劉紅玉 霍東華
摘?要:為了研究因子von Neumann代數(shù)上完全保*-Jordan零積的滿射的刻畫(huà)問(wèn)題,依據(jù)雙邊完全保*-Jordan零積和雙邊2-保*-Jordan零積的定義,采用完全保持的方法,證明了如果Φ是von Neumann代數(shù)A到B的一個(gè)滿射,則Φ是線性或共軛線性*-同構(gòu)的非零常數(shù)倍。
關(guān)鍵詞:雙邊完全保*-Jordan零積;雙邊2-保*-Jordan零積;因子 von Neumann 代數(shù)
DOI:10.15938/j.jhust.2018.06.027
中圖分類號(hào): O152.2
文獻(xiàn)標(biāo)志碼: A
文章編號(hào): 1007-2683(2018)06-0151-04
Abstract:In order to characterize the maps completely preserving *-Jordan zero-products on factor von Neumann algebras??according to the definition of bilateral complete preserving *-Jordan zero-products and bilateral 2-preserving *-Jordan zero-products??taking a completely preserve approach?it is proved that if Φ is a surjection of von Neumann algebra A to B,then Φis the non-zero scalar multiple of linear or conjugate ?linear*-isomorphism.
Keywords:bilateral complete preserving *-Jordan zero-products; bilateral 2-preserving *-Jordan zero-products; factor von Neumann algebras
參 考 文 獻(xiàn):
[1]?CUI J.?L?LI C.?K.?Maps Preserving ?Product XY-YX* on Factor von Neumann Algebra[J].?Linear Algebra and Its Applications?2009?431:833-842.
[2]?BAI Z.?F?DU S.?P.?Maps Preserving Products XY-YX* on von Neumann Algebras [J].?Journal of Mathematical Analysis and Applications?2012?386(1):103-109.
[3]?LIU L?GUO X.?Maps Preserving Product X*Y+YX* on Factor von Neumann Algebra [J].?Linear and Multilinear Algebra?2011?59:951-955.
[4]?LI C.?J?LU F.?Y?FANG X.?Nonlinear Mappings Preserving Product XY-YX* on Factor von Neumann Algebra[J].?Linear Algebra and Its Applications?2013?438:2339-2345.
[5]?焦美艷.?Von Neumann代數(shù)套子代數(shù)上保因子交換性的線性映射[J].?數(shù)學(xué)學(xué)報(bào),2014,57(2):409-416.
[6]?CUI J.?L?PARK C.?Strong Lie Skew-products Preserving Maps on Factor Von Neumann Algebra[J]. Acta Math.?Sci?2012,32B(2): 531-538.
[7]?QI X.?F?HOU J.?C.?Strong Skew Commutativity Preserving Maps on Von Neumann Algebras[J]. J.?Math.?Anal.?Appl?2013?397: 362-370.
[8]?齊霄霏,侯晉川.?保持斜 Lie 零積的可加映射[J].?中國(guó)科學(xué)雜志社,2015,45(2):151-165.
[9]?CHEN C?LU F.?Y.?Nonlinear Maps Preserving Higher Dimensional Numerical Range of Skew Lie Product of Operators [J].?Operator and Matrices?2016?10(2):335-344.
[10]HOU J.?C?HUANG L.?Characterizing Isomorphisms in Terms of Completely Preserving Invertibility or Spectrum [J].?Journal of Mathematical Analysis and Applications?2009?359(1): 81-87.
[11]黃麗,路召飛,李俊林.?標(biāo)準(zhǔn)算子代數(shù)上完全保斜冪等性的可加映射[J].?中北大學(xué)學(xué)報(bào): 自然科學(xué)版,2011,32(1):71-73.
[12]HUANG L?LIU Y.?X.?Maps Completely Preserving Commutativity and Maps Completely Preserving Jordan Zero-product[J].?Linear Algebra and Its Applications?2014?462(12):233-249.
[13]劉艷曉,黃麗.?完全保持不同因子交換性的映射[J].?太原科技大學(xué)學(xué)報(bào),2015,36(3):237-240.
[14]李文慧.?完全保持斜Jordan零積和斜交換性映射的研究[D].?太原:太原科技大學(xué),2017.
(編輯:溫澤宇)