• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      大豆孢囊線蟲抗性遺傳標記研究進展

      2018-01-24 19:46:47,
      土壤與作物 2018年2期
      關(guān)鍵詞:胞囊孢囊小種

      ,

      (中國科學(xué)院 東北地理與農(nóng)業(yè)生態(tài)研究所 黑土區(qū)農(nóng)業(yè)生態(tài)重點實驗室,黑龍江 哈爾濱 150081)

      0 引 言

      大豆孢囊線蟲(SCN,HeteroderaglycinesIchinohe)病害是一種世界性的毀滅性大豆病害,造成美國每年至少15億美元的損失[1],在我國所有的大豆產(chǎn)區(qū)幾乎都有該病的報道,嚴重地塊甚至絕產(chǎn),給我國大豆生產(chǎn)帶來嚴重的經(jīng)濟損失[2]。SCN是一種土傳的定居型內(nèi)寄生線蟲,以二齡幼蟲在土壤中活動,當寄主植物根存在時,二齡幼蟲識別寄主釋放的信號并被吸引到植物根尖的伸長區(qū)域,然后利用口針刺透細胞壁,其分泌的細胞壁降解酶有助于侵入到維管束。SCN一旦到達維管束,就選擇一個取食位點并激活周圍其它細胞壁的降解而形成一個獨特的取食結(jié)構(gòu)-合胞體,合胞體包含著大約200個融合的根細胞并作為線蟲的營養(yǎng)源[3]。線蟲經(jīng)過3次蛻皮發(fā)育成雌、雄成蟲,交配后的雌蟲身體膨大突出于根外,每個雌蟲能產(chǎn)幾百個卵,當雌蟲死后形成一個孢囊,卵仍在孢囊內(nèi)。土壤中沒有寄主存在時,孢囊可以長期保護卵(最長可達30年)抵擋外界的不利環(huán)境直到遇到合適的寄主[3-5]。

      SCN的遺傳特性非常復(fù)雜,根據(jù)大豆的4個鑒別寄主和一個對照感病寄主對孢囊線蟲的反應(yīng)被劃分為16個生理小種[6],后來根據(jù)7個鑒別寄主區(qū)分為HG類型[3,7]。我國SCN報道的主要有11個生理小種(1-7,9,11,13,14),其中3號是我國的優(yōu)勢小種,主要分布在東北三省和內(nèi)蒙古自治區(qū);4號小種浸染能力更強;主要分布在黃淮海等產(chǎn)區(qū);6號小種主要發(fā)現(xiàn)在黑龍江省[2,8-9]。近來研究表明黃淮地區(qū)2號小種已上升為優(yōu)勢小種[10],最新研究發(fā)現(xiàn)從山西省分離到一個毒性極高的小種,能夠同時侵染鑒別大豆孢囊線蟲生理小種和HG Type的所有大豆寄主[11]。

      目前SCN主要防治方法是利用高毒高殘留的化學(xué)農(nóng)藥,這種方法對環(huán)境和人畜都會造成危害,選用抗性品種和作物輪作結(jié)合是防治大豆孢囊線蟲最經(jīng)濟有效的方法。然而,實際生產(chǎn)中輪作受有限土地資源的限制,大豆孢囊線蟲的抗性資源非常有限并且抗性單一,同時線蟲的表型篩選費時費力,使得抗性品種的應(yīng)用受限,因此開發(fā)鑒定新的抗病育種品種極其迫切。目前,利用鑒定與抗病基因連接的DNA遺傳標記是分子輔助抗性育種(Marker-assisted selection,MAS)常用的重要步驟,應(yīng)用的主要分子標記包括隨機擴增多態(tài)性DNA(Random amplified polymorphic DNA, RAPD)、限制性片段長度多態(tài)性(Restriction fragment length polymorphism, RFLP)、擴增片段長度多態(tài)性(Amplified fragment length polymorphism,AFLP)、微衛(wèi)星(Microsatellites)或者簡單序列重復(fù)(Simple sequence repeats,SSR)以及單核苷酸多態(tài)性(Single Nucleotide Polymorphism,SNP)。DNA標記常被用來構(gòu)建遺傳圖譜,結(jié)合群體的表型和遺傳圖譜能夠確定控制植物抗病基因的染色體區(qū)域。植物的抗病性一般由簡單性狀(單基因)或者數(shù)量性狀(多基因)控制,其中由多基因控制的數(shù)量性狀QTL(Quantitative Trait Loci)標記法一直作為強有力的手段在分子輔助育種中起著重要的作用。分子輔助抗性育種能夠降低表型篩選并加速分子育種進程,因此與僅依靠田間表型篩選的傳統(tǒng)植物育種相比具有更加有效、可靠及成本低等多項優(yōu)點。本文概述了大豆孢囊線蟲的遺傳抗性、抗性基因的分子標記及其在全基因組范圍內(nèi)的關(guān)聯(lián)研究進展,并對其存在的問題進行了探討和展望。

      1 大豆孢囊線蟲的遺傳抗性及分子標記

      早期的遺傳抗性研究表明,大豆對大豆孢囊線蟲的抗性是由不同的隱性和顯性基因組成的,包括rhg1、rhg2、rhg3[12]、Rhg4[13]和Rhg5[14]。進一步對新的抗性資源的遺傳分析表明,SCN抗性是多基因控制的數(shù)量性狀[15-18]。Concibido等[16]總結(jié)了抗不同種SCN-HG類型相關(guān)的31個QTLs,這些QTLs被標記到大豆20條染色體中的17條染色體上(2、9和10號染色體除外)。隨后來自新的抗性資源的抗性QTL被標記到相同或者不同的染色體上,目前大豆20條染色體都有大豆孢囊線蟲的抗性標記[19-25]。

      近年來對大豆抗病基因的研究有了突破性進展:一個是圖位克隆(Map-based cloning)了抗大豆孢囊線蟲病位于8號染色體的抗性基因Rhg4(Peking類型),Rhg4位點的基因編碼的絲氨酸羥甲基轉(zhuǎn)移酶(SHMT)與抗性相關(guān)[26];另外還發(fā)現(xiàn)位于18號染色體的抗SCN 1號小種的rgh1-b(PI88788型大豆)位點包含3個基因,Glyma18g02580(Glyma.18g022400,amino acid transporter)、Glyma18g02590(Glyma.18g022500,soluble NSF attachment protein,α-SNAP)和Glyma18g02610(Glyma.18g022700,wound-induced protein WI12),大小約31 kb,其編碼的3種蛋白共同作用防御SCN的侵染[27]。感病機制是由基因的拷貝數(shù)決定的,單拷貝存在于感病品種(如感病的Williams82),而多拷貝存在于抗病品種(如Peking含有3個拷貝,PI88788來源的抗性品種含有7~10個拷貝)[27-28]。最新的研究發(fā)現(xiàn)rgh1-aPeking類型中的GmSNAP18結(jié)合rgh4能夠產(chǎn)生抗性,說明Peking類型的GmSNAP18和PI88788類型中的GmSNAP18對SCN的抗性功能不一樣[29]。

      Kadam等[30]利用美國農(nóng)業(yè)部收集的超過19 000個大豆種質(zhì)資源的數(shù)據(jù)庫,圍繞rhg1和Rhg4位點0.5 Mbp范圍內(nèi)的高通量的單核苷酸多態(tài)性SNP標記,對95個大豆種質(zhì)資源和3個重組自交群體進行評估,分析這些SNP標記是否與SCN抗性相關(guān),結(jié)果表明,與rhg1連接的SNP標記能夠檢測其和SCN抗感相關(guān)的拷貝數(shù),連接于Rhg4的SNP標記能夠檢測Peking基因型的抗性。Jiao等[31]從抗性資源PI437655中鑒定了兩個QTL,一個和rhg1位點相連,其抗性基因的拷貝數(shù)和PI88788相同,說明PI437655和PI88788可能具有共同的抗性位點;另外一個QTL位于20號染色體,PI88788中不存在,當這兩個基因綜合起來其抗性比PI88788高。Shi等[32]鑒定了3個SNP標記,其中兩個連鎖于rhg1位點,一個連鎖于Rhg4位點,這3個位點能夠區(qū)分Peking和PI88788抗性背景。史學(xué)暉等[33]針對大豆胞囊線蟲主效基因Rhg4(GmSHMT)上的2個SNP位點,開發(fā)了簡便、經(jīng)濟的CAPS標記(Rhg4-389)和dCAPS標記(Rhg4-1165),并驗證了對抗病種質(zhì)的鑒定效率達到93%~94%。已有研究認為,連接與這些抗病基因的分子標記可用于大豆孢囊線蟲的抗病篩選或育種,包括限制片段多態(tài)性標記RFLP[16,34]、簡單重復(fù)序列標記SSR[35-39]和單核苷酸多態(tài)性/插入缺失標記(SNP/Insertion and Deletion,SNP/InDel)[30-32,40-46]。

      2 全基因組關(guān)聯(lián)研究

      全基因組關(guān)聯(lián)研究(GWAS)是目前分析人類和動植物復(fù)雜性狀的有效策略,是在全基因組層面上,通過對大規(guī)模群體DNA樣本進行全基因組高密度遺傳標記 (如SNP)分型,進行全基因組水平的對照分析或相關(guān)性分析,進而比較發(fā)現(xiàn)影響復(fù)雜性狀的基因變異的一種方法。這種技術(shù)已經(jīng)成功的應(yīng)用到模式植物擬南芥[47]、水稻[48]、玉米[49]、大麥[50]和番茄[51]等作物。在大豆上也成功地分析了許多性狀,如大豆種子蛋白和油份含量[52-53]、菌核引起的莖腐病[54-55]、根結(jié)線蟲病[56]和大豆孢囊線蟲病[20,24,31,57-60]。

      國內(nèi)外很多學(xué)者已通過全基因組關(guān)聯(lián)研究標記了與SCN抗性相關(guān)的基因。Li等[57]通過分析比較159份大豆種質(zhì)資源鑒定了和SCN抗性相關(guān)的6個SSR標記;Bao等[61]利用SNP標記篩選了代表明尼蘇達大學(xué)的大豆育種項目的282份種質(zhì)資源,鑒定了與rhg1和FGAM1基因相關(guān)的第三個位點位于18號染色體的另外一端。Vuong等[24]利用大豆SNP數(shù)據(jù)庫SoySNP50K iSelect BeadChip(http//www.soybase.org)[62]對553份大豆種質(zhì)進行篩選,鑒定出了位于不同的染色體上的14個位點,包含60個SNP與SCN抗性有關(guān),其中6個位點證實了以前報道的位點,包括rhg1和Rhg4,而這6個位點是建立在雙親雜交分離的群體基礎(chǔ)上被標記出來的。利用這些SNP標記,同時也驗證了其它性狀,例如種皮顏色、花色、茸毛色和莖生長習(xí)性。Han等[20]利用SLAF-seq(Specific-Locus Amplified Fragment Sequencing)測序技術(shù),對包括國內(nèi)的地方品種和外來品種440份大豆種質(zhì)進行了測序并構(gòu)建了36 976個SNP標記,同時對這440份大豆種質(zhì)進行了SCN的抗性篩選和全基因組的關(guān)聯(lián)分析,結(jié)果表明19個信號與HG type 0 (race 3)和HG Type 1.2.3.5.7(race 4)的抗性相關(guān),其中8個與rhg1和Rhg4相關(guān),另外8個和已報道的一致,3個是第一次報道。Zhang等[58]鑒定了235份野生大豆對SCN 5號生理小種的抗感性,然后利用大豆SNP數(shù)據(jù)庫SoySNP50K iSelect BeadChip進行了全基因組范圍內(nèi)的篩選,鑒定了10個SNP與抗性相關(guān),其中4個新的QTLs位于18號染色體,2個新的QTLs位于19號染色體。Zhao等[60]利用SLAF-seq對200份不同的大豆資源進行了測序,并得到33 194個SNP標記,通過對大豆孢囊線蟲HG Type 2.5.7遺傳抗性篩選,發(fā)現(xiàn)13個SNP標記分布在5條染色體(7,8,14,15和18)上,其中4個是新報道的SNP標記,同時鑒定了30個與SCN抗性有關(guān)的抗性基因。Zhang等[59]對120個大豆品種在全基因組范圍內(nèi)篩選并得到與HG Type 2.5.7抗性有關(guān)的13個SNP標記,并定位到7個染色體上,其中10個SNP定位到5個不同的基因組區(qū)域。如此多的QTLs與SCN抗性有關(guān),說明了這個數(shù)量性狀的復(fù)雜性,同時也證明了高通量的WGAS-SNP方法是切實可行的。Wan等[63]通過全基因組序列分析大豆孢囊線蟲侵染抗感大豆后基因表達的變化,揭示了可能參與調(diào)控SCN抗性的基因和防御途徑。這些鑒定的QTLs對于大豆孢囊線蟲的分子輔助抗病育種都具有重要的利用價值。

      3 存在的問題及展望

      目前大多數(shù)抗性品種的抗性僅來源于PI88788、Peking和PI437654基因型背景,這些基因型皆來自國內(nèi),它們是3號SCN生理小種的主要抗性資源(www.soybean.org)[16-17,41]。美國中北部在上世紀90年代培育的80%的抗病品種的抗性主要來自PI88788基因型[64]。但是,長期單一抗性品種的種植導(dǎo)致田間大豆孢囊線蟲毒性小種發(fā)生變化,使得這些抗性品種的抗性減弱甚至喪失[23,65]。例如,我國東北培育的大豆抗線蟲品種(抗線1-13號)的抗性來自北京小黑豆Peking的基因型,主要是抗大豆孢囊線蟲3號生理小種。隨著抗線大豆品種應(yīng)用年限的增加,一些地區(qū)的SCN生理小種發(fā)生了變異。研究發(fā)現(xiàn),連續(xù)種植抗3號生理小種13年后,抗3號生理小種的品種抗性明顯減弱甚至喪失,3號小種轉(zhuǎn)變成毒性更強的4號或者14號小種[66]。從沒有進行長期連作的大豆田間采集土樣進行室內(nèi)檢測,發(fā)現(xiàn)3號優(yōu)勢小種也轉(zhuǎn)變成毒性強的4號或者14號生理小種[67-68],多位科學(xué)家對東北種質(zhì)資源抗性進行篩選,結(jié)果發(fā)現(xiàn)東北商業(yè)大豆品種對發(fā)生變化的SCN優(yōu)勢小種的抗性資源非常有限[9,69-71],抗SCN多個生理小種的大豆品種更是缺乏。因此培育多抗品種是長期有效防治大豆孢囊線蟲的重要手段,是生產(chǎn)中的急需。但因SCN遺傳的復(fù)雜性,首先明確對大豆孢囊線蟲每個生理小種的抗性遺傳規(guī)律是進一步培育多抗品種的關(guān)鍵步驟。

      因傳統(tǒng)育種培育多抗品種需要周期長,品種的更新在時間上跟不上線蟲生理小種的變化,而利用分子標記的分子輔助育種不僅降低表型篩選所需的人力、物力和時間,還能加快育種代數(shù)并提高優(yōu)良性狀的導(dǎo)入(Introgression breeding);進一步對鑒定的這些與抗性相關(guān)的QTLs之間的互作機制進行研究,不僅能夠有效地利用這些抗性資源,而且能夠加快大豆孢囊線蟲多抗品種的培育,同時為生物的遺傳進化提供理論依據(jù)。

      參考文獻(References):

      [1] WRATHER J A,KOENNING S R.Estimates of disease effects on soybean yields in the United States 2003 to 2005[J].Journal of Nematology,2006,38(2): 173-180.

      [2] 段玉璽.植物線蟲學(xué)[M].北京: 科學(xué)出版社,2011.

      DUAN Y X.Plant nematodes[M].Beijing:Science Press,2011.

      [3] NIBLACK T L,LAMBERT K N,TYLKA G L.A model plant pathogen from the kingdom Animalia:Heteroderaglycines,the soybean cyst nematode[J].Annual Review of Phytopathology,2006,44:283-303.

      [4] HUSSEY R S,GRUNDLER F M.Nematode parasitism of plants[M]//In:PERRY R N,WRIGHT J,eds.Physiology and biochemistry of free-living and plant parasitic nematodes.England: CAB International Press,1998: 213-243.

      [5] MICHUM M G,BAUM T J.Genomics of the soybean cyst nematode-soybean interaction[M]//In:STACEY G,eds.Genetics and genomics of soybean.New York: Springer,NY,2008: 321-341.

      [6] RIGGS R D,SCHMITT D P.Complete characterization of the race scheme forHeteroderaglycines[J].Journal of Nematology,1988,20(3): 392-395.

      [7] NIBLACK T L,ARELLI P R,NOEL G R,et al.A revised classification scheme for genetically diverse populations ofHeteroderaglycines[J].Journal of Nematology,2002,34(4): 279-288.

      [8] 董麗民,許艷麗,李春杰,等.黑龍江省大豆胞囊線蟲胞囊密度和生理小種鑒定[J].中國油料作物學(xué)報,2008,30(1): 108-111.

      DONG L M,XU Y L,LI C J,et al.Cyst density and subspeicies identification of soybean cyst nematode in Heilongjiang province[J].Chinese Journal of Oil Crop Sciences,2008,30(1):108-111.

      [9] 孔祥超,李紅梅,耿 甜,等.大豆種質(zhì)資源對大豆孢囊線蟲3號和4號生理小種的抗性鑒定[J].植物保護,2012,38(1): 146-150.

      KONG X C,LI H M,GENG T,et al.Resistance evaluation of soybean varieties and germplasms to the races No.3 and No.4 of soybean cyst nematodeHeteroderaglycines[J].Plant Protection,2012,38(1): 146-150.

      [10] 練 云,王金社,李海朝,等.黃淮大豆主產(chǎn)區(qū)大豆孢囊線蟲生理小種分布調(diào)查[J].作物學(xué)報,2016,42(10):1479-1486.

      LIAN Y,WANG J S,LI H C,et al.Race distribution of soybean cyst nematode in the main soybean producing area of Huang-Huai Rivers Valley[J].Acta Agronomica Sinica,2016,42(10):1479-1486.

      [11] LIAN Y,GUO J,LI H,et al.A new race(X12) of soybean cyst nematode in China[J].Journal of Nematology,2017,49(3):321-326.

      [12] CALDWELL B E,BRIM C A,ROSS J P.Inheritance of resistance of soybeans to the cyst nematode,Heteroderaglycines[J].Agronomy Journal,1960,52(11): 635-636.

      [13] MATSON A L,WILLIAMS L F.Evidence of a fourth gene for resistance to the soybean cyst nematode[J].Crop Science,1965,5(5): 477.

      [14] RAO-ARELLI A P.Inheritance of resistance toHeteroderaglycinesrace 3 in soybean accessions[J].Plant Disease,1994,78(9): 898-900.

      [15] ANAND S C,RAO-ARELLI A P.Genetic analyses of soybean genotypes resistant to soybean cyst nematode race 5[J].Crop Science,1989,29(5): 1181-1184.

      [16] CONCIBIDO V C,DIERS B W,ARELLI P R.A decade of QTL mapping for cyst nematode resistance in soybean[J].Crop Science,2004,44(4): 1121-1131.

      [17] CONCIBIDO V C,LANGE D A,DENNY R L,et al.Genome mapping of soybean cyst nematode resistance genes in ‘Peking’,PI 90763,and PI88788 using DNA markers[J].Crop Science,1997,37(1): 258-264.

      [18] HARTWIG E E.Breeding productive soybean cultivars resistant to the soybean cyst nematode for the southern United States[J].Plant Disease,1981,65(4): 303-307.

      [19] ARELLI P R,CONCIBIDO V C,YOUNG L D.QTLs associated with resistance in soybean PI567516C to synthetic nematode population infecting cv.Hartwig[J].Journal of Crop Science and Biotechnology,2010,13(3): 163-167.

      [20] HAN Y P,ZHAO X,CAO G L,et al.Genetic characteristics of soybean resistance to HG type 0 and HG type 1.2.3.5.7 of the cyst nematode analyzed by genome-wide association mapping[J].BMC Genomics,2015,16: 598.

      [21] KIM K S,VUONG T D,QIU D,et al.Advancements in breeding,genetics,and genomics for resistance to three nematode species in soybean[J].Theoretical and Applied Genetics,2016,129(12): 2295-2311.

      [22] VUONG T D,SLEPER D A,SHANNON J G,et al.Confirmation of quantitative trait loci for resistance to multiple-HG types of soybean cyst nematode(HeteroderaglycinesIchinohe)[J].Euphytica,2011,181(1): 101-113.

      [23] VUONG T D,SLEPER D A,SHANNON J G,et al.Novel quantitative trait loci for broad-based resistance to soybean cyst nematode(HeteroderaglycinesIchinohe) in soybean PI 567516C[J].Theoretical and Applied Genetics,2010,121(7): 1253-1266.

      [24] VUONG T D,SONAH H,MEINHARDT C G,et al.Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean[J].BMC Genomics,2015,16: 593.

      [25] WINTER S M,SHELP B J,ANDERSON T R,et al.QTL associated with horizontal resistance to soybean cyst nematode inGlycinesojaPI464925B[J].Theoretical and Applied Genetics,2007,114(3):461-472.

      [26] LIU S M,KANDOTH P K,WARREN S D,et al.A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens[J].Nature,2012,492(7428): 256-260.

      [27] COOK D E,LEE T G,GUO X L,et al.Copy number variation of multiple genes atrhg1 mediates nematode resistance in soybean[J].Science,2012,338(6111): 1206-1209.

      [28] COOK D E,BAYLESS A M,WANG K,et al.Distinct copy number,coding sequence,and locus methylation patters underlieRhg1-mediated soybean resistance to soybean cyst nematode[J].Plant Physiology,2014,165(2): 630-647.

      [29] LIU S M,KANDOTH P K,LAKHSSASSI N,et al.The soybeanGmSNAP18 gene underlies two types of resistance to soybean cyst nematode[J].Nature Communication,2017,8: 14822.

      [30] KADAM S,VUONG T D,QIU D,et al.Genomic-assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding[J].Plant Science,2016,242: 342-350.

      [31] JIAO Y Q,VUONG T D,LIU Y,et al.Identification and evaluation of quantitative trait loci underlying resistance to multiple HG types of soybean cyst nematode in soybean PI 437655[J].Theoretical and Applied Genetics,2015,128(1):15-23.

      [32] SHI Z,LIU S M,NOE J,et al.SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance[J].BMC Genomics,2015,16: 314.

      [33] 史學(xué)暉,李英慧,于佰雙,等.大豆胞囊線蟲主效抗病基因Rhg4(GmSHMT)的CAPS/dCAPS標記開發(fā)和利用[J].作物學(xué)報,2015,41(10): 1463-1471.

      SHI X H,LI Y H,YU B S,et al.Development and utilization of CAPS/dCAPS markers based on the SNPs lying in soybean cyst nematode resistant genesRhg4[J].Acta Agronomica Sinica,2015,41(10): 1463-1471.

      [34] QIU B X,ARELLI P R,SLEPER D A.RFLP markers associated with soybean cyst nematode resistance and seed composition in a ‘Peking’ x ‘Essex’ population[J].Theoretical and Applied Genetics,1999,98(3-4): 356-364.

      [35] 張姍姍,李英慧,李金英,等.優(yōu)良品系中品03-5373系譜的遺傳解析及抗大豆胞囊線蟲病相關(guān)標記鑒定[J].作物學(xué)報,2013,39(10):1746-1753.

      ZHANG S S,LI Y H,LI J Y,et al.Genetic dissection of elite line Zhongpin 03-5373 pedigree and identification of candidate markers related to resistance to soybean cyst nematode[J].Acta Agronomica Sinica,2013,39(10): 1746-1753.

      [36] CARTERJR T E,KOENNING S R,BURTON J W,et al.Registration of ‘N7003CN’ maturity-Group-VII soybean with high yield and resistance to race 2(HG type 1.2.5.7-) soybean cyst nematode[J].Journal of Plant Registrations,2011,5(3): 309-317.

      [37] CHEN Y W,WANG D C,ARELLI P,et al.Molecular marker diversity of SCN-resistant sources in soybean[J].Genome,2006,49(8): 938-949.

      [38] MEKSEM K,RUBEN E,HYTEN D L,et al.High-throughput genotyping for a polymorphism linked to soybean cyst nematode resistance geneRhg4 by using Taqman(TM) probes[J].Molecular Breeding,2001,7(1): 63-71.

      [39] SUZUKI C,TANAKA Y,TAKEUCHI T,et al.Genetic relationships of soybean cyst nematode resistance originated inGedenshirazuand PI84751 onRhg1 andRhg4 loci[J].Breeding Science,2012,61(5): 602-607.

      [40] ABDELMAJID K M,RAMOS L,HYTEN D L,et al.Quantitative trait loci(QTL) that underlie SCN resistance in soybean[Glycinemax(L.) Merr.] PI438489B by ‘Hamilton’ recombinant inbred line(RIL) population[J].Atlas Journal of Plant Biology,2014,1(3): 29-38.

      [41] LI Y H,ZHANG C,GAO Z S,et al.Development of SNP markers and haplotype analysis of the candidate gene forrhg1,which confers resistance to soybean cyst nematode in soybean[J].Molecular Breeding,2009,24(1): 63-76.

      [42] LI Y H,REIF J C,JACKSON S A,et al.Detecting SNPs underlying domestication-related traits in soybean[J].BMC Plant Biology,2014,14: 251.

      [43] LI Y H,GUO N,ZHAO J M,et al.Different responses of soybean cyst nematode resistance between two RIL populations derived from Peking×7605 under two ecological sites[J].Journal of Genetics,2016,95(4):975-982.

      [44] 南海洋,李英慧,常汝鎮(zhèn),等.基于大豆胞囊線蟲病抗性候選基因rhg1的InDel標記開發(fā)與鑒定[J].作物學(xué)報,2009,35(7): 1236-1243.

      NAN H Y,LI Y H,CHANG R Z,et al.Development and identification of InDel markers based onrhg1 Gene for resistance to soybean cyst nematode(HeteroderaglycinesIchinohe)[J].Acta Agronomica Sinica,2009,35(7):1236-1243.

      [45] 馬巖松,劉鑫磊,欒曉燕,等.大豆胞囊線蟲病抗性基因相關(guān)分子標記對雜交后代抗性的鑒定效率[J].大豆科學(xué),2014,33(2):173-178.

      MA Y S,LIU X L,LUAN X Y,et al.Identification efficiency about resistance to soybean cyst nematode with relative molecular markers in hybrid progeny[J].Soybean Science,2014,33(2): 173-178.

      [46] 劉 波,李英慧,于佰雙,等.中品03-5373對大豆胞囊線蟲3號生理小種免疫抗性的遺傳解析[J].作物學(xué)報,2015,41(1):15-21.

      LIU B,LI Y H,YU B S,et al.Genetic analysis of immunity to soybean cyst nematode race 3 in elite line Zhongpin 03-5373[J].Acta Agronomica Sinica,2015,41(1):15-21.

      [47] ATWELL S,HUANG Y S,VILHJLMSSON B J,et al.Genome-wide association study of 107 phenotypes inArabidopsisthalianainbred lines[J].Nature,2010,465(7298): 627-631.

      [48] HUANG X H,WEI X H,SANG T,et al.Genome-wide association studies of 14 agronomic traits in rice landraces[J].Natural Genetics,2010,42(11): 961-967.

      [49] LI H,PENG Z Y,YANG X H,et al.Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels[J].Natural Genetics,2012,45(1): 43-50.

      [50] STRACKE S,HASENEYER G,VEYRIERAS J-B,et al.Association mapping reveals gene action and interactions in the determination of flowering time in barley[J].Theoretical and Applied Genetics,2009,118(2): 259-273.

      [51] SAUVAGE C,SEGURA V,BAUCHET G,et al.Genome wide association in tomato reveals 44 candidate loci for fruit metabolic traits[J].Plant Physiology,2014,165(3): 1120-1132.

      [52] HWANG E Y,SONG Q J,JIA G F,et al.A genome-wide association study of seed protein and oil content in soybean[J].BMC Genomics,2014,15:1.

      [53] SONAH H,O′DONOUGHUE L,COBER E,et al.Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soybean[J].Plant Biotechnology Journal,2015,13(2):211-221.

      [54] SONAH H,BASTIEN M,IQUIRA E,et al.An improved genotyping by sequencing(GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping[J].PLoS One,2013,8(1):e54603.

      [55] BASTIEN M,SONAH H,BELZILE F.Genome wide association mapping ofSclerotiniasclerotiorumresistance in soybean with a genotyping by sequencing approach[J].The Plant Genome,2014,7: 1.

      [56] XU X Y,ZENG L,TAO Y,et al.Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(33): 13469-13474.

      [57] LI Y H,SMULDERS M J M,CHANG R Z,et al.Genetic diversity and association mapping in a collection of selected Chinese soybean accessions based on SSR marker analysis[J].Conservation Genetics,2011,12(5):1145-1157.

      [58] ZHANG H Y,LI C Y,DAVIS E L,et al.Genome-wide association study of resistance to soybean cyst nematode(Heteroderaglycines)HG Type 2.5.7 in wild soybean(Glycinesoja)[J].Frontiers in Plant Science,2016,7: 1214.

      [59] ZHANG J,WEN Z X,LI W,et al.Genome-wide association study for soybean cyst nematode resistance in Chinese elite soybean cultivars[J].Molecular Breeding,2017,37: 60.

      [60] ZHAO X,TENG W L,LI Y H,et al.Loci and candidate genes conferring resistance to soybean cyst nematode HG Type 2.5.7[J].BMC Genomics,2017,18(1): 462.

      [61] BAO Y,VUONG T,MEINHARDT C,et al.Potential of association mapping and genomic selection to explore PI 88788 derived soybean cyst nematode resistance[J].The Plant Genome,2014,7: 3.

      [62] SONG Q J,HYTEN D L,JIA G F,et al.Development and evaluation of SoySNP50K,a high-density genotyping array for soybean[J].PLoS ONE,2013,8(1):e54985.

      [63] WAN J R,VUONG T,JIAO Y Q,et al.Whole-genome gene expression profiling revealed genes and pathways potentially involved in regulating interactions of soybean with cyst nematode(HeteroderaglycinesIchinohe)[J].BMC Genomics,2015,16: 148.

      [64] DIERS B W,ARELLI P.Management of parasitic nematodes of soybean through genetic resistance[C]//In:KAUFFMAN H E,eds.Proceedings of World Soybean Research Conference,6th.4-7 August,1999.Chicago,IL,USA:Superior Printing,Champaign,IL,1999:300-306.

      [65] MITCHUM M G,WRATHER J A,HEINZ R D,et al.Variability in distribution and virulence phenotypes ofHeteroderaglycinesin Missouri during 2005[J].Plant Disease,2007,91(11):1473-1476.

      [66] 田中艷,高國金,周長軍,等.大豆胞囊線蟲生理小種變異的研究[J].大豆科學(xué),2007,26(2):291-293.

      TIAN Z Y,GAO G J,ZHOU C J,et al.Study on the variation of soybean cyst nematode[J].Soybean Science,2007,26(2):290-292.

      [67] 陳 雙,潘鳳娟,周長軍,等.黑龍江省安達地區(qū)大豆孢囊線蟲生理小種遺傳分化現(xiàn)象[J].土壤與作物,2015,4(1): 42-47.

      CHEN S,PAN F J,ZHOU C J,et al.Genetic variation of soybean cyst nematode races in Anda area of Heilongjiang province[J].Soils and Crops,2015,4(1):42-47.

      [68] HUA C,LI C,HU Y,et al.Identification of HG Types of soybean cyst nematodeHeteroderaglycinesand resistance screening on soybean genotypes in northeast China[J].Journal of Nematology,2018,in press.

      [69] 曹廣祿,趙 雪,王 強,等.大豆種質(zhì)資源對胞囊線蟲病1號、3號和4號生理小種的抗性鑒定[J].大豆科學(xué),2014,33(4): 563-565.

      CAO G L,ZHAO X,WANG Q,et al.Resistance evaluation of soybean germplasm to races 1,3 and 4 of soybean cyst nematode(Heteroderagiycines)[J].Soybean Science,2014,33(4): 563-565.

      [70] 李明姝,孫星邈.大豆種質(zhì)資源對大豆胞囊線蟲3號生理小種的抗性鑒定[J].農(nóng)業(yè)與技術(shù),2013,33(12): 17-18.

      LI M Z,SUN X M.Resistance identification of soybean germplasm resources to race 3 of soybean cyst nemtode[J].Agriculture and Technology,2013,33(12):17-18.

      [71] 于佰雙.黑龍江省主要大豆抗源對胞囊線蟲的抗病特性及線蟲防治體系研究[D].沈陽:沈陽農(nóng)業(yè)大學(xué),2009.

      YU B S.Resistance of main soybean germplasm to SNC and management to SNC in Heilongjiang Province[D].Shenyang: Shenyang Agricultural University,2009.

      猜你喜歡
      胞囊孢囊小種
      福建福寧灣表層沉積物中甲藻孢囊分布與多樣性研究*
      海洋與湖沼(2022年6期)2022-11-25 05:29:56
      浙江象山港表層沉積物中甲藻孢囊多樣性與分布研究
      安徽省稻瘟病菌生理小種鑒定分析
      抗大豆胞囊線蟲SCN3-11位點的KASP標記開發(fā)和利用
      年際間干旱對晚疫病菌生理小種復(fù)雜性的影響
      植物保護(2017年4期)2017-08-09 01:18:38
      朝鮮孢囊線蟲——浙江省孢囊線蟲新記錄種
      基于羥基自由基高級氧化快速殺滅錐狀斯氏藻孢囊的研究
      中國馬鈴薯晚疫病菌生理小種研究進展
      中國馬鈴薯(2017年1期)2017-03-02 09:15:51
      黃淮大豆主產(chǎn)區(qū)大豆胞囊線蟲生理小種分布調(diào)查
      大豆連作對大豆胞囊線蟲胞囊相關(guān)細菌群落的影響
      大豆科技(2014年5期)2014-03-23 02:46:18
      石阡县| 马山县| 临高县| 新疆| 晋城| 周口市| 陈巴尔虎旗| 双鸭山市| 德江县| 盱眙县| 兴仁县| 广德县| 龙海市| 镇赉县| 奉节县| 东乌| 奎屯市| 龙山县| 明水县| 东明县| 宝山区| 兰西县| 增城市| 天峨县| 安宁市| 嵊州市| 荆门市| 鄄城县| 南宁市| 西青区| 怀远县| 建德市| 红桥区| 龙门县| 西吉县| 宁南县| 元阳县| 敦煌市| 丹寨县| 岑巩县| 隆子县|