溫維亮,趙春江,郭新宇,王勇健,杜建軍,于澤濤
?
基于分布函數(shù)的玉米群體三維模型構(gòu)建方法
溫維亮1,2,3,4,趙春江1,2,3,4※,郭新宇1,2,3,王勇健1,2,3,杜建軍1,2,3,于澤濤1,2,3
(1. 北京農(nóng)業(yè)信息技術(shù)研究中心,北京 100097; 2. 國(guó)家農(nóng)業(yè)信息化工程技術(shù)研究中心,北京 100097;3. 數(shù)字植物北京市重點(diǎn)實(shí)驗(yàn)室,北京 100097; 4. 北京工業(yè)大學(xué)計(jì)算機(jī)學(xué)院,北京 100124)
為利用少量實(shí)測(cè)數(shù)據(jù)快速構(gòu)建能夠反映因品種、環(huán)境條件、栽培管理措施等因素產(chǎn)生形態(tài)結(jié)構(gòu)差異的玉米群體三維模型,提出基于分布函數(shù)的玉米群體三維模型構(gòu)建方法。通過(guò)實(shí)測(cè)數(shù)據(jù)構(gòu)建主要株型參數(shù)的分布函數(shù),在其約束下生成群體內(nèi)各植株主要株型參數(shù),通過(guò)構(gòu)造株型參數(shù)相似性度量函數(shù)調(diào)用玉米器官三維模板資源庫(kù)中的器官幾何模板,結(jié)合人工交互或圖像提取的各植株生長(zhǎng)位置與植株方位平面角2組群體結(jié)構(gòu)信息生成玉米群體幾何模型。利用三維數(shù)字化儀獲取的玉米群體田間原位三維數(shù)字化數(shù)據(jù)所構(gòu)建玉米群體計(jì)算得到的LAI與該方法構(gòu)建玉米群體計(jì)算得到的LAI進(jìn)行對(duì)比驗(yàn)證,結(jié)果表明:該方法所生成玉米群體葉面積指數(shù)與原位三維數(shù)字化數(shù)據(jù)所構(gòu)建玉米群體計(jì)算得到的LAI相比,誤差在±2%以內(nèi),可以滿足面向可視化計(jì)算的玉米結(jié)構(gòu)功能分析研究需求。方法可為玉米株型優(yōu)化設(shè)計(jì)、耐密性鑒定、品種適應(yīng)性評(píng)價(jià)等虛擬試驗(yàn)研究提供技術(shù)手段。
作物;模型;玉米;群體;分布;三維建模;可視化計(jì)算
作物群體是履行光合作用和物質(zhì)生產(chǎn)職能的組織體系,其形態(tài)結(jié)構(gòu)對(duì)光截獲能力、冠層光合效率以及作物產(chǎn)量均具有重要影響,作物群體形態(tài)特征一直是人類認(rèn)識(shí)、分析和評(píng)價(jià)作物的最基本方式。因此,運(yùn)用農(nóng)業(yè)信息技術(shù)快速、準(zhǔn)確地構(gòu)建作物群體的形態(tài)結(jié)構(gòu)具有重要的現(xiàn)實(shí)意義。
然而,作物群體形態(tài)結(jié)構(gòu)復(fù)雜,空間分布規(guī)律性差、各器官表面結(jié)構(gòu)變異性強(qiáng),群體間存在大量器官的遮擋、交叉與相互作用,其形態(tài)結(jié)構(gòu)不是簡(jiǎn)單單株復(fù)制的物理過(guò)程。傳統(tǒng)農(nóng)業(yè)對(duì)于作物群體形態(tài)結(jié)構(gòu)的研究以經(jīng)驗(yàn)型人工測(cè)量試驗(yàn)或利用光譜及圖像反演測(cè)量作物群體結(jié)構(gòu)統(tǒng)計(jì)指標(biāo)為主[1-2],其難以從三維空間精確刻畫作物群體因品種和栽培管理措施所產(chǎn)生的形態(tài)差異。因此,研究者提出利用信息技術(shù)研究作物群體形態(tài)結(jié)構(gòu)的方法[3],即植物結(jié)構(gòu)功能模型研究[4-5]。目前利用三維數(shù)字化技術(shù)研究作物群體形態(tài)結(jié)構(gòu)的方法主要包括:1)田間原位三維數(shù)字化方法[6-9]。利用機(jī)械式、電磁式或主動(dòng)拍照式三維數(shù)字化儀,通過(guò)田間實(shí)際采集作物形態(tài)骨架結(jié)構(gòu)三維坐標(biāo)數(shù)據(jù),結(jié)合網(wǎng)格生成方法1:1地重建作物群體田間三維模型,這種方法重建作物群體精度高,但勞動(dòng)強(qiáng)度大、效率低,且受田間環(huán)境限制。2)田間原位三維掃描法[10-13]。利用三維掃描儀,獲取作物田間原位的三維點(diǎn)云信息,實(shí)現(xiàn)作物群體的特征提取[14-15]和三維重建,這種方法數(shù)據(jù)獲取效率高,但由于作物群體間交叉、遮擋嚴(yán)重,數(shù)據(jù)存在較多丟失,目前現(xiàn)有方法多難以處理作物群體三維點(diǎn)云數(shù)據(jù),其只能處理結(jié)構(gòu)簡(jiǎn)單、群體內(nèi)植株數(shù)量少的作物群體,同時(shí)對(duì)田間環(huán)境有著更高的要求,如氣流、光照等。3)基于圖像結(jié)合統(tǒng)計(jì)分析的方法[16-23]。利用圖像提取作物群體的主要形態(tài)特征參數(shù),并結(jié)合對(duì)作物群體的統(tǒng)計(jì)模型先驗(yàn)知識(shí),構(gòu)建豐富的作物群體幾何模型,這種方法不是對(duì)作物群體1:1的三維重建,所構(gòu)建的群體幾何模型在一定程度上可以反映群體特征,具有三維模型構(gòu)建效率高、適于開展進(jìn)一步虛擬試驗(yàn)的特點(diǎn),但由于基于圖像的群體特征提取方法要求高,難以提取結(jié)構(gòu)復(fù)雜作物群體結(jié)構(gòu)信息。4)基于模型參數(shù)或交互設(shè)計(jì)的方法[24-26]。通過(guò)作物群體結(jié)構(gòu)參數(shù)模型或利用交互設(shè)計(jì)的方法生成作物群體中各植株、各器官的形態(tài)結(jié)構(gòu)參數(shù),實(shí)現(xiàn)作物群體的三維數(shù)字化,這種方法效率高、適用于開展虛擬試驗(yàn),但所構(gòu)建作物群體三維模型相對(duì)機(jī)械、真實(shí)感不強(qiáng)、難以反映作物群體的形態(tài)結(jié)構(gòu)特征。
針對(duì)作物群體三維數(shù)字化研究中存在的效率低、真實(shí)感差、所構(gòu)建作物群體難以反映因品種、環(huán)境條件和栽培管理措施等因素產(chǎn)生的形態(tài)差異問(wèn)題,本文以玉米為例,利用統(tǒng)計(jì)分析方法,結(jié)合玉米三維模板資源庫(kù)[27],構(gòu)建能夠反映玉米群體特征的三維模型,為開展進(jìn)一步玉米株型優(yōu)化、耐密性鑒定等虛擬試驗(yàn)奠定基礎(chǔ)[28-30]。
玉米群體的三維形態(tài)結(jié)構(gòu)為自然界發(fā)生規(guī)律,可以說(shuō)玉米群體內(nèi)各植株的株型參數(shù)分布服從正態(tài)分布[31]。但由于玉米群體內(nèi)各植株的形態(tài)數(shù)據(jù)獲取工作量大,通過(guò)大量采集群體內(nèi)植株的樣本數(shù)據(jù)來(lái)構(gòu)建各株型參數(shù)的正態(tài)分布密度函數(shù)可行性較低。在樣本數(shù)量較小的條件下,采用分布來(lái)描述玉米群體內(nèi)各株型參數(shù)的概率密度分布函數(shù),并在其約束下生成新的玉米群體幾何模型。
在實(shí)際工作中,正態(tài)分布的總體方差往往是未知的,常用樣本方差作為總體方差的估計(jì)值。設(shè)總體隨機(jī)變量(,2),1,2,, x為取自該總體的個(gè)隨機(jī)樣本,當(dāng)2未知時(shí),以樣本方差2替代,則
是自由度為1的分布,記為(?1)。(?1)的概率密度函數(shù)為
其中( · )為伽瑪函數(shù)
當(dāng)抽樣數(shù)目增大時(shí),(?1)的方差越來(lái)越接近1,同時(shí)(?1)分布的形狀也越來(lái)越接近標(biāo)準(zhǔn)正態(tài)分布。理論上,當(dāng)→∞時(shí),(?1)與標(biāo)準(zhǔn)正態(tài)分布完全一致。一般認(rèn)為≥30就說(shuō)(?1)與標(biāo)準(zhǔn)正態(tài)分布非常接近。
由于玉米株型參數(shù)樣本數(shù)據(jù)的獲取工作量大,且不同品種、不同栽培管理措施、不同生育時(shí)期的玉米植株形態(tài)差異較大,由于利用三維數(shù)字化儀獲取植株三維數(shù)字化數(shù)據(jù)效率較低,人工測(cè)量各植株葉片著生高度、葉長(zhǎng)、葉傾角和方位角工作量大,樣本植株的數(shù)據(jù)采集往往少于30個(gè),采用正態(tài)分布難以描述各株型參數(shù)統(tǒng)計(jì)特征,分布是與樣本數(shù)量相關(guān)的統(tǒng)計(jì)量,更適合描述樣本數(shù)量較少時(shí)的統(tǒng)計(jì)特征,故采用分布對(duì)各株型參數(shù)進(jìn)行估計(jì)分布并生成各株型參數(shù)值。
通過(guò)人工或表型參數(shù)測(cè)量方法[32]得到的玉米株型參數(shù)作為樣本,構(gòu)建95%置信區(qū)間內(nèi)的概率密度分布函數(shù),在其約束下隨機(jī)生成對(duì)應(yīng)株型參數(shù),可在一定程度上反映當(dāng)前玉米品種在當(dāng)前環(huán)境和栽培管理措施下的株型特征。
以株高為例,通過(guò)若干植株的株高樣本構(gòu)建株高的概率密度分布函數(shù),并根據(jù)該分布函數(shù)生成新玉米群體內(nèi)各植株的株高隨機(jī)數(shù)。
設(shè)樣本群體包含個(gè)植株,各植株株高分別記為X(=1,2,???,),樣本均值為
樣本方差為
以2015年于北京市農(nóng)林科學(xué)院播種的京科968品種,密度為60 000株/hm2的吐絲期玉米群體(氮260 kg/hm2,磷90 kg/ hm2,鉀90 kg/hm2,采用滴灌保證水份充足,于11:00前獲取數(shù)據(jù))為例,獲取了3行×3株的株高數(shù)據(jù),分別為2 531.3、2 614.3、2 461.4、2 646.7、2 823.6、2 607.8、2 715.8、2 442.0、2 680.0 mm。利用上述方法,求得樣本均值為2 613.7 mm,樣本標(biāo)準(zhǔn)差為122.2 mm,總體均值的置信區(qū)間為(2 519.7,2 707.6),總體均值的概率密度分布函數(shù)如圖1a所示。
在株高總體均值的概率密度分布函數(shù)的約束下,生成株高均值隨機(jī)數(shù),作為預(yù)構(gòu)建群體中各植株的株高。例如,預(yù)構(gòu)建4行×8株,共32株的玉米群體,生成的隨機(jī)株高如圖1b所示。
對(duì)京科968和先玉335兩個(gè)品種(密度60 000 株/hm2,氮260 kg/hm2,磷90 kg/ hm2,鉀90 kg/hm2,滴灌保證水分充足)的吐絲期玉米群體為目標(biāo)群體的株高概率密度分布函數(shù)進(jìn)行對(duì)比。從所獲取的數(shù)據(jù)集中篩選高質(zhì)量植株數(shù)據(jù),京科968群體包含12株樣本數(shù)據(jù),先玉335群體包含7株樣本數(shù)據(jù)(與前文9株獲取地點(diǎn)方式相同)。應(yīng)用上述基于分布函數(shù)的參數(shù)生成方法構(gòu)建了2個(gè)群體的株高分布模型。株高分布模型中(如圖1c),先玉335玉米群體株高均值為2 738.11 mm,明顯高于京科968的均值2 613.66 mm,但京科968的標(biāo)準(zhǔn)差大于先玉335,故京科968玉米群體內(nèi)各植株的株高差異更大。說(shuō)明了利用上述方法生成玉米群體可以反映出不同玉米品種群體間的形態(tài)差異。
圖1 利用玉米株高樣本構(gòu)造t分布并生成新的株高隨機(jī)數(shù)
利用上述基于分布的參數(shù)生成方法,通過(guò)樣本參數(shù)構(gòu)建各玉米植株的株型參數(shù)概率密度分布函數(shù),可生成各株型參數(shù)的隨機(jī)數(shù),從而進(jìn)一步實(shí)現(xiàn)玉米群體模型的生成。由于各節(jié)單位的株型參數(shù)隨節(jié)的不同規(guī)律不同,故將株型參數(shù)分為植株尺度和節(jié)單位尺度2類,節(jié)單位尺度參數(shù)在株型參數(shù)確定后進(jìn)一步生成。
在玉米群體結(jié)構(gòu)解析研究中,只關(guān)注對(duì)群體結(jié)構(gòu)影響較大的株型參數(shù),植株尺度株型參數(shù)包括各植株株高、葉片總數(shù)和首葉葉序(下部葉中最小的葉形相對(duì)完整葉片的序號(hào));節(jié)單位尺度株型參數(shù)包括各葉片著生高度、葉長(zhǎng)、葉寬、葉傾角和方位角。
植株尺度參數(shù)包括株高和葉片總數(shù),此外,由于玉米不同時(shí)期下部葉會(huì)衰老至萎蔫死亡,這些葉片不在玉米群體幾何模型構(gòu)建的范圍內(nèi),故引入首葉葉序參數(shù)來(lái)描述植株首個(gè)形態(tài)較為完整的葉片序號(hào)。
由于葉片總數(shù)及首葉葉序這2個(gè)參數(shù)均為整數(shù),首先將樣本參數(shù)調(diào)整為浮點(diǎn)數(shù)來(lái)構(gòu)建概率密度分布函數(shù),并生成葉片總數(shù)和首葉葉序的隨機(jī)數(shù),所生成隨機(jī)數(shù)也為浮點(diǎn)數(shù),最后采用四舍五入的取整形式得到各植株的葉片總數(shù)和首葉葉序,圖2a為利用上文9株京科968玉米的葉片總數(shù)和首葉葉序作為樣本構(gòu)建概率密度分布函數(shù),生成的32株葉片總數(shù)和首葉葉序株型參數(shù)。
注:08~20葉著生高度依次增大。
式中j為當(dāng)前葉序,為增強(qiáng)系數(shù)初值,根據(jù)目標(biāo)群體中上部葉方位角偏離規(guī)律取值,一般。當(dāng)上述公式中時(shí),令,以保證中下部葉片方位角不被增強(qiáng)。
通過(guò)實(shí)測(cè)若干樣本植株株型參數(shù)數(shù)據(jù),并利用上述分布玉米株型分布方法生成預(yù)構(gòu)建群體三維模型各植株的植株尺度和節(jié)單位尺度參數(shù)后,利用這些參數(shù)構(gòu)建預(yù)生成群體內(nèi)的各植株幾何模型。針對(duì)玉米虛擬試驗(yàn)對(duì)玉米群體幾何模型需求,植株模型主要包括葉鞘和葉片。
在玉米生長(zhǎng)三維空間中,定義平面為地面、軸正方向?yàn)榍o稈生長(zhǎng)方向,基于株型參數(shù)的植株生成各植株各節(jié)單位的葉鞘與葉片幾何模型。葉鞘與葉片模型主要根據(jù)生成的器官尺度株型參數(shù),于玉米器官三維模板資源庫(kù)[27]中,通過(guò)定義的相似性度量函數(shù)查找與各葉片相似性最大的器官模板,此處采用利用FastScan結(jié)合tx4發(fā)射器的三維數(shù)字化系統(tǒng),沿葉脈方向以每排5個(gè)點(diǎn)的方式,獲取葉鞘和葉片特征點(diǎn)的三維數(shù)據(jù)點(diǎn)集,根據(jù)點(diǎn)集中各點(diǎn)間的位置關(guān)系連接網(wǎng)格,建立葉鞘與葉片幾何模板(如圖4)。確定模板后按葉寬比例(生成的當(dāng)前葉位葉寬與選定的葉片模板葉寬的比例)對(duì)模板在葉寬方向進(jìn)行等比例縮放,并使縮放變換后的網(wǎng)格模型作為當(dāng)前葉位的葉片幾何模型。所定義相似性度量函數(shù)為
式中c為品種名,j為葉序,為葉傾角,l為葉長(zhǎng),cm、jm、和lm分別為第m個(gè)節(jié)單位模板對(duì)應(yīng)的品種名、葉序、葉傾角和葉長(zhǎng),ac、an、和al分別為對(duì)應(yīng)參數(shù)的系數(shù)。在玉米器官三維模板資源庫(kù)中選取能夠使得Em最小的節(jié)單位作為當(dāng)前節(jié)單位的模板。其中,如果待選葉片品種c與資源庫(kù)中第m個(gè)節(jié)單位品種cm相同,則,否則;葉序、葉傾角和葉長(zhǎng)項(xiàng)中的分母常數(shù)項(xiàng)取值為根據(jù)大量幾何模板調(diào)用匹配結(jié)果校準(zhǔn)確定,可通過(guò)調(diào)整各常數(shù)項(xiàng)或系數(shù)a調(diào)節(jié)各參數(shù)在度量評(píng)價(jià)中的重要性。本文各系數(shù)取值為ac=an== al=0.25,待資源庫(kù)中的基于三維數(shù)字化儀生成的節(jié)單位幾何模板更為豐富后,可利用主成分分析法進(jìn)一步確定各系數(shù)的最佳取值。
為評(píng)估上述方法的可行性,通過(guò)獲取植株原位株型參數(shù)數(shù)據(jù),并獲取對(duì)應(yīng)品種節(jié)單位模板添加到玉米器官三維模板資源庫(kù),通過(guò)模板調(diào)用構(gòu)建玉米植株三維模型。圖5給出了分別利用新疆奇臺(tái)、寧夏銀川和吉林公主嶺3個(gè)生態(tài)點(diǎn)測(cè)量的先玉335吐絲期株型數(shù)據(jù)構(gòu)建的玉米植株三維模型可視化效果。各植株均按照株高進(jìn)行了3D視圖縮放,其中利用新疆奇臺(tái)、寧夏銀川、吉林公主嶺數(shù)據(jù)生成植株株高分別為379.9 cm(圖5a)、312.3 cm(圖5b)和299.1 cm(圖5c)。由于所構(gòu)造玉米植株及群體幾何模型主要用于開展基于可視化計(jì)算的虛擬試驗(yàn),因此植株幾何模型中未包含面元數(shù)量較多且對(duì)計(jì)算結(jié)果影響較小的雄穗和雌穗幾何模型。
圖5 利用先玉335在3個(gè)生態(tài)點(diǎn)測(cè)量數(shù)據(jù)生成的植株
上述方法生成的各單株幾何模型,植株生長(zhǎng)點(diǎn)都位于原點(diǎn),且植株方位平面角都為0。利用這些植株構(gòu)建玉米群體幾何模型需要2種群體參數(shù),即各植株的生長(zhǎng)位置和各植株在群體中的植株方位平面??刹捎糜脩艚换?shù)或基于圖像提取2種方法得到上述參數(shù)。
3.2.1 基于用戶交互的玉米群體生成
根據(jù)用戶于田間實(shí)測(cè)的群體參數(shù),生成玉米群體內(nèi)各植株生長(zhǎng)位置和各植株的植株方位平面角。群體參數(shù)主要包括寬行距、窄行距(如果是等行距則設(shè)置寬行距=窄行距)、株距、各植株方位平面,利用株行距參數(shù)計(jì)算得到各植株在平面上的生長(zhǎng)坐標(biāo)點(diǎn)p,分別將已生成的各植株幾何模型首先按軸旋轉(zhuǎn)該植株對(duì)應(yīng)的植株方位平面角,然后平移至該植株所對(duì)應(yīng)的植株生長(zhǎng)點(diǎn)p處,即生成了目標(biāo)群體的三維模型。
3.2.2 基于圖像提取的玉米群體生成
隨著農(nóng)業(yè)物聯(lián)網(wǎng)技術(shù)的發(fā)展,一些大田的配套信息化設(shè)施已非常完善,這些設(shè)施中包含了大量安裝在田間的圖像獲取裝置,但這些裝置目前多用于安防和作物長(zhǎng)勢(shì)監(jiān)測(cè)。本文利用這些田間圖像獲取裝置[34],通過(guò)從圖像中提取群體內(nèi)各植株莖和各葉尖點(diǎn)的像素坐標(biāo),結(jié)合圖像分辨率標(biāo)記參數(shù),實(shí)現(xiàn)玉米群體中各植株生長(zhǎng)位置和葉片方位角結(jié)構(gòu)參數(shù)的自動(dòng)獲取,以反映田間玉米因群體競(jìng)爭(zhēng)的實(shí)際生長(zhǎng)狀態(tài)。由于玉米群體在拔節(jié)期間,其生長(zhǎng)位置和植株方位平面均已確定,且此時(shí)植株間相互獨(dú)立,采用俯視圖像獲取玉米群體生長(zhǎng)數(shù)據(jù)并采用圖像解析的方法提取目標(biāo)群體內(nèi)各植株的生長(zhǎng)位置與各植株葉片的方位角,進(jìn)一步利用植株方位平面計(jì)算方法計(jì)算各植株的方位平面,用于指導(dǎo)玉米群體的模型構(gòu)建。由于玉米拔節(jié)期上部正在生長(zhǎng)的3個(gè)葉片的方位角處于解旋狀態(tài),其葉方位角由于動(dòng)態(tài)生長(zhǎng)仍在連續(xù)變化,故不參與玉米植株方位平面的計(jì)算。通過(guò)計(jì)算圖像中提取到的葉片投影長(zhǎng)度并設(shè)置閾值(所有投影葉長(zhǎng)均值的1/3),剔除處于解旋過(guò)程的葉片,篩選得到參與植株方位平面角計(jì)算的葉片。圖6為基于圖像提取的玉米群體內(nèi)各植株的生長(zhǎng)位置與植株方位平面示意圖,圖6b中點(diǎn)表示提取的植株生長(zhǎng)位置坐標(biāo),線表示各植株方位平面朝向。
圖6 基于圖像提取的玉米群體內(nèi)各植株的生長(zhǎng)位置與植株方位平面示意圖
為說(shuō)明本方法可以反映玉米群體的農(nóng)學(xué)特征,選取了不同生態(tài)點(diǎn)、不同品種和密度的玉米群體作為數(shù)據(jù)元,進(jìn)而以可視化的角度說(shuō)明方法的有效性。為說(shuō)明上述方法所構(gòu)建玉米群體幾何模型的有效性,于2017年7月在新疆奇臺(tái)縣玉米高產(chǎn)試驗(yàn)田獲取先玉335不同密度下的玉米群體3D數(shù)字化數(shù)據(jù),每個(gè)群體為3行×3株共9株,密度分別為10.5×104、13.5×104和16.5×104株/hm2,小區(qū)種植方法為寬窄行種植,光熱資源豐富、全生育期通過(guò)水肥一體化灌溉保證水肥充足,寬窄行距分別為70和40 cm,并采用AccuPAR冠層分析儀,通過(guò)同時(shí)測(cè)量冠層頂部和冠層底部的光合有效輻射獲取玉米群體的葉面積指數(shù)(LAI),每個(gè)小區(qū)平行于行向于寬行和窄行分別測(cè)量3次,并取6次測(cè)量的平均值作為各群體的LAI。采用FastScan結(jié)合tx4發(fā)射器的三維數(shù)字化系統(tǒng)獲取玉米三維數(shù)字化數(shù)據(jù),其精度為0.76 mm,利用該數(shù)據(jù)構(gòu)建各群體的三維模型。通過(guò)計(jì)算各玉米群體三維模型中所有葉片面積的總和除以小區(qū)內(nèi)所有植株占的土地面積(各植株占土地面積利用密度計(jì)算),得到各小區(qū)的真實(shí)LAI。此外,為了說(shuō)明方法所構(gòu)建玉米群體可以反映玉米群體的農(nóng)學(xué)特征,于吉林公主嶺市試驗(yàn)田獲取了4株先玉335吐絲期玉米植株形態(tài)數(shù)據(jù)(行距為60 cm,株距為22.222 cm,密度為7.5×104株/hm2)。
利用上述玉米群體三維模型構(gòu)建方法,可快速生成玉米群體三維模型。圖7a為利用2017年于新疆奇臺(tái)縣獲取的9株先玉335吐絲期玉米植株形態(tài)數(shù)據(jù)作為樣本數(shù)據(jù),構(gòu)建的4行×6株,共24株的玉米群體,株距為13.468 cm,密度為13.5×104株/hm2。圖7b為利用2017年于吉林公主嶺市獲取的4株先玉335吐絲期玉米植株形態(tài)數(shù)據(jù)作為樣本,構(gòu)建3行×6株,共18株的玉米群體。在配置為E5-2603v3的雙CPU、16GB內(nèi)存的工作站上,備選節(jié)單位模板為300組的情況下,生成上述2組群體三維模型均可在3 s內(nèi)完成。對(duì)比圖7的2組玉米群體三維模型可知,方法所構(gòu)造的玉米群體幾何模型具有明顯的形態(tài)差異。
圖7 生成的不同密度玉米群體三維模型可視化
采用計(jì)算玉米群體LAI的方式對(duì)玉米群體建模方法進(jìn)行驗(yàn)證。利用上述玉米群體生成方法和所獲取的試驗(yàn)數(shù)據(jù),生成3行×3株先玉335各密度的玉米群體,所構(gòu)建群體可視化效果如圖8所示。
圖8 不同密度先玉335玉米群體三維模型
利用AccuPAR實(shí)測(cè)的LAI、基于群體3D數(shù)字化數(shù)據(jù)計(jì)算的LAI以及利用生成群體計(jì)算的LAI結(jié)果見表1。由于AccuPAR是用于測(cè)量作物冠層光合有效輻射分布和LAI等冠層指標(biāo)的儀器設(shè)備,其測(cè)量LAI是利用冠層內(nèi)光的透過(guò)率反演;利用3D數(shù)字化儀獲取的玉米群體原位3D數(shù)字化數(shù)據(jù)是對(duì)玉米群體三維結(jié)構(gòu)的真實(shí)還原,故認(rèn)為基于群體原位3D數(shù)字化數(shù)據(jù)計(jì)算得到的LAI是真值。利用3D數(shù)字化數(shù)據(jù)計(jì)算基于分布方法生成群體LAI的誤差,3組群體的誤差均在±2%以內(nèi)。由于本方法是統(tǒng)計(jì)意義上的3D建模,不是1:1的三維重建,誤差達(dá)到10%以內(nèi)即認(rèn)為方法可以反映不同栽培密度下的玉米群體形態(tài)結(jié)構(gòu)差異,可以滿足農(nóng)學(xué)形態(tài)結(jié)構(gòu)分析的需要。
表1 利用玉米群體三維模型計(jì)算LAI驗(yàn)證
注: LAIA表示利用AccuPAR測(cè)量的LAI;LAID表示利用三維數(shù)字化儀測(cè)量數(shù)據(jù)重建的玉米群體計(jì)算得到的LAI;LAIG表示利用本方法生成玉米群體計(jì)算得到的LAI;誤差為(LAIG-LAID-)/ LAID-×100%。
Note: LAIAdenotes the LAI measured using AccuPAR; LAIDdenotes the LAI of 3D canopy model reconstructed using the 3D digitized data; LAIGdenotes the LAI of 3D canopy generated by this method; The error is calculated as (LAIG-LAID-)/ LAID-×100%.
采用LAI計(jì)算的思想,對(duì)玉米群體進(jìn)行分層,每20 cm一層,計(jì)算各層以上的廣義LAI,即當(dāng)計(jì)算高度為對(duì)應(yīng)的廣義LAI時(shí),通過(guò)計(jì)算群體中所有高度大于的葉面積總和除以當(dāng)前群體占用的單位土地面積。利用在新疆奇臺(tái)縣獲取的先玉335吐絲期13.5×104株/hm2密度的玉米群體數(shù)據(jù),通過(guò)調(diào)整隨機(jī)數(shù)種子(用其控制每次生成的隨機(jī)數(shù)是不同的)和公式(11)中的增強(qiáng)系數(shù)初值,生成10組玉米群體三維模型,分別計(jì)算各高度的廣義LAI,并與基于表1中對(duì)應(yīng)的利用群體原位3D數(shù)字化數(shù)據(jù)所構(gòu)建的玉米群體三維模型計(jì)算的對(duì)應(yīng)廣義LAI進(jìn)行對(duì)比。計(jì)算各組數(shù)據(jù)的均方根誤差RMSE(root mean square error)和歸一化均方根NRMSE(normalized root mean square error)
圖9 生成和實(shí)測(cè)先玉335玉米群體各高度的廣義LAI對(duì)比及RMSE(13.5×104株?hm-2)
玉米群體形態(tài)結(jié)構(gòu)的復(fù)雜性使得玉米群體三維模型構(gòu)建中存在著諸多問(wèn)題,本文從統(tǒng)計(jì)角度構(gòu)建了可用于開展虛擬試驗(yàn)的玉米群體三維模型,仍有很多后續(xù)工作需要開展:
1)目前基于分布的玉米群體三維模型構(gòu)建中,所生成的株型參數(shù)是相互獨(dú)立的,尚未建立相鄰器官間的約束關(guān)系,如各植株的相鄰節(jié)單位的葉片著生高度差會(huì)出現(xiàn)過(guò)大或過(guò)小等問(wèn)題,需在今后通過(guò)大量獲取田間實(shí)測(cè)數(shù)據(jù)建立品種分辨率的玉米株型參數(shù)約束關(guān)系,使利用分布生成的株型參數(shù)具有更好的自調(diào)節(jié)特性,提高所構(gòu)建玉米群體三維模型的精度。
2)玉米群體中存在這大量器官交叉和碰撞的現(xiàn)象,種植密度越高碰撞越多,主要發(fā)生在穗位葉,本文所生成的玉米群體為利用分布約束隨機(jī)生成株型參數(shù)得到,仍存在大量的器官碰撞檢測(cè)和碰撞響應(yīng)問(wèn)題,須在今后的工作中加以解決。
3)所生成玉米群體幾何模型在網(wǎng)格質(zhì)量和數(shù)量方面有待提升,需結(jié)合玉米器官網(wǎng)格簡(jiǎn)化與優(yōu)化方法[35],生成適用于可視化計(jì)算的玉米群體網(wǎng)格模型,并開展進(jìn)一步基于冠層光分布計(jì)算的虛擬試驗(yàn)。
本文針對(duì)作物結(jié)構(gòu)功能計(jì)算分析對(duì)群體三維模型的需求,提出基于分布函數(shù)的玉米群體幾何模型構(gòu)建方法。方法以少量實(shí)測(cè)株型樣本參數(shù)為輸入,結(jié)合玉米器官三維模板資源庫(kù),可快速生成玉米群體三維模型。通過(guò)與田間實(shí)測(cè)群體計(jì)算得到的LAI對(duì)比,利用本方法生成群體LAI誤差在±2%以內(nèi),不同高度玉米群體廣義LAI與實(shí)測(cè)值具有較好的一致性,可以滿足玉米群體結(jié)構(gòu)分析的需求。與已有基于田間三維數(shù)字化、田間原位三維掃描等方法相比,本方法具有效率高的特點(diǎn);與基于模型參數(shù)或交互設(shè)計(jì)的方法相比,本方法所構(gòu)建玉米群體三維模型真實(shí)感較高,同時(shí)更能夠反映群體的農(nóng)學(xué)特征。基于分布的玉米群體三維模型構(gòu)建方法對(duì)于從三維尺度進(jìn)行玉米株型優(yōu)化、玉米耐密性鑒定、玉米品種適應(yīng)性評(píng)價(jià)、玉米栽培策略決策等研究與應(yīng)用具有重要作用。
[1] Cescatti A. Indirect estimates of canopy gap fraction based on the linear conversion of hemispherical photographs: Methodology and comparison with standard thresholding techniques[J]. Agricultural and Forest Meteorology, 2007, 143(1): 1-12.
[2] Potgieter A B, George-Jaeggli B, Chapman S C, et al. Multi-spectral imaging from an unmanned aerial vehicle enables the assessment of seasonal leaf area dynamics of sorghum breeding lines[J]. Frontiers in Plant Science, 2017(8): 1532.
[3] Gibbs J A, Pound M, French A P, et al. Approaches to three-dimensional reconstruction of plant shoot topology and geometry[J]. Functional Plant Biology, 2016, 44(1): 62-75.
[4] Henke M, Kurth W, Buck-Sorlin G. FSPM-P: Towards a general functional-structural plant model for robust and comprehensive model development[J]. Frontiers of Computer Science, 2016, 10(6): 1103-1117.
[5] Vos J, Evers J B, Buck-Sorlin G H, et al. Functional- structural plant modelling: A new versatile tool in crop science[J]. Journal of Experimental Botany, 2010, 61(8): 2101-2115.
[6] Xiao B, Wen W, Guo X. Digital plant calony modeling based on 3D digitization[J]. ICIC Express Letters.an International Journal of Research & Surveys. Part B Applications, 2011, 2(6): 1363-1367.
[7] Zheng B, Shi L, Ma Y, et al. Comparison of architecture among different cultivars of hybrid rice using a spatial light model based on 3-D digitising[J]. Functional Plant Biology, 2008, 35(10): 900-910.
[8] Wang X, Guo Y, Wang X, et al. Estimating photosynthetically active radiation distribution in maize canopies by a three-dimensional incident radiation model[J]. Functional Plant Biology, 2008, 35(10): 867-875.
[9] Frasson R P D M, Krajewski W F. Three-dimensional digital model of a maize plant[J]. Agricultural and Forest Meteorology, 2010, 150(3): 478-488.
[10] Paulus S, Schumann H, Kuhlmann H, et al. High-precision laser scanning system for capturing 3D plant architecture and analysing growth of cereal plants[J]. Biosystems Engineering, 2014, 121(18): 1-11.
[11] Yin K, Huang H, Gong M, et al. Full 3D plant reconstruction via intrusive acquisition[J]. Computer Graphics Forum, 2016, 35(1): 272-284.
[12] Haemmerle M, Hoefle B. Effects of reduced terrestrial LiDAR point density on high-resolution grain crop surface models in precision agriculture[J]. Sensors, 2014, 14(12): 24212-24230.
[13] Fumiki H, Kazushige N, Kenji O. 3-D modeling of tomato canopies using a high-resolution portable scanning Lidar for extracting structural information[J]. Sensors, 2011, 11(2): 2166-2174.
[14] 蘇偉,郭皓,趙冬玲,等. 基于地基激光雷達(dá)的玉米真實(shí)葉面積提取方法研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(7):345-353. Su Wei, Guo Hao, Zhao Dongling, et al. Estimation of actual leaf area of maize based on terrestrial laser scanning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7): 345-353. (in Chinese with English abstract)
[15] Danson F M, Hetherington D, Morsdorf F, et al. Forest canopy gap fraction from terrestrial laser scanning[J]. IEEE Geoscience & Remote Sensing Letters, 2007, 4(1): 157-160.
[16] Louarn G, Lecoeur J, Lebon E. A three-dimensional statistical reconstruction model of grapevine () simulating canopy structure variability within and between cultivar/training system pairs[J]. Annals of Botany, 2008, 101(8): 1167-1184.
[17] 宗澤,張雪,郭彩玲,等. 基于骨架提取算法的作物表型參數(shù)提取方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(增刊2):180-185. Zong Ze, Zhang Xue, Guo Cailing, et al. Crop phenotypic parameters extraction method based on skeleton extraction algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.2): 180-185. (in Chinese with English abstract)
[18] Bradley D, Nowrouzezahrai D, Beardsley P. Image-based reconstruction and synthesis of dense foliage[J]. ACM Transactions on Graphics, 2013, 32(4): 74.
[19] Burgess A J, Retkute R, Pound M P, et al. Image-based 3D canopy reconstruction to determine potential productivity in complex multi-species crop systems[J]. Annals of Botany, 2017, 119(4): 517-532.
[20] Lati R N, Manevich A, Filin S. Three-dimensional image-based modelling of linear features for plant biomass estimation[J]. International Journal of Remote Sensing, 2013, 34(17): 6135-6151.
[21] Guo W, Zheng B, Duan T, et al. EasyPCC: Benchmark datasets and tools for high-throughput measurement of the plant canopy coverage ratio under field conditions[J]. Sensors, 2017, 17(4): 798.
[22] Espa?a M L, Baret F, Aries F, et al. Modeling maize canopy 3D architecture: Application to reflectance simulation[J]. Ecological Modelling, 1999, 122(1): 25-43.
[23] Scharr H, Briese C, Embgenbroich P, et al. Fast high resolution volume carving for 3D plant shoot reconstruction[J]. Frontiers in Plant Science, 2017, 8: 1680.
[24] Birch C J, Andrieu B, Fournier C, et al. Modelling kinetics of plant canopy architecture-concepts and applications[J]. European Journal of Agronomy, 2003, 19(4): 519-533.
[25] Ma Y, Wen M, Guo Y, et al. Parameter optimization and field validation of the functional-structural model GREENLAB for maize at different population densities[J]. Annals of Botany, 2008, 101(8): 1185-1194.
[26] Guo Y, Ma Y, Zhan Z, et al. Parameter optimization and field validation of the functional–structural model Greenlab for maize[J]. Annals of Botany, 2006, 97(2): 217-230.
[27] 溫維亮,郭新宇,盧憲菊,等. 玉米器官三維模板資源庫(kù)構(gòu)建[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(8):266-272. Wen Weiliang, Guo Xinyu, Lu Xianju, et al. Three-dimensional template resource library construction of maize organs[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 266-272. (in Chinese with English abstract)
[28] Song Q F, Zhang G L, Zhu X G. Optimal crop canopy architecture to maximise canopy photosynthetic CO2uptake under elevated CO2: A theoretical study using a mechanistic model of canopy photosynthesis[J]. Functional Plant Biology, 2013, 40(2): 109-124.
[29] Wang Y, Song Q, Jaiswal D, et al. Development of a three-dimensional ray-tracing model of sugarcane canopy photosynthesis and its application in assessing impacts of varied row spacing[J]. Bioenergy Research, 2017, 10(3): 626-634.
[30] Mao L, Zhang L, Evers J B, et al. Identification of plant configurations maximizing radiation capture in relay strip cotton using a functional-structural plant model[J]. Field Crops Research, 2016, 187: 1-11.
[31] Schlueter J A, Dixon P, Granger C, et al. Mining EST databases to resolve evolutionary events in major crop species.[J]. Genome, 2004, 47(5): 868-876.
[32] Tardieu F, Cabrera-Bosquet L, Pridmore T, et al. Plant phenomics, from sensors to knowledge[J]. Current Biology, 2017, 27(15): 770-783.
[33] 馬韞韜,郭焱,李保國(guó). 應(yīng)用三維數(shù)字化儀對(duì)玉米植株葉片方位分布的研究[J]. 作物學(xué)報(bào),2006,32(6):791-798. Ma Yuntao, Guo Yan, Li Baoguo. Azimuthal distribution of maize plant leaves determined by 3D digitizer[J]. Acta Agronomica Sinica, 2006, 32(6): 791-798. (in Chinese with English abstract).
[34] 杜建軍,袁杰,王傳宇,等. 基于玉米冠層原位監(jiān)測(cè)的全生育期葉色建模及其應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,16(33):188-195. Du Jianjun, Yuan Jie, Wang Chuanyu, et al. Modeling of maize canopy color in whole growth period based on in-situ monitoring system and its application[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 16(33): 188-195. (in Chinese with English abstract)
[35] Wen W, Li B, Guo X, et al. Simplified model of plant organ for visual computation[J]. Journal of Information & Computational Science, 2015, 12(6): 2213-2220.
Construction method of three-dimensional model of maize colony based on-distribution function
Wen Weiliang1,2,3,4, Zhao Chunjiang1,2,3,4※, Guo Xinyu1,2,3, Wang Yongjian1,2,3, Du Jianjun1,2,3, Yu Zetao1,2,3
(1.100097,; 2.100097; 3.100097,; 4100124,)
Crop colony is the organization system which performs photosynthesis and dry matter production function. Its morphological structure has important influence on light interception ability, canopy photosynthetic efficiency and crop yield. The morphological characteristics of crop colony have always been the most basic way for people to recognize, analyze and evaluate crops. Therefore, it is of great practical significance to rapidly and accurately model and analyze the morphology of crop colony in a digital and visual way. Morphological data acquisition of maize colony is labor-intensive and time-consuming, and thus a-distribution based three-dimensional (3D) maize colony modeling method was proposed using a few measured data. The method constructs-distribution function of primary plant morphological parameters using measured data and generates random plant morphological parameters under the constraint. The main plant morphological parameters include plant and phytomer scale. Here plant scale parameters include plant height, total leaf number, and first leaf index, and phytomer scale parameters include leaf growth height, leaf insertion angle, leaf length, leaf width, and leaf azimuthal angle. Particularly, leaf azimuthal angles are generated using the deviations between the plant azimuthal plane and leaf azimuths. High quality geometric models in 3D template resource database of maize organs are selected by constructing a similarity assess function of plant morphological parameters. Leaf length, leaf insertion angle, leaf index, and plant cultivar are the control parameters in the function. Then geometric models of individual plants in target colony are generated. Interactive design or field image extraction method is used to allocate the growth positions and plant azimuthal planes of each plant in the colony. Maize colony is generated by moving and rotating operations of each plant according to the designed or extracted growth positions and plant azimuthal planes. Leaf area index (LAI) is used to validate the generated maize colony model. Three in-situ field measurement experiments in Qitai County of Xinjiang using 3D digitizer were carried out to reconstruct geometric models of maize colony, and the cultivar was Xianyu 335 and the planting densities were 105, 135, and 165 thousand plants/hm2, as true values for LAI calculating. Corresponding plant morphological parameters of the corresponding colonies were measured. The maize colony modeling method based on-distribution function was used to construct 3D models and LAI was also calculated for the colonies. Results show that the LAI errors are less than ±2%. In addition, generalized LAI of different heights of plant colony is proposed to provide more detailed verification in different height levels. The averaged RMSE (root mean square error) of Xianyu 335 with the density of 135 thousand plants/hm2is 0.023, and the averaged NRMSE (normalized root mean square error) is 0.425, which demonstrate that it has a good consistency of spatial leaf distribution between the in-situ measured field colony and reconstructed colony using-distribution. These results show that the proposed maize colony modeling method could meet the needs of plant functional-structural analysis. Compared with the existing methods, the proposed method is more effective and highly realistic, and the constructed maize colonies are capable of reflecting the agronomic characteristics of the target colony, such as the differences caused by intrinsic cultivar, environment, planting, or management factors. Maize colony model could be rapidly generated by simple modification of morphological input parameters. Combined with the light distribution simulating algorithm, a large number of maize colony models will be designed for virtual experiments. It has great importance for the research and application of maize plant morphology optimization, estimation of planting density, adaptability evaluation of different cultivars, and cultivation strategy decision. Due to the complexity of maize colony structure morphology, there are still many subsequent colony modeling issues that will be addressed in future research, such as adjacent phytomer parameters constraint model construction, plant collision detection and collision response, and colony mesh simplification and optimization for visual computing.
crops; models; maize; colony;-distribution function; three-dimensional modeling; visual computing
2017-10-23
2018-01-31
863計(jì)劃(2013AA102404-02);國(guó)家自然科學(xué)基金資助項(xiàng)目(31601215);北京市農(nóng)林科學(xué)院青年科研基金(QNJJ201625);北京市農(nóng)林科學(xué)院數(shù)字植物科技創(chuàng)新團(tuán)隊(duì)(JNKYT201604)資助
溫維亮,遼寧本溪人,助理研究員,博士,主要從事數(shù)字植物應(yīng)用研究。Email:wenwl@nercita.org.cn
趙春江,河北保定人,博士,研究方向?yàn)檗r(nóng)業(yè)信息技術(shù)與智能裝備。Email:zhaocj@nercita.org.cn
10.11975/j.issn.1002-6819.2018.04.023
S11+4;S126
A
1002-6819(2018)-04-0192-09
溫維亮,趙春江,郭新宇,王勇健,杜建軍,于澤濤. 基于分布函數(shù)的玉米群體三維模型構(gòu)建方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(4):192-200.doi:10.11975/j.issn.1002-6819.2018.04.023 http://www.tcsae.org
Wen Weiliang, Zhao Chunjiang, Guo Xinyu, Wang Yongjian, Du Jianjun, Yu Zetao. Construction method of three-dimensional model of maize colony based ondistribution function[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 192-200. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.04.023 http://www.tcsae.org