李翔 黨曉楠
摘 要:增塑紡絲作為一種新型的聚丙烯腈基碳纖維原絲的制備方法受到了廣泛關注。該制備方法采用較少溶劑,纖維結構容易控制;但制備方法對紡絲設備以及工藝技術的要求高,尚未被應用于工業(yè)化。本文將對目前的增塑紡絲研究現狀進行全面總結,同時,對未來的研究方向進行展望。
關鍵詞:增塑紡絲 聚丙烯腈 制備
中圖分類號:TQ342 文獻標識碼:A 文章編號:1672-3791(2018)09(b)-0001-04
Abstract: As a new type of polyacrylonitrile-based carbon fiber precursor, plasticized spinning has received extensive attention. A small amount of solvent is used in this method and it is easy to control the fiber structure. However, this method has high requirements on spinning equipment and process technology, and has not been industrialized. This paper will comprehensively summarize the current research status of plasticized spinning, at the same time, we also forecast the future research trends.
Key Words: Plasticized spinning; Polyacrylonitrile; Preparation
聚丙烯腈(PAN)由于其分子鏈氰基之間存在著極強的偶極作用力,導致熔點高于分解點溫度,不能通過常規(guī)方法實現熔融紡絲[1-3]。目前,世界范圍內工業(yè)化生產PAN原絲通常采用溶液紡絲工藝[4-6],但國內相關生產企業(yè)尚未真正掌握該生產技術,所制備原絲存在著許多結構缺陷,例如截面為腰圓形[7],存在皮芯結構[8],表面存在大量溝槽、孔洞[9,10]。結構的缺陷導致原絲無法成為合格的碳纖維前驅體。目前,國內外相關學者提出了新型的紡絲工藝—增塑紡絲工藝,通過內增塑與外增塑法實現PAN的增塑紡絲[11,12]。與溶液紡絲工藝相比,結構可控性強,不需要溶劑或僅需少量增塑劑,是一種經濟高效的紡絲方法[13]。
1 內增塑紡絲方法
近年來國外BASF公司、BP/Amoco公司、日本三菱人造絲公司采用內增塑法實現了PAN纖維的融紡生產[14-18]。他們在PAN聚合的過程中加入了第二單體有丙烯酸甲酯、丙烯酸乙酯、丙烯酸丙酯(MA)、丙烯酸丁酯和偏氯乙烯等。引入此類單體降低了氰基之間的相互作用,從而有效降低了PAN熔點,實現了PAN熔融紡絲。美國BP Amoco公司[19]首先合成出了10mol%MA的聚合物,通過了熔融紡絲工藝制備了PAN纖維,其商品名為Amlon。日本三菱人造絲公司同樣通過共聚MA制備了優(yōu)良的PAN纖維,其纖維斷裂伸長率大于10%,最大斷裂強力達到7.5cN/dtex,其發(fā)明專利已見報道[20]。美國標準石油公司專利制備含有MA(10%~80%)和AN(20%~90%)穩(wěn)定可加工的聚合物,亦可形成纖維[21]。
Mukundan等人[22]以85/14/1的摩爾比制備了丙烯腈 (AN)/MA/乙烯基吡咯烷酮共聚物,成功實現了熔融紡絲,初生纖維直徑為14~40μm,斷裂強度約為70~245MPa。Han等人[23]合成了一系列摩爾比為85/15的AN/MA共聚物,并探討了不同的合成溫度對共聚物可紡性能的影響。Rangarajan等人[24]系統(tǒng)性地研究了共聚單體種類及含量對體系熔融穩(wěn)定性的影響。研究結果表明,MA是合適作為共聚單體從而實現熔融紡絲,當分子量為50000g/mol,MA含量為10mol%時,PAN共聚物具有熔融流動性。而當分子量為100000g/mol,MA含量為15mol%時,共聚物具有可紡性。Deng等人[25]的研究結果表明,當乙烯基咪唑的含量為12mol%時,纖維能實現熔融紡絲。Bhanu等人[26]的研究結果同樣顯示當體系MA含量高于10mol%時,體系顯示了很好的熔融可紡性。
國內的學者同樣獲得了大量的研究結果,陳蕾等人[20]的研究結果表明,含大量共聚單體的PAN以在190℃~220℃溫度范圍熔融擠出。隨著溫度的增加,熔體的流動性能不斷變好。于萬永等人[27]所制備的85/15的AN/MA共聚物可在高溫下可進行熔融加工。李慧慧等人[28]采用7~20mol%的N-乙烯基咪唑作為第二單體與丙烯腈進行均相溶液聚合,當第二單體的含量高于10mol%時,共聚物可熔融加工。80/20的丙烯腈-N-乙烯基咪唑共聚物初生纖維的斷裂強度為1.58cN/dtex,斷裂強度為11.2%。
綜上所述,第二單體的加入能實際有效地改善PAN的熔融加工性能,但體系存在一個共聚單體含量的最小值(10mol%)以確保能破壞PAN聚合物的長程有序結構,從而進行熔融加工。當引入過量第二單體時,常規(guī)通過熱處理實現分子鏈氰基的環(huán)化變得非常困難,需要使用紫外照射、等離子等特殊方法,使得后續(xù)的預氧化階段變得更加地繁瑣,同時碳纖維的得碳率也會降低。
2 外增塑紡絲方法
外增塑法是通過添加一定量增塑劑,破壞PAN晶區(qū)的有序結構,降低熔點,從而實現增塑熔融紡絲[29]。所制備的初生纖維采用水洗或萃取等方法去除增塑劑,得到性能優(yōu)良的纖維。
早在1952年,Coxe等人[29]就已發(fā)現PAN和水在高壓下混合后可以熔融擠出,但由于水的易蒸發(fā)性,并未實現PAN熔融紡絲。Grove等人[30]以水作為增塑劑,實現了PAN纖維的增塑紡,但使用水作為增塑劑所制備的纖維具有明顯的缺陷與內在孔洞。發(fā)展到現代,有學者采用碳酸丙烯酯(PC)或者是碳酸乙烯酯(EC)實現PAN的增塑紡絲。Atureliya等人[19]研究表明PAN/PC(50∶50wt.%)體系在220℃條件下可熔融擠出。增塑體系在該溫度下PC蒸發(fā)明顯,在纖維表面形成氣泡,纖維結構存在缺陷。Vaisman等人[31]研究了增塑紡PAN/EC(60:40wt.%)長條的力學性能,結果表明所制備纖維的直徑范圍為325~900μm,表面有明顯的擠出溝槽,纖維斷裂強度不高于60MPa。Min等人[32]使用水與稀醋酸作為增塑劑制備了PAN/殼聚糖復合纖維,使用水增塑PAN,同時使用稀醋酸塑化殼聚糖。制備的纖維呈現多孔,纖維狀結構。
從技術上看,PAN增塑紡絲經歷了水增塑、氣體增塑到各種傳統(tǒng)溶劑增塑的工藝技術[33]。但增塑劑本身極性弱、揮發(fā)性強等缺陷導致所制備纖維存在明顯缺陷。產品各項性能都未能接近工業(yè)化水平,若要再上一個臺階,則應該是對增塑劑進行優(yōu)化選擇。
目前,已有學者采用離子液體(ILs)作為PAN的增塑劑,成功制備了性能優(yōu)良的PAN原絲。例如張興祥等人[34]在AN/MA(85/15mol%)共聚物的基礎上加入0%~10%的1-乙基-3甲基咪唑六氟磷酸鹽([Emim]PF6),觀察[Emim]PF6的加入對體系加工性能的影響。結果表明,共聚物的熱穩(wěn)定性隨著[Emim]PF6含量的增加顯著的提高,所制備初生纖維表面光滑,結構致密。陳磊等人[35]采用咪唑類ILs實現了PAN/酶解木質素的增塑紡,制備了纖維直徑為35μm的初生纖維。纖維表面光滑,徑向結構均一,無皮芯結構,兩相具有很好的相容性。相關專利[36]也報道了ILs作為PAN熱穩(wěn)定劑在熔融紡絲過程中起到了很好的穩(wěn)定作用,其原理也是基于ILs的塑化特征,能夠有效地減弱分子鏈間的偶極作用力。
Li等人[37]研究發(fā)現PAN的氰基與1-丁基-3-甲基咪唑氯鹽([Bmim]Cl)咪唑環(huán)上的-CH基團之間會形成氫鍵作用,說明該IL具備了良好的增塑效果。相關研究表明PAN/[Bmim]Cl中PAN的含量對紡絲穩(wěn)定性起到了關鍵作用,一般PAN的固含量為60wt.%[37]。Li等人[38]還研究了不同紡絲速度為原絲性能的影響,結果表明,當紡絲速度為500m/min時,原絲的性能最佳。Yu課題組[39]認為在增塑紡絲過程中噴絲孔孔徑應當設定為0.3mm,并成功實現了PAN的增塑紡絲。Tian等人[40]研究了PAN/[Bmim]Cl體系在高溫下的化學反應,研究結果表明高溫下PAN分子鏈發(fā)生了化學反應,生成了含氧基團與共軛梯形結構。采用該方法所制備的PAN纖維的斷面接近于圓形,不存在皮芯結構,其力學性能的各項指標已經接近或已達到工業(yè)化水平[38]。
3 討論
目前,采用[Bmim]Cl作為PAN的增塑劑可實現增塑紡絲,所制備的纖維的結構可控,力學性能優(yōu)良。這是由于[Bmim]Cl是一種水溶性的離子液體[41],可在后續(xù)的水浴牽伸階段除去[42],而采用其他非水溶性ILs作為增塑劑存在復雜的后續(xù)萃取工藝。由于水溶性的[Bmim]Cl極易吸水[43],因此在實際制備原絲過程中,對環(huán)境的溫濕度要求極高。
參考文獻
[1] Banaie KA, Mirjalili M, Eslami-Farsani R. The study of the correlation between ascending and descending rates of the imposed specific stress and transposition of chemical reactions during PAN precursor fibers stabilization[J]. Polymer Degradation and Stability, 2018(156):234-244.
[2] Badii K, Church J S, Golkarnarenji G,et al.Chemical structure based prediction of PAN and oxidized PAN fiber density through a non-linear mathematical model [J]. Polymer Degradation and Stability,2016(131):53-61.
[3] Pham HH, Lim Y, Cho C, et al.Hydrodynamics of low temperature carbonization furnace for production of polyacrilonitrile (PAN)-based carbon fiber[J]. Chemical Engineering Research and Design, 2017(128):192-204.
[4] Li XY, Tian F, Gao XP, et al. WAXD/SAXS study and 2D fitting(SAXS) of the microstructural evolution of PAN-based carbon fibers during the pre-oxidation and carbonization process[J]. New Carbon Materials,2017,32(2):130-136.
[5] Yusof N, Ismail AF. Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A review[J]. Journal of Analytical and Applied Pyrolysis,2012(93):1-13.
[6] Newcomb B A Processing, structure, and properties of carbon fibers[J].Composites Part A: Applied Science and Manufacturing,2016,91(1):262-282.
[7] Morris E A, Weisenberger M C, Bradley SB, et al. McGrath. Synthesis, spinning, and properties of very high molecular weight poly(acrylonitrile-co-methyl acrylate) for high performance precursors for carbon fiber[J].Polymer,2014,55(25):6471-6482.
[8] Warner SB, Peebles LH, Uhlmann DR. Oxidative stabilization of acrylic fibres Part 1 Oxygen uptake and general model[J]. Journal of Materials Science,1979,14 (3):556-564.
[9] Bai YJ,Wang CG, Lun N, et al. microstructures of PAN precursor fibers[J]. Carbon, 2006, 44(9): 1773-1778.
[10] Liu J H, Xiao SJ, Shen Z G, Xu L, Zhang LB, Peng JH. Study on the oxidative stabilization of polyacrylonitrile fibers by microwave heating[J]. Polymer Degradation and Stability,2018(150):86-91.
[11] Katepalli H, Bikshapath M, Sharma CS,et al. Synthesis of hierarchical fabrics by electrospinning of PAN nanofibers on activated carbon microfibers for environmental remediation applications[J]. Chemical Engineering Journal,2011,171(3):1194-1200.
[12] Chen J C, Harrison I R. Modification of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide (DMF)[J]. Carbon,2002(40):25-45.
[13] Park W, Ha PJ, Xanthos M. Ionic liquids as plasticizers/lubricants for polylactic acid[J]. Polymer engineering and science,2010,50(6):1105-1110.
[14] Paiva MC, Kotasthane P, Edie DD, et al. U V stabilization route for melt processible PAN-based carbon fibers[J]. Carbon, 2005, 43(5):1399-1409.
[15] Bajaj P, Sreekumar TV, Sen K. Thermal behaviour of acrylonitrile copolymers having methacrylic and itaconic acid comonomers[J]. Polymer,2001,42(4):1707-1718.
[16] Bajaj P, Roopanwal AK. Thermal stabilization of acrylic precursors for the production of carbon fibers: an overview[J]. Journal of macromolecular science-reviews in macromolecular chemistry and physics,1997,C37(1):97-147.
[17] Godshall D, Rangarajana P, Bairda DG,et al. Incorporation of methyl acrylate in acrylonitrile based copolymers: effects on melting behavior[J]. Polymer,2003,44(15):4221-4228.
[18] Rangarajan P, Bhanu VA, Godshall, D, et al. Baird DG. Dynamic oscillatory shear properties of potentially melt processable high acrylonitrile terpolymers[J]. Polymer,2002,43(9):2699-2709.
[19] Atureliya SK, Bashir Z. Continuous plasticized melt extrusion of polyacrylonitrile homopolymer[J]. Polymer,1993,34(24):5116-5120.
[20] 陳蕾,楊明遠,毛萍君.聚丙烯腈纖維的熔融紡絲[J].合成技術及應用,1998,13(3):36-41.
[21] Benedict S C, George SL Solon preparation of melt-processable acryionitrile/methacrylonitrile copolymers.US,5106925[P].1990.
[22] Mukundan T Bhanu VA, Wiles KB, et al. A photocrosslinkable melt processible acrylonitrile terpolymer as carbon fiber precursor[J].Polymer,2006,47(11):4163-4171.
[23] Han N, Zhang XX, Yu WY, et al. Effects of copolymerization temperatures on structure and properties of melt-spinnable acrylonitrile-methyl acrylate copolymers and fibers[J]. Macromol Res,2010,18(11):1060-1069.
[24] Rangarajan P, Yang J, Bhanu V, et al. Effect of comonomers on melt processability of polyacrylonitrile[J]. Journal of Applied Polymer Science,2001,85(1):69-83.
[25] Deng WJ, Lobovsky A, Iacono ST.,et al. Poly (acrylonitrile e co -1-vinylimidazole): A new melt processable carbon fiber precursor[J]. Polymer,2011,52(3):622-628.
[26] Bhanu VA, Rangarajan P, Wiles K,et al. Synthesis and characterization of acrylonitrile methyl acrylate statistical copolymers as melt processable carbon fiber precursors[J]. Polymer,2002,43(18):4841-4850.
[27] 于萬勇,韓娜,王學晨,等.熔融加工丙烯腈-丙烯酸甲酯共聚物及纖維的研究[J].化工新型材料,37(10):63-65.
[28] 李慧慧.可熔融丙烯腈-N-乙烯基咪唑共聚物及纖維的制備與性能[D].天津工業(yè)大學,2014.
[29] Coxe C D Shaping Polyacrylonotroles: US,US2585444
[P].1952.
[30] Grove DA, Desa P, Abhiraman AS. Exploratory experiments in the conversion of plasticized melt spun PAN-based precursors to carbon fibers[J]. Carbon,1988,26(3):403-411.
[31] VaismanL, Larin B, Davidi I, et al. Wagner D. Processing and characterization of extruded drawn MWNT-PAN composite filaments. Composites Part A Applied Science and Manufacturing[J].Composites Part A Applied Scienoe & Manufacturi-ng,2007,38(5):1354-1362.
[32] Min BG, Kim CW. Sorption Properties of the Composite Fibers Made of PAN and Chitosan[J].Journal of Applied Polymer Scienee,2001,84(13):2505-2511.
[33] 萬錒俊,唐志廉.PAN的增塑研究[J].高分子材料科學與工程,2002,18(5):1-4.
[34] 張興祥,高希銀,韓娜,等.含ILs的丙烯腈/丙烯酸甲酯共聚物及熔紡纖維的研究[J].化工新型材料,2010,39(11):
65-68.
[35] 陳磊,劉淑萍,余木火,等.含木質素的聚丙烯腈增塑熔融紡絲[J].材料科學與工程學報,2014,32(6):893-902.
[36] 張興祥,韓娜,于萬永,等.一種丙烯腈共聚物及其制備方法和用途.中國:CN200810053936.5[P].2008.
[37] Li X, Qin AW, Zhao XZ, Ma B.M., He C.J.. The plasticization mechanism of polyacrylonitrile/1-butyl-3-methylimidazolium chloride system[J].Polymer,2014(55):5773-5780.
[38] Li X, Li Z L, Dang X N, Luan D., Wang F., Chen H.Y., Wang C.T. Structural and thermal property changes of plasticized spinning polyacrylonitrile fibers under different spinning speeds[J].Journal of Applied Polymer Science, 2017,134(37):45267.
[39] Liu S P, Han K Q, Chen L, Zheng Y., Yu M. H., Li J. Q., Yang Z.. Influence of External Tension on the Structure and Properties of Melt-Spun PAN Precursor Fibers during Thermal Oxidation[J]. Macromolecular Materials and Engineering, 2015(300):1001-1009.
[40] Tian Y C, Han K Q, Zhang W H, Zhang J. J., Rong H. P., Wang D., Yan B., Liu S. P., Yu M. H.. Influence of residence time on the structure of polyacrylonitrile in ionic liquids during melt spinning process[J]. Materials Letters,2013(92):119-121.
[41] Yang QW, Xu D, Zhu YM, et al. Long-Chain Fatty Acid-Based Phosphonium Ionic Liquids with Strong Hydrogen-Bond Basicity and Good Lipophilicity: Synthesis, Characterization, and Application in Extraction[J].Sustainable Chemistry & Engineering,2015,3(2):309-316.
[42] Lu Y, Wang FX, Yang B,et al. Ionic liquid-assisted synthesis of ultralong nanowires of zinc octaethylporphyrin and their photoresponse[J].Journal of Materials Chemistry C,2015(3):3379-3383.
[43] Ren HF, Girisuta B, Zhou YG, et al. Selective and recyclable depolymerization of cellulose to levulinic acid catalyzed by acidic ionic liquid[J].Carbohydrate Polymers,2015(117):569-576.