輔發(fā)電單元模糊z變換函數(shù)U1(z)、U3(z)分別為

      U1(z)=10-7(0.049,0.1,0.144)z0+

      10-5(0.085 4,0.132,0.168)z(0.25,0.3,0.35)+

      10-3(0.139,0.198 7,0.238 5)z0.45+

      10-4(0.372 1,0.435 6,0.49)z(0.5,0.6,0.7)+

      (0.012 1,0.013 1,0.013 9)z(0.7,0.75,0.80)+

      (0.985 5,0.986 6,0.987 6)z0.9

      (20)

      U3(z)=(0.010 4,0.011 3,0.012 3)z0+

      (0.987 5,0.988 7,0.989 6)z(0.80,0.85,0.90)

      (21)

      10-4(0.269 8,0.361 7,0.456 1)z0+

      10-5(0.085 1,0.132,0.168 6)z(0.25,0.30,0.35)+

      10-3(0.138 5,0.198 7,0.239 3)z0.45+

      10-4(0.370 7,0.435 6,0.491 7)z(0.5,0.6,0.7)+

      (0.012 1,0.013 1,0.013 9)z(0.7,0.75,0.8)+

      10-3(0.163,0.182 8,0.205 3)z(0.73,0.8,0.88)+

      (0.018,0.019 1,0.020 1)z(0.80,0.85,0.9)+

      (22)

      分析式(22)可知:①船用汽輪發(fā)電系統(tǒng)作為一類模糊多狀態(tài)復雜裝備系統(tǒng),具有8種不同運行狀態(tài),相關(guān)狀態(tài)性能及其概率分布模糊特征明顯,較難實現(xiàn)量化精確描述,這里采用三角模糊數(shù)方法,實現(xiàn)模糊特征的量化描述;②若8類運行狀態(tài),按照量化性能數(shù)值,依次從小到大排序(0→1,(0.25,0.30,0.35)→2,…,0.9→8),則比照不同狀態(tài)概率分布量值可知,汽輪發(fā)電系統(tǒng)運行處于第5、7、8類狀態(tài)的幾率較大,即系統(tǒng)常態(tài)運行功率長期保持于設計功率的70%以上;③已知汽輪發(fā)電系統(tǒng)各構(gòu)成單元發(fā)生函數(shù)Ui(z)的前提下,全系統(tǒng)的多類模糊運行狀態(tài),可通過引入模糊發(fā)生算子Ω,嵌套迭代解算,運算過程僅涉及數(shù)乘、求和等簡單代數(shù)運算,計算資源依賴程度低、程式化大、解算速度快。

      4.3 系統(tǒng)可用度評估

      (23)

      表2 模糊集勢函數(shù)計算結(jié)果

      10-3(0.163,0.182 8,0.205 3)0.32+

      (0.018,0.019 1,0.020 1)0.791 7+

      (0.963 6,0.967 3,0.970 7)=

      (0.977 9,0.982 5,0.986 7)

      (24)

      5 結(jié) 論

      以串并混聯(lián)船用汽輪發(fā)電結(jié)構(gòu)為對象,開展了模糊多狀態(tài)復雜系統(tǒng)可靠性通用評估方法研究。結(jié)合通用發(fā)生函數(shù),給出了模糊多狀態(tài)可靠性建模、分析、評估方法,并針對典型案例實施了模糊需求下多狀態(tài)復雜系統(tǒng)的可用度解算和評估。解算與評估表明,文中建模、分析、評估方法合理,能真實反映多狀態(tài)復雜系統(tǒng)的可靠性特征;克服觀測數(shù)據(jù)不確定性的模糊數(shù)學處理方法有效,可靠性評估結(jié)論更真實可靠;回避大自由度微分運算的可靠性單元通用發(fā)生函數(shù)描述方法,解算優(yōu)勢明顯、適用范圍更廣。

      文中建模、解算方法,豐富、發(fā)展了復雜系統(tǒng)多狀態(tài)可靠性評估理論,可為有關(guān)模型實體的維修決策提供理論支撐和技術(shù)借鑒。下一步擬拓展文中研究結(jié)果,結(jié)合元啟發(fā)式計算技術(shù),探討多狀態(tài)復雜系統(tǒng)的可靠性設計及部組件配置優(yōu)化方法。

      [1] ANATOLY L, ILIA F, YI D. Multi-state system reliability analysis and optimization for engineers and industrial managers[M]. London: Springer Press, 2010.

      [2] KRZYSZTOF K, JOANNA S B. Reliability and safety of complex technical systems and processes[M]. London: Springer Press, 2011.

      [3] GU Y K, LI J. Multi-state system reliability: a new and systematic review[J]. Procrdia Engineering, 2012, 29(4): 531-536.

      [4] GREGORY L. Reliability of multi-state systems with two failure-modes[J].IEEE Trans.on Reliability,2003,52(3):340-348.

      [5] JOSE E R, DAVID W C. Composite importance measures for multi-state systems with multi-state components[J]. IEEE Trans.on Reliability, 2005, 54(3): 517-529.

      [6] FAN H, SUN X. A multi-state reliability evaluation model for P2P networks[J]. Reliability Engineering & System Safety, 2010, 95(4): 402-411.

      [7] 周金宇, 謝里陽, 王學敏. 多狀態(tài)系統(tǒng)共因失效分析及可靠性模型[J]. 機械工程學報, 2005, 41(6): 66-70.

      ZHOU J Y, XIE L Y, WANG X M. Analysis for common cause failure and reliability model in multi-state systems[J]. Journal of Mechanical Engineering, 2005, 41(6): 66-70.

      [8] 周金宇, 謝里陽. 多狀態(tài)系統(tǒng)共因失效機理與定量分析[J]. 機械工程學報, 2008, 44(10): 77-82.

      ZHOU J Y, XIE L Y. Common cause failure mechanism and risk probability quantitative estimation of multi-state systems[J]. Journal of Mechanical Engineering, 2008, 44(10): 77-82.

      [9] KRISITIANSEN M, NATVIG B, WINTER R. Assessing software reliability of multistate systems[C]∥Proc.of the European Safty and Reliability Conference, 2014: 2807-2814.

      [10] KOLOWROCKI K, KULIGOWSKA E. On multistate technical system operation process influence on its reliability[C]∥Proc.of the European Safty and Reliability Conference, 2015: 2099-2106.

      [11] DONG R S, ZHU Y Y, XU Z B, et al. Decision diagram based symbolic algorithm for evaluating the reliability of a multistate flow network[J]. Mathematical Problems in Engineering, 2016, 45(6): 70-81.

      [12] YEH W C. An improved sum of disjoint products technique for symbolic multi-state flow network reliability[J]. IEEE Trans.on Reliability, 2015, 64(4): 1185-1193.

      [13] 錢文學, 尹曉偉, 謝里陽. 多狀態(tài)機械系統(tǒng)可靠性的離散化建模方法[J]. 東北大學學報, 2008, 29(11): 1609-1612.

      QIAN W X, YIN X W, XIE L Y. Discretized modeling process of reliability of multi-state mechanical systems[J]. Journal of Northeastern University, 2008, 29(11): 1609-1612.

      [14] ORTEGA E M, ALONSO J, ORTEGA Q, et al. Comparisons of multistate models with discrete-time pure-birth process for recurrent events and uncertain parameters[J]. Communications in Statistics-Theory and Methods, 2016, 45(6): 1733-1746.

      [15] 尹曉偉, 錢文學, 謝里陽. 基于貝葉斯網(wǎng)絡的多狀態(tài)系統(tǒng)可靠性建模與評估[J]. 機械工程學報, 2009, 45(2): 206-212.

      YIN X W, QIAN W X, XIE L Y. Multi-state system reliability modeling and assessment based on Bayesian networks[J]. Journal of Mechanical Engineering, 2009, 45(2): 206-212.

      [16] WANG J, LEE C J. Multistate Bayesian control chart over a finite horizon[J].Operations Researrch,2015,63(4): 949-964.

      [17] 宋月, 劉三陽, 馮海林. 相鄰k/n(F)多狀態(tài)可修系統(tǒng)的可靠性分析[J]. 系統(tǒng)工程與電子技術(shù), 2006, 28(2): 310-312.

      SONG Y, LIU S Y, FENG H L. Reliability analysis of consecutivek-out-of-n:Frepairable systems with multi-state component[J]. Systems Engineering and Electronics, 2006, 28(2): 310-312.

      [18] 武月琴, 周泓, 官建成. 一類多狀態(tài)系統(tǒng)的可靠性計算[J]. 北京航空航天大學學報, 2007, 33(8): 968-971.

      WU Y Q, ZHOU H, GUAN J C. Reliability estmiation of a multi-state system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(8): 968-971.

      [19] TIAN Z G, RICHARD C, ZUO M J, et al. Reliability bounds for multi-statek-out-of-nsystems[J]. IEEE Trans.on Reliability, 2008, 57(1): 53-58.

      [20] ERYILMAZ S. Lifetime of multistatek-out-of-nsystems[J]. Quality and Reliability Engineering Internationnal, 2014,30(7): 1015-1022.

      [21] KHORSHIDI H A, GUNAWAN I, IBRAHIM M Y. On reliability evaluation of multistate weightedk-out-of-nsystem using present value[J].Engineering Economist,2015,60(1):22-39.

      [22] HSIEH J, UCCI D R, KRAFT G D. Multi-state degradable system modeling and analysis[J]. Electronics Letters, 1989, 25(23): 1557-1558.

      [23] LIU Y, CHEN C J. Dynamic reliability assessment for nonrepairable multistate systems by aggregating multilevel imperfect inspection data[J]. IEEE Trans.on Reliability, 2017, 66(1): 915-923.

      [24] LAM Y, TSE Y K. Optimal maintenance model for a multistate deteriorating system: a geometric process approach[J]. International Journal of Systems Science,2015,34(5):303-308.

      [25] LI Y F, ZIO E. A Multi-state model for the reliability assessment of a distributed generating system via universal generating function[J]. Reliability Engineering & System Safety, 2012, 106(5): 28-36.

      [26] 高鵬, 謝里陽. 基于改進發(fā)生函數(shù)方法的多狀態(tài)系統(tǒng)可靠性分析[J]. 航空學報, 2010, 31(5): 934-939.

      GAO P, XIE L Y. Reliability analysis of multi-state systems based on improved universal generating function[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5): 934-939.

      [27] 李春洋, 陳循, 易曉山. 基于向量通用生成函數(shù)的多性能參數(shù)多態(tài)系統(tǒng)可靠性分析[J].兵工學報,2010,31(12):1604-1610.

      LI C Y, CHEN X, YI X S. Reliability analysis of multi-state system with multiple performance parameters based on vector-universal generating function[J]. Acta Armamentarii, 2010, 31(12): 1604-1610.

      [28] 史躍東,陳硯橋,金家善.艦船裝備多狀態(tài)可修復系統(tǒng)可靠性通用生成函數(shù)解算方法[J].系統(tǒng)工程與電子技術(shù),2016,38(9):2215-2220.

      SHI Y D, CHEN Y Q, JIN J S. Reliability analysis for warship armament multi-state repairable system based on universal generating function method[J]. Systems Engineering and Electronics, 2016, 38(9): 2215-2220.

      [29] CAI C H, XU Y Y, KE D F, et al. Deep neural networks with multistate activation functions[J]. Computational Intelligence and Neuroscience, 2015, 73(4): 1042-1050.

      [30] FRANCISCO J B, MARCELO L,RENE P T. Active current balancing technique employing the Lunze’s transformation for converters based on multistate switching cells[C]∥Proc.of the 13th IEEE Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference, 2016: 99-105.

      [31] OURANIA C, NIKOLAOS L, SONIA M. Multi-state reliability systems under discrete time semi-Markovian hypothesis[J]. IEEE Trans.on Reliability, 2011, 60(1): 80-87.

      [32] 尚彥龍,蔡琦,趙新文,等.基于UGF和Semi-Markov方法的反應堆泵機組多狀態(tài)可靠性分析[J].核動力工程,2012,33(1): 117-123.

      SHANG Y L, CAI Q, ZHAO X W, et al. Multi-state reliability for pump group in nuclear power system based on UGF and semi-Markov process[J]. Nuclear Power Engineering, 2012, 33(1): 117-123.

      [33] CHAMOLA V, SIKDAR B. A multistate Markov model for dimensioning solar powered cellular base stations[J]. IEEE Trans.on Sustainable Energy, 2015, 6(4): 1650-1652.

      [34] BAI G H, ZUO M J, TIAN Z G. Ordering heuristics for reliability evaluation of multistate networks[J]. IEEE Trans.on Reliability, 2015, 64(3): 1015-1023.

      [35] JIA X J, SHEN J Y, XING R. Reliability analysis for repairable multistate two-unit series systems when repair time can be neglected[J].IEEE Trans.on Reliability,2016,65(1):208-216.

      [36] GHEISI A, NASER G. Multistate reliability of water-distribution systems: comparison of surrogate measures[J]. Journal of Water Resources Planning and Management,2015,141(10):520-529.

      [37] LEVITIN G, XING L D, DAI Y S. Linear multistate consecutively-connected systems subject to a constrained number of gaps[J].Reliability Engineering and System Safety,2015, 133(133):246-252.

      [38] YEH W C. A fast algorithm for quickest path reliability evaluations in multi-state flow networks[J]. IEEE Trans.on Reliability, 2015, 64(4): 1175-1184.

      [39] GU Y K, CHEN J, CHENG Z X, et al. Reliability analysis of multi-state repairable system with dynamic transition probabilities[J]. Journal of Shanghai Jiaotong University (Science), 2016, 21(5): 615-620.

      [40] LIN Y K, CHEN S G. A merge search approach to find minimal path vectors in multistate networks[J]. International Journal of Reliability,Quality and Safety Engineering,2017,24(1): 652-659.

      [41] GREGORY L, ANATOLY L, HANOCH B H, et al. Redundancy optimization for series-parallel multi-state systems[J]. IEEE Trans.on Reliability, 1998, 47(2): 165-172.

      [42] ZHAO J H, LIU Z H, DAO M T. Reliability optimization using multi-objective ant colony system approaches[J].Reliability Engineering & System Safety, 2007, 92(1): 109-120.

      [43] TIAN Z G, ZUO M J. Reliability-redundancy allocation for multi-state series-parallel systems[J]. IEEE Trans.on Reliability, 2008, 57(2): 303-309.

      [44] KWIATUSZEWSKA S. Multistate system reliability models with independent and dependent redundancy application in port transport[C]∥Proc.of the 25th European Safty and Reliability Conference, 2015: 1281-1286.

      [45] WANG J, LI M. Redundancy allocation optimization for multistate systems with failure interactions using semi-markov process[J].Journal of Mechanical Design,2015,137(10):42-52.

      [46] WANG J, LI M. Redundancy allocation for multistate systems with component dependencies and load sharing[J]. Journal of Mechanical Design,2016,138(11):142-152.

      [47] LIU Y, HUANG H Z. Optimal selective maintenance strategy for multi-state systems under imperfect maintenance[J]. IEEE Trans.on Reliability, 2010, 59(2): 356-367.

      [48] MUSTAPHA N, MOHAMED C F, MAHDI M. An integrated model for production and preventive maintenance planning in multi-state systems[J].IEEE Trans.on Reliability,2010,59(3): 496-506.

      [49] DAO C D, ZUO M J, PANDEY M. Selective maintenance for multi-state series-parallel systems under economic dependence[J]. Reliability Engineering & System Safety,2014,121(1): 240-249.

      [50] DAO C D, ZUO M J. Selactive maintenance for multistate series systems with s-dependent components[J]. IEEE Trans.on Reliability, 2016, 65(2): 525-539.

      [51] WANG B, WU Z, XIA X H. A multistate-based control system approach toward optimal maintennace planning[J]. IEEE Trans.on Control Systems Technology, 2017, 25(1): 374-381.

      [52] ZHOU Y F, LIN T R, SUN Y, et al. An effective approach to reducing strategy space for maintenance optimisation of multistate series-parallel systems[J].Reliability Engineering and System Safety, 2015, 138: 40-53.

      [53] 余金龍, 趙文會, 趙波, 等. 基于多狀態(tài)建模的獨立型微網(wǎng)優(yōu)化配置[J]. 電力系統(tǒng)自動化, 2015, 39(6): 11-17.

      YU J L, ZHAO W H, ZHAO B, et al. Optimal configuration of standalone microgrid based on multistate modeling[J]. Automation of Electric Power Systems, 2015, 39(6): 11-17.

      [54] 鄢民強, 楊波, 王展. 不完全覆蓋的模糊多狀態(tài)系統(tǒng)可靠性計算方法[J]. 西安交通大學學報, 2011, 45(10): 109-114.

      YAN M Q, YANG B, WANG Z. Reliability assessment for multistate system subject to imperfect fault coverage[J]. Journal of Xi’an Jiaotong university, 2011, 45(10): 109-114.

      [55] CHANG P C, LIN Y K. Reliability analysis for an apparel manufacturing system applying fuzzy multistate network[J]. Computers and Industrial Engineering,2015,88(2):458-469.

      猜你喜歡
      系統(tǒng)可靠性可靠性建模
      聯(lián)想等效,拓展建?!浴皫щ娦∏蛟诘刃鲋凶鰣A周運動”為例
      試析提高配網(wǎng)系統(tǒng)可靠性的技術(shù)措施
      電子制作(2019年20期)2019-12-04 03:51:54
      可靠性管理體系創(chuàng)建與實踐
      電氣化鐵路牽引系統(tǒng)可靠性分析
      基于PSS/E的風電場建模與動態(tài)分析
      電子制作(2018年17期)2018-09-28 01:56:44
      不對稱半橋變換器的建模與仿真
      電子制作(2017年2期)2017-05-17 03:55:06
      基于故障樹模型的光伏跟蹤系統(tǒng)可靠性分析
      電測與儀表(2016年3期)2016-04-12 00:27:30
      基于可靠性跟蹤的薄弱環(huán)節(jié)辨識方法在省級電網(wǎng)可靠性改善中的應用研究
      電測與儀表(2015年6期)2015-04-09 12:01:18
      可靠性比一次采購成本更重要
      風能(2015年9期)2015-02-27 10:15:24
      太湖县| 台北县| 中江县| 安溪县| 定襄县| 鲁甸县| 大理市| 龙州县| 镇赉县| 怀仁县| 濮阳县| 淮滨县| 观塘区| 英吉沙县| 彩票| 潮州市| 古蔺县| 泗水县| 毕节市| 屏山县| 静宁县| 乐安县| 马公市| 湟中县| 渝中区| 勃利县| 老河口市| 双桥区| 桐城市| 中西区| 深州市| 兴隆县| 炎陵县| 响水县| 桐乡市| 东兰县| 桂东县| 招远市| 堆龙德庆县| 浦城县| 藁城市|