董金玲 吳天添 謝志宏 張穎
[摘要] 目的 探討在丙肝病毒(HCV)感染合并脂肪肝及肝硬化的患者中Sirtuin-1和SREBP的變化及其臨床意義。方法 選擇單純丙肝患者37例,丙肝合并重度脂肪肝患者34例,丙肝合并肝硬化患者31例,正常志愿者35例,共137例。分別采集各入組者的外周血樣本、丙肝合并重度脂肪肝及丙肝后肝硬化患者的肝臟穿刺樣本,通過Realtime qPCR及Western Blotting方法檢測Sirtuin-1和SREBP的轉(zhuǎn)錄和表達(dá)水平。 結(jié)果 血液中Sirtuin-1轉(zhuǎn)錄水平:與正常人比較,單純丙肝患者下降(P=0.0013);丙肝合并重度脂肪肝患者又較單純丙肝患者下降(P=0.0006);而在丙肝后肝硬化與丙肝合并重度脂肪肝患者之間無統(tǒng)計學(xué)差異(P=0.2741);但丙肝合并肝硬化患者仍較單純丙肝患者有明顯下降(P=0.0026)。血液中SREBP-1c轉(zhuǎn)錄水平:單純丙肝患者較正常人高(P=0.0130);丙肝合并重度脂肪肝較單純丙肝患者高(P=0.0021);丙肝后肝硬化較丙肝合并重度脂肪肝患者亦有升高(P=0.0481)。血液中Sirtuin-1表達(dá)水平:正常人、單純丙肝患者、丙肝合并重度脂肪肝患者、丙肝后肝硬化患者逐步下降(P分別為0.0003、0.000021、0.0207)。血液中SREBP-1c表達(dá)水平:正常人、單純丙肝患者、丙肝合并重度脂肪肝患者逐步升高(P分別為0.00017、0.0003),而丙肝合并重度脂肪肝與丙肝后肝硬化患者之間則無明顯差異(P=0.0814)。SREBP-2在血液中mRNA及蛋白水平表達(dá)均無顯著統(tǒng)計學(xué)差異(P>0.05)。肝穿組織中:Sirtuin-1基因轉(zhuǎn)錄與蛋白表達(dá)水平,丙肝后肝硬化患者均較丙肝合并重度脂肪肝患者低(P分別為0.0013和0.0001);而SREBP-1c的基因轉(zhuǎn)錄與蛋白表達(dá)水平,丙肝后肝硬化患者均較丙肝合并重度脂肪肝患者高(P分別為0.0201和0.0083);SREBP-2轉(zhuǎn)錄和表達(dá)在兩組間無差異(P>0.05)。 結(jié)論 HCV有可能通過下調(diào)Sirtuin-1及上調(diào)SREBP-1c的表達(dá)加重肝細(xì)胞的脂質(zhì)化及肝硬化的程度。
[關(guān)鍵詞] Sirtuin-1;SREBP-1c;SREBP-2;HCV;肝脂肪變性;肝硬化
[中圖分類號] R512.63 [文獻(xiàn)標(biāo)識碼] A [文章編號] 1673-9701(2018)29-0017-06
Changes and clinical significance of Sirtuin-1 and SREBP in progression of hepatitis C to cirrhosis
DONG Jinling1 WU Tiantian2 XIE Zhihong1 ZHANG Ying1
1.Department of Infectious Diseases, the First People's Hospital of Huzhou in Zhejiang Province, Huzhou 313000, China; 2.Department of General Surgery, the First People's Hospital of Huzhou in Zhejiang Province, Huzhou 313000, China
[Abstract] Objective To explore the changes and clinical significance of Sirtuin-1 and SREBP in hepatitis C virus(HCV) infected patients with fatty liver and liver cirrhosis. Methods A total of 137 patients, including 37 patients with HCV alone, 34 patients with HCV with severe fatty liver, 31 patients with HCV and cirrhosis, 35 patients with normal volunteers, were selected. The peripheral blood samples of the enrolled patients, liver puncture samples from patients with HCV with severe fatty liver and those with HCV and cirrhosis were collected. Transcription and expression of Sirtuin-1 and SREBP was detected by Realtime qPCR and Western Blotting. Results Compared with that of normal people, the Sirtuin-1 transcription level in blood in patients with hepatitis C decreased(P=0.0013). The Sirtuin-1 transcription level in patients with HCV and severe fatty liver was lower than that of patients with hepatitis C(P=0.0006). While there was no significant difference in the Sirtuin-1 transcription level between patients with HCV and severe fatty liver and those with HCV and cirrhosis(P=0.2741). However, the Sirtuin1 transcription level in patients with hepatitis C and liver cirrhosis was still significantly lower than that of patients with only hepatitis C(P=0.0026). SREBP-1c transcription level in blood in hepatitis C patients was higher than that of normal people(P=0.0130). The SREBP-1c transcription level in patients with HCV and severe fatty liver was higher than that of patients with hepatitis C(P=0.0021). And SREBP-1c transcription level in patients with HCV and cirrhosis was also higher than that of patients with HCV and severe fatty liver(P=0.0481). The expression level of Sirtuin1 in blood was gradually decreased in normal subjects, patients with hepatitis C only, patients with hepatitis C and severe fatty liver, and patients with hepatitis C and cirrhosis(P=0.0003, 0.000021, and 0.0207, respectively). The SREBP-1c expression level in blood was increased gradually in normal subjects, patients with hepatitis C only, and patients with hepatitis C and severe fatty liver(P=0.00017, 0.0003, respectively). There was no significant difference between patients with hepatitis C and severe fatty liver and those with hepatitis C and liver cirrhosis in the SREBP-1c expression level(P=0.0814).There was no significant difference in mRNA and protein expression of SREBP-2 in blood(P>0.05). Sirtuin-1 gene transcription and protein expression level in liver perforation tissue of post-hepatitis C liver cirrhosis patients were lower than that of patients with hepatitis C combined with severe fatty liver(P=0.0013 and 0.0001, respectively). SREBP-1c gene transcription and protein expression level in patients with hepatic cirrhosis after hepatitis C were higher than that of patients with severe fatty liver and hepatitis C(P=0.0201 and 0.0083, respectively). There was no significant difference in SREBP-2 transcription and expression between the two groups(P>0.05). Conclusion HCV may increase the degree of hepatocyte lipidation and cirrhosis by down-regulating Sirtuin-1 and up-regulating SREBP-1c expression.
[Key words] Sirtuin-1; SREBP-1c; SREBP-2; HCV; Liver steatosis; Liver cirrhosis
丙型肝炎病毒屬黃病毒科單鏈RNA病毒,具有高度的變異性,分Ⅰ~Ⅵ型及各亞型,在全球范圍內(nèi)主要流行者為Ⅰ型,占HCV的70%以上[1],而Ⅲa型HCV病毒引起的肝脂肪變性比率最高,約為74%,脂肪肝程度亦最重,是其他病毒型的3倍左右[2]。現(xiàn)世界范圍內(nèi)約有1.8億人感染丙肝病毒,且有80%轉(zhuǎn)為慢性感染[3]。HCV對感染者肝臟的毒性作用主要為病毒對機體的直接毒性及機體對病毒的免疫應(yīng)答。另外,嗜酒、高脂血癥、胰島素抵抗等也會加重HCV對肝臟的毒性作用[4]。丙肝后肝硬化的發(fā)生率日益增高,由丙肝所致肝癌的比率逐年增加,僅次于乙肝[5]。
沉默信息調(diào)節(jié)因子1(Sirtuin-1)位于人染色體10q21.3,不具有剪輯變異性,有高度保守性[6]。其在人體成熟組織中廣泛存在,屬于煙酰胺腺嘌呤二核苷酸(NAD+)依賴性Sirtuin去乙?;易錥7],是在Sirtuin家族中被研究的最透徹的一種蛋白,在肝臟中通過過氧化物酶增殖物激活受體-α(PPAR-α)來進(jìn)行脂質(zhì)代謝[8]。有研究證實,HCV可下調(diào)SIRT-1-磷酸腺苷(AMP)激活的蛋白激酶(AMPK)通路,導(dǎo)致肝細(xì)胞能量及糖、脂代謝紊亂,從而增加HCV的復(fù)制[9,10]。另有文獻(xiàn)支持,HCV可破壞肝竇內(nèi)皮細(xì)胞(LSEC),使肝臟微循環(huán)障礙,但具體機制不詳[11]。
固醇調(diào)節(jié)元件結(jié)合蛋白(SREBP)是調(diào)節(jié)肝臟脂質(zhì)代謝的重要蛋白,分為SREBP-1a、SREBP-1c、SREBP-2三個亞型,而在肝臟中,SREBP-1c、SREBP-2兩種蛋白占主導(dǎo)地位,SREBP-1a在成年人肝臟中幾乎無表達(dá)[12]。HCV核心蛋白可以通過激活SREBP-1c及其下游靶基因影響肝脂肪變的發(fā)生發(fā)展過程[13],但具體機制不詳。有文獻(xiàn)證明,SREBP-1c主要調(diào)控脂肪酸相關(guān)代謝,而SREBP-2主要調(diào)控膽固醇相關(guān)代謝[14,15]。
本試驗通過Real-time qPCR、Western Blot方法,探討丙肝合并重度脂肪肝、丙肝合并不同程度肝硬化患者肝組織中Sirtuin-1、SREBP-1c、SREBP-2的轉(zhuǎn)錄及表達(dá)情況;研究正常受試者、丙肝、丙肝合并重度脂肪肝、丙肝合并不同程度肝硬化患者血清中Sirtuin-1、SREBP-1c、SREBP-2的轉(zhuǎn)錄及表達(dá)情況。探討上述基因在丙肝患者進(jìn)展為肝硬化過程中的作用及臨床意義。
1資料與方法
1.1 一般資料
選取2015年1月~2017年12月在我院門診及住院的單純丙肝患者、丙肝合并重度脂肪肝患者、丙肝合并肝硬化患者及體檢的正常人共137例。其中單純丙肝患者37例,丙肝合并重度脂肪肝患者34例,丙肝合并肝硬化患者31例,正常志愿者35例。所有丙肝患者均未經(jīng)過抗病毒治療,且各組之間性別、年齡、BMI指數(shù)等均無統(tǒng)計學(xué)差異,見表1。
1.1.1入選標(biāo)準(zhǔn) (1)丙肝抗體和丙肝病毒RNA均陽性,且未行抗病毒治療的患者。(2)B超檢測 在丙肝確診的基礎(chǔ)上,根據(jù)《非酒精性脂肪性肝病診療指南》[16]:①肝區(qū)近場回聲彌漫性增強(強于腎臟和脾臟),遠(yuǎn)場回聲逐漸衰減;②肝內(nèi)管道結(jié)構(gòu)顯示不清;③肝臟輕至中度腫大,邊緣角圓鈍;④彩色多普勒血流顯像提示肝內(nèi)彩色血流信號減少或不易顯示,但肝內(nèi)血管走向正常;⑤肝右葉包膜及橫膈回聲顯示不清或不完整。第①項、第②~④中的其中兩項以及第⑤項達(dá)到標(biāo)準(zhǔn)即為重度脂肪肝[17]。(3)CT和肝臟穿刺活檢在丙肝的基礎(chǔ)上,根據(jù)《非酒精性脂肪性肝病診療指南》[16]:CT值低于23HU的且肝/脾CT值比值≤0.5的判別為重度脂肪肝。肝臟變小,密度高低不均,局灶性低密度區(qū),或者密度高低相間的結(jié)節(jié)狀改變。脾腫大、腹水、門脈主干擴(kuò)張,脾門附近、食管下端和胃的賁門區(qū)域側(cè)支血管建立、擴(kuò)張和扭曲[18]。各種脂肪肝的基礎(chǔ)上出現(xiàn)的肝硬化征象,并由肝穿刺活檢確診的丙肝后肝硬化患者。
1.1.2 排除標(biāo)準(zhǔn) 通過血液RNA檢測,排除甲、乙、丁、戊型肝炎患者;排除長期飲酒以及應(yīng)用免疫調(diào)節(jié)藥物等患者;排除藥物性肝病、腸外營養(yǎng)、肝豆?fàn)詈俗冃缘瓤蓪?dǎo)致脂肪肝的原發(fā)疾??;排除肥胖、血脂紊亂、高血壓等代謝綜合征;排除肝癌、肝臟轉(zhuǎn)移性腫瘤等肝臟惡性腫瘤。
1.2 Sirtuin-1、SREBP的檢測方法
1.2.1 Sirtuin-1、SREBP的Real-time qPCR檢測 抽取正常志愿者、單純丙肝患者、丙肝+重度脂肪肝患者以及丙肝+肝硬化患者血液樣本,提取血液中的總DNA,而后Real-time qPCR檢測Sirtuin-1、SREBP-1c和SREBP-2的mRNA轉(zhuǎn)錄水平;對丙肝+重度脂肪肝患者和丙肝+肝硬化患者兩個組的患者進(jìn)行肝臟細(xì)針穿刺活檢,分別做病理和組織Real-time qPCR檢測Sirtuin-1、SREBP-1c和SREBP-2的mRNA轉(zhuǎn)錄水平。各基因序列見表2,Real-time qPCR試劑Power SYBR GREEN PCR Master Mix購自Life Technologies公司。
1.2.2 Sirtuin-1、SREBP的Western Blotting檢測和比較 同樣對四組患者予抽取血液樣本,提取血液中的總蛋白,Western Blotting法檢測Sirtuin-1、SREBP-1c和SREBP-2的蛋白表達(dá)水平;對丙肝+重度脂肪肝和丙肝+肝硬化兩組的患者進(jìn)行肝穿活檢,所取組織分別做病理及WB試驗。
1.2.3 丙肝RNA含量檢測 檢測和比較各組患者血液丙肝RNA含量。
1.3統(tǒng)計學(xué)方法
使用SPSS20.0進(jìn)行統(tǒng)計學(xué)分析,受試對象性別采用卡方檢驗,年齡和BMI指數(shù)差異采用t檢驗進(jìn)行各組間兩兩比較。四組間血液中Sirtuin-1、SREBP轉(zhuǎn)錄和表達(dá)水平用t檢驗進(jìn)行各組間兩兩比較;兩組間肝臟穿刺活檢組織中Sirtuin-1、SREBP轉(zhuǎn)錄和表達(dá)水平用t檢驗進(jìn)行比較。
2結(jié)果
2.1各組間血清Sirtuin-1、SREBP基因轉(zhuǎn)錄水平比較
將各組Real-time qPCR數(shù)值轉(zhuǎn)化成2-△△Ct后進(jìn)行比較。將正常組2-△△Ct值設(shè)為1,其余各組與正常組進(jìn)行比較得相對值。結(jié)果表明,單純丙肝患者Sirtuin-1轉(zhuǎn)錄水平較正常人下降(P=0.0013);丙肝合并重度脂肪肝患者較單純丙肝患者明顯下降(P=0.0006);而Sirtuin-1在丙肝合并肝硬化與丙肝合并重度脂肪肝患者之間無統(tǒng)計學(xué)差異(P=0.2741);但丙肝合并肝硬化患者Sirtuin-1較單純丙肝患者有明顯下降(P=0.0026)。對于SREBP-1c,單純丙肝患者較正常人高(P=0.0130);丙肝合并重度脂肪肝較單純丙肝患者高(P=0.0021);丙肝合并肝硬化較丙肝合并重度脂肪肝患者亦有升高(P=0.0481)。SREBP-2各組間均無統(tǒng)計學(xué)差異,P值均大于0.05(單純丙肝患者與正常人P=0.3744,丙肝合并重度脂肪肝與單純丙肝患者P=0.1380,丙肝合并肝硬化與丙肝合并重度脂肪肝患者P=0.2911,丙肝合并重度脂肪肝患者與正常人P=0.0831,丙肝合并肝硬化患者與正常人P=0.0620,單純丙肝與丙肝合并肝硬化患者P=0.1329)。見圖1。
2.2 各組間血清中Sirtuin-1、SREBP蛋白表達(dá)水平比較
WB結(jié)果用同法,將正常人灰度值設(shè)為1,其他組作同比換算。與正常人相比較,單純丙肝患者Sirtuin-1蛋白表達(dá)量下降(P=0.0003),丙肝合并重度脂肪肝患者Sirtuin-1蛋白表達(dá)量較單純丙肝患者下降(P=0.000021),丙肝合并肝硬化患者較丙肝合并重度脂肪肝患者Sirtuin-1表達(dá)量亦有下降(P=0.0207)。而SREBP-1c在單純丙肝患者中,則較正常人升高(P=0.00017);丙肝合并重度脂肪肝患者較單純丙肝患者,其SREBP-1c有明顯升高(P=0.0003);而丙肝合并重度脂肪肝與丙肝合并肝硬化患者之間,SREBP-1c則無明顯差異(P=0.0814)。與基因轉(zhuǎn)錄水平相似,SREBP-2蛋白表達(dá)量在各組間則無明顯變化,P均>0.05(單純丙肝患者與正常人P=0.2518,丙肝合并重度脂肪肝與單純丙肝患者P=0.1027,丙肝合并肝硬化與丙肝合并重度脂肪肝患者P=0.0923,丙肝合并重度脂肪肝患者與正常人P=0.3792,丙肝合并肝硬化患者與正常人P=0.1583,單純丙肝與丙肝合并肝硬化患者P=0.0901),與RT-PCR實驗結(jié)果相一致。見圖2。
2.3 Sirtuin-1、SREBP在丙肝合并重度脂肪肝與肝硬化兩組患者肝組織中的變化
對丙肝合并重度脂肪肝及丙肝合并肝硬化兩組患者進(jìn)行肝穿刺活檢,所取組織為肝臟結(jié)節(jié)樣組織,且經(jīng)病理證實(封三圖2)。所取組織分別提取RNA及總蛋白,進(jìn)行Real-time qPCR及Western Blotting檢測。結(jié)果發(fā)現(xiàn)Sirtuin-1基因的轉(zhuǎn)錄水平,丙肝合并肝硬化患者顯著低于丙肝合并重度脂肪肝患者,差異有統(tǒng)計學(xué)意義(P=0.0013);Sirtuin-1蛋白表達(dá)水平亦有差異,丙肝合并肝硬化患者更低(P=0.0001)。SREBP-1c基因轉(zhuǎn)錄水平及蛋白表達(dá)水平,丙肝合并肝硬化患者均高于丙肝合并重度脂肪肝患者(P值分別為0.0201和0.0083)。兩組間SREBP-2基因轉(zhuǎn)錄及蛋白表達(dá)均無統(tǒng)計學(xué)差異(P值分別為0.0716和0.1905)。
3討論
丙型肝炎感染后容易出現(xiàn)急性黃疸型肝炎,15%的患者會有急性癥狀[19],初發(fā)時可無特殊癥狀,80%的患者易轉(zhuǎn)化為慢性丙型肝炎、脂肪肝[20],甚至肝硬化、肝癌[21,22]。而慢性肝脂肪變性是丙型肝炎最重要的病理學(xué)變化[23]。且慢性丙肝患者較正常人,甚至乙肝患者,患脂肪肝的概率更高[24]。有研究顯示,HCV核心蛋白是介導(dǎo)肝脂肪變的主要因素[25]。其中,Ⅲ型丙肝發(fā)生肝脂肪變的概率更高,但機制尚未明確。從最早的理論“受HCV感染的肝細(xì)胞載脂蛋白分泌受損”,到既往的“肝細(xì)胞脂肪酸氧化功能喪失”,到現(xiàn)今的“HCV核心蛋白通過各種信號通路影響脂質(zhì)相關(guān)基因的轉(zhuǎn)錄和表達(dá)”,HCV導(dǎo)致肝脂肪變性的機制被一步步闡明[25-27]。從脂肪肝到肝硬化,是一個不可逆的過程,甚至在肝移植后,HCV復(fù)發(fā)患者仍有1/3~1/4會再發(fā)肝硬化,而這些移植后丙肝肝硬化患者有42%會在一年內(nèi)發(fā)展為肝硬化失代償期[28],HCV病毒致丙肝肝硬化的機制仍在進(jìn)一步研究中。
Sirtuin廣泛分布于機體成熟組織、胚胎早期組織及生殖細(xì)胞之中。在胎兒和成人的腦組織、腎、心臟、骨骼肌及睪丸中分布尤為多[27]。7個型中Sirtuin-1型研究的最為透徹。有研究表明,Sirtuin-1蛋白可去乙酰化叉頭蛋白盒轉(zhuǎn)錄因子1(FOXO1,forkhead-box transcription factors 1),抑制氧化應(yīng)激過程,減少細(xì)胞損傷[29]。甚至還可以通過與解耦聯(lián)蛋白2(UCP2,uncoupling protein 2)基因啟動子結(jié)合,抑制 UCP2 表達(dá),來調(diào)節(jié)胰島素的分泌,間接調(diào)節(jié)糖、脂代謝。另一方面,它還能保護(hù)延長細(xì)胞壽命和促進(jìn)細(xì)胞存活的功能[30],但機制尚不明確。而有細(xì)胞學(xué)試驗報道,Sirtuin-1激動劑白藜蘆醇能降低轉(zhuǎn)化生長因子TGF-β1的表達(dá)[31]。而TGF-β1則能引起諸如人四型膠原(ColⅣ),以及肝纖維化四項指標(biāo)中的Ⅲ型前膠原氨基端肽(PⅢNP)、層粘連蛋白(HA)和透明質(zhì)酸酶(LN)這些具代表性的肝纖維化指標(biāo)表達(dá)量的增加[32]。
SREBP有三種亞型,但只有SREBP-1c對肝臟脂質(zhì)的代謝起著重要的作用。HCV的核心蛋白可上調(diào)SREBP-1c表達(dá),其中Ⅲ型HCV核心蛋白上調(diào)SREBP-1c的能力最強,可引發(fā)脂質(zhì)堆積的程度是Ⅰ型HCV的3倍[33]。且SREBP-1c受葡萄糖、胰島素、胰高血糖素、瘦素等調(diào)控,激活升脂基因的轉(zhuǎn)錄與表達(dá)[34]。SREBP-2的轉(zhuǎn)錄及表達(dá)變化,則與膽固醇濃度相關(guān)[35]。而SREBP與肝纖維化與肝硬化的關(guān)系則少有文獻(xiàn)報道。
本試驗發(fā)現(xiàn),隨著丙型肝炎病程的加重,發(fā)展至脂肪肝,甚至肝硬化期間,患者血液中及肝臟中Sirtuin-1、SREBP-1c的含量有著顯著的變化。HCV有可能通過下調(diào)Sirtuin-1、上調(diào)SREBP-1c來加重肝細(xì)胞的脂質(zhì)化及肝硬化的程度,而SREBP-2在正常人、丙肝患者、丙肝重度脂肪肝及丙肝后肝硬化的患者中均一致。脂肪肝被認(rèn)為是肝硬化獨立的誘發(fā)因素[36],而Sirtuin-1及SREBP-1c在本試驗中被驗證與脂肪肝的嚴(yán)重程度相關(guān),增加Sirtuin-1的表達(dá)及控制SREBP-1c的增加可延緩脂肪肝及肝硬化的進(jìn)程,但肝硬化與此兩種基因的相關(guān)性則未見文獻(xiàn)報道。有文獻(xiàn)報道,SREBP-1c可維持肝臟脂代謝內(nèi)環(huán)境的穩(wěn)定,其適度升高有利于緩解肝臟的脂毒性,然而,SREBP-1c 的持續(xù)增高則引起脂質(zhì)過度堆積[37]。本試驗的樣本量偏小,未發(fā)現(xiàn)上述SREBP與脂肪肝的關(guān)系。Sirtuin-1及SREBP-1c的變化趨勢可預(yù)測丙肝患者的嚴(yán)重程度,但具體的生物學(xué)機制仍需進(jìn)一步研究,將其應(yīng)用到臨床是否經(jīng)濟(jì)可行,也有待進(jìn)一步的推廣。
[參考文獻(xiàn)]
[1] Sarrazin C,Zeuzem S. Resistance to direct antiviral agents in patients with hepatitis C virus infection[J]. Gastroenterology,2010,138(2):447-462.
[2] Asselah T,Rubbia-Brandt L,Marcellin P,et al. Steatosis in chronic hepatitis C:Why does it really matter?[J]. Gut,2006,55(1):123.
[3] Hanafiah KM,Groeger J,F(xiàn)laxman AD,et al. Global epidemiology of hepatitis C virus infection:New estimates of age-specific antibody to HCV seroprevalence[J]. Hepatology,2013,57(4):1333-1342.
[4] Hwang SJ,Lee SD. Hepatic steatosis and hepatitis C:Still unhappy bedfellows?[J]. Journal of Gastroenterology & Hepatology,2011,26(Supplement s1):96-101.
[5] Conti F,Buonfiglioli F,Scuteri A,et al. Early occurrence and recurrence of hepatocellular carcinoma in HCV-related cirrhosis treated with direct-acting antivirals[J]. Journal of Hepatology,2016,65(4):727-733.
[6] Sim V,Bernstein MP,F(xiàn)rangos SG,et al. Cloning,chromosomal characterization and mapping of the NAD-dependent histone deacetylases gene sirtuin-1[J]. International Journal of Molecular Medicine,2006,17(1):59-67.
[7] Kazuhiko H,Hyun KS,Ryun JS,et al. Correction:Effects of Resveratrol and SIRT1 on PGC-1α Activity and Mitochondrial Biogenesis:A Reevaluation[J]. PLoS Biology,2013, 12(1):e1001603.
[8] Corbi G,Conti V,Russomanno G,et al. Adrenergic signaling and oxidative stress:a role for sirtuins?[J]. Front Physiol,2013,4:324.
[9] Sun LJ,Zhao YH,Li SC,et al. Inhibition of silent information regulator-1 in hepatocytes induces lipid metabolism disorders and enhances hepatitis C virus replication[J]. Chinese Journal of Hepatology,2013,21(11):834-839.
[10] Yu JW,Sun LJ,Zhao YH,et al. Inhibition of silent information regulator 1 induces glucose metabolism disorders of hepatocytes and enhances hepatitis C virus replication[J].Hepatology Research,2013,43(12):1343.
[11] Cheluvappa R,Cogger VC,Kwun SY,et al. Liver sinusoidal endothelial cells and acute non-oxidative hepatic injury induced by Pseudomonas aeruginosa pyocyanin[J]. International Journal of Experimental Pathology,2008,89(6):410-418.
[12] Mcpherson S,Jonsson JR,Barrie HD,et al. Investigation of the role of SREBP-1c in the pathogenesis of HCV-related steatosis[J]. Journal of Hepatology,2008,49(6): 1046-1054.
[13] Khan M,Jahan S,Khaliq S,et al. Interaction of the hepatitis C virus(HCV) core with cellular genes in the development of HCV-induced steatosis[J]. Archives of Virology,2010,155(11):1735-1753.
[14] Goldstein JL,Rawson RB,Brown MS. Mutant Mammalian Cells as Tools to Delineate the Sterol Regulatory Element-Binding Protein Pathway for Feedback Regulation of Lipid Synthesis[J]. Archives of Biochemistry & Biophysics,2002,397(2):139-148.
[15] Rong S,Mcdonald J,Engelking L. Cholesterol auxotrophy and intolerance to ezetimibe in mice with SREBP-2 deficiency in the intestine[J]. Journal of Lipid Research,2017,58(10):M077610.
[16] 中華醫(yī)學(xué)會肝病學(xué)分會脂肪肝和酒精性肝病學(xué)組. 非酒精性脂肪性肝病診療指南(2010年修訂版)[J]. 胃腸病學(xué)和肝病學(xué)雜志,2010,18(6):167-170.
[17] Chen SM,Liu CY,Li SR,et al. Effects of Therapeutic Lifestyle Program on Ultrasound-diagnosed Nonalcoholic Fatty Liver Disease[J]. Journal of the Chinese Medical Association,2008,71(11):551-558.
[18] Chalasani N,Younossi Z,Lavine JE,et al. The diagnosis and management of nonalcoholic fatty liver disease:Practice guidance from the American Association for the Study of Liver Diseases[J]. American Journal of Gastroenterology,2012,55(6):811-826.
[19] Maheshwari A,Ray S,Thuluvath PJ. Acute hepatitis C[J]. Lancet,2008,372(9635):321-332.
[20] Nelson PK,Mathers BM,Cowie B,et al. Global epidemiology of hepatitis B and hepatitis C in people who inject drugs:results of systematic reviews[J]. Lancet,2011, 378(9791):571-583.
[21] Hajarizadeh B,Grebely J,Dore GJ. Epidemiology and natural history of HCV infection[J]. Nat Rev Gastroenterol Hepatol,2013,10(9):553-562.
[22] Gemma S,Brogi S,Novellino E,et al. HCV-targeted antivirals:current status and future challenges[J]. Current Pharmaceutical Design,2014,20(21):3445.
[23] Cross TJ,Rashid MM,Berry PA,et al. The importance of steatosis in chronic hepatitis C infection and its management:A review[J]. Hepatology Research,2010,40(3):237-247.
[24] Noureddin M,Wong MM,Todo T,et al. Fatty liver in hepatitis C patients post-sustained virological response with direct-acting antivirals[J]. World Journal of Gastroenterology, 2018,24(11):1269-1277.
[25] Moriya K,Yotsuyanagi H,Shintani Y,et al. Hepatitis C virus core protein induces hepatic steatosis in transgenic mice[J]. Journal of General Virology,1997,78(4):1527-1531.
[26] Gawlik K,Gallay PA. HCV core protein and virus assembly:What we know without structures[J]. Immunologic Research,2014,60(1):1.
[27] Wang J,Kang R,Huang H,et al. Hepatitis C virus core protein activates autophagy through EIF2AK3 and ATF6 UPR pathway-mediated MAP1LC3B and ATG12 expression[J]. Autophagy,2014,10(5):766-784.
[28] Manns MP,Wedemeyer H,Singer A,et al. Glycyrrhizin in patients who failed previous interferon alpha-based therapies:biochemical and histological effects after 52 weeks[J]. Journal of Viral Hepatitis,2012,19(8):537-546.
[29] Yang Y,Hou H,Haller EM,et al. Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation[J].Embo Journal,2005,24(5):1021-1032.
[30] Singh P,Hanson PS,Morris CM. SIRT1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinsons disease[J]. Bmc Neuroscience,2017, 18(1):46.
[31] Guo P,Sun X,F(xiàn)eng X,et al. Transforming growth factor-β1 gene polymorphisms with liver cirrhosis risk:A meta-analysis[J]. Infection Genetics & Evolution Journal of Molecular Epidemiology & Evolutionary Genetics in Infectious Diseases,2017,58:164.
[32] Yuan J,Liu W,Zhu H,et al. Curcumin inhibits glial scar formation by suppressing astrocyte-induced inflammation and fibrosis in vitro and in vivo[J]. Brain Research,2016.
[33] Abid K,Pazienza V,Gottardi AD,et al. An in vitro model of hepatitis C virus genotype 3a-associated triglycerides accumulation[J]. Journal of Hepatology,2005,42(5):744-751.
[34] Reijo L,Karin MT,Hannu P,et al. Genetic variant of the SREBF-1 gene is significantly related to cholesterol synthesis in man[J]. Atherosclerosis,2006,185(1):206.
[35] Tang H,Yu R,Liu S,et al. Irisin Inhibits Hepatic Cholesterol Synthesis via AMPK-SREBP2 Signaling[J]. Ebiomedicine,2016,6:139-148.
[36] Haga Y,Kanda T,Sasaki R,et al. Nonalcoholic fatty liver disease and hepatic cirrhosis:Comparison with viral hepatitis-associated steatosis[J]. World Journal of Gastroenterology, 2015,21(46):12989-12995.
[37] Ferré P,F(xiàn)oufelle F. Hepatic steatosis:a role for de novo lipogenesis and the transcription factor SREBP-1c[J]. Diabetes Obesity & Metabolism,2010,12(s2):83-92.
(收稿日期:2018-05-24)