薛海燕,張 穎,張寶艷,薛麗歡
?
安石榴苷還原殼聚糖/納米銀溶膠制備表征及其抑菌性能
薛海燕,張 穎,張寶艷,薛麗歡
(陜西科技大學(xué)食品與生物工程學(xué)院,西安 710021)
該文的研究目的用安石榴苷作為綠色還原劑制備殼聚糖/納米銀(CS/AgNPs)溶膠,并對(duì)CS/AgNPs表征及抑菌性能進(jìn)行研究。結(jié)果表明:pH值為5,濃度為0.5%~1%的殼聚糖100mL,硝酸銀溶液濃度0.6 mol/L,加入質(zhì)量濃度1%的安石榴苷溶液,25 ℃還原6 h可得粒徑范圍較窄,銀粒子質(zhì)量分?jǐn)?shù)較高較的穩(wěn)定納米復(fù)合材料CS/AgNPs溶膠。經(jīng)透射電鏡和X-射線衍射儀分析溶膠中納米銀粒子粒徑為8~11 nm,晶型為面心立方型。傅里葉紅外光譜表明殼聚糖中-NH2與Ag+發(fā)生了螯合及CS/AgNPs中AgNPs的存在。CS/AgNPs溶膠對(duì)大腸桿菌和金黃色葡萄球菌作用24 h后的抑菌率為95.5%,97.6%,刃天青法檢測(cè)對(duì)2種菌的最小抑菌濃度均為0.096L/mL。透射電鏡掃描及細(xì)胞內(nèi)容物滲漏實(shí)驗(yàn)表明,CS/AgNPs溶膠可以吸附菌體于細(xì)胞,破壞細(xì)胞膜,增加細(xì)胞的通透性,抑制菌體生長(zhǎng)。安石榴苷原位還原制備的CS/AgNPs溶膠具有良好的抑菌性能,可為食品保鮮或醫(yī)用材料制備提供理論支撐。
納米復(fù)合材料;殺菌;優(yōu)化;殼聚糖;殼聚糖;納米銀;安石榴苷;抑菌性能
殼聚糖(chitosan,CS)具有良好的成膜性,同時(shí)安全無(wú)毒且具有螯合性,但是單一的殼聚糖廣譜性較差[1]。研究表明,殼聚糖對(duì)大腸桿菌、沙門(mén)氏菌及芽孢桿菌等的生長(zhǎng)具有抑制作用,而對(duì)革蘭氏陽(yáng)性菌及霉菌的抑制效果較差[2-3]。納米銀的粒徑小,比表面積大,抑菌具有廣譜性[4-6],但由于光照或者長(zhǎng)期存放會(huì)發(fā)生團(tuán)聚或變黑[7]降低抑菌性能。將殼聚糖與納米銀(AgNPs)復(fù)合能夠穩(wěn)定納米銀,增強(qiáng)天然生物材料殼聚糖的抑菌能力,進(jìn)而拓展應(yīng)用。合成納米銀一般用AgNO3提供Ag+,再使用還原劑使其被還原成Ag,常采用的還原劑有葡萄糖,檸檬酸鈉,硼氫化鈉,生物活性成分等[8]。Vigneshwaran等[9-10]等報(bào)道了利用可溶性淀粉作為穩(wěn)定劑和還原劑,還原銀離子,并防止粒子團(tuán)聚,形成粒徑10~30 nm的納米銀。劉沖沖等[11]利用姜的提取液作為還原劑和穩(wěn)定劑成功制備了納米銀抑菌材料,得出制備的納米銀為球形粒子,大小均勻,粒徑大約在15 nm左右。Nersisyan等[12]發(fā)展了一種用葡萄糖作還原劑制備納米銀,但葡萄糖是有機(jī)弱還原劑,形成的納米銀顆粒粒徑大,粒徑分布寬。姬振行[13]利用溶膠-凝膠法制備殼聚糖/銀溶膠時(shí)即用的強(qiáng)的還原劑硼氫化鈉,用戊二醛做交聯(lián)劑,其中硼氫化鈉被氧化生成硼酸,而硼酸對(duì)人體呼吸道等都有危害。
安石榴苷(C48H28O30)是從石榴皮中提取得到的一種可水解單寧,分子量1 084.72,棕黃色粉末,無(wú)毒。分子結(jié)構(gòu)基團(tuán)以沒(méi)食子酸及其沒(méi)食子酰衍生物為主,其中含有大量的酚羥基,具有較強(qiáng)的還原性能,在體內(nèi)、體外都有較強(qiáng)的抗氧化活性,具有抑制腫瘤生長(zhǎng),抗動(dòng)脈粥樣硬化[14]等功能。本文主要研究安石榴苷代替NaBH4作為還原劑制備CS/AgNPs溶膠,并探討該溶膠的抑菌性能,進(jìn)而安全的使用及擴(kuò)展其在食品醫(yī)藥行業(yè)的應(yīng)用。目的在于為多酚類綠色還原劑制備CS/AgNPs溶膠提供技術(shù)參數(shù)。
殼聚糖(CS),相對(duì)分子質(zhì)量約15萬(wàn),脫乙酰度≥90%;冰乙酸,分析純,天津市天力化學(xué)試劑有限公司;硝酸銀,分析純,廣州市金華大化學(xué)試劑有限公司;安石榴苷(質(zhì)量分?jǐn)?shù)40%),成都瑞芬思生物科技有限公司;牛肉膏,分析純,北京澳博星生物技術(shù)有限公司;大腸桿菌(),陜西省食品藥品檢驗(yàn)所;金黃色葡萄球菌(),陜西省食品藥品檢驗(yàn)所;其他試劑均為分析純。
78-1型磁力加熱攪拌器,國(guó)華電器有限公司;SW-CJ-1D型潔凈工作臺(tái),蘇州凈化設(shè)備廠;752型紫外-可見(jiàn)分光光度計(jì),上海光譜儀器有限公司;PHS-3C型pH計(jì),上海儀電科學(xué)儀器股份有限公司;SC-3610型低速離心機(jī),科大創(chuàng)新股份有限公司中佳分公司;LDZM-40KCS-II型立式壓力蒸汽滅菌器,上海申安醫(yī)療器械廠;Verios-460型掃描電鏡,美國(guó)FEI公司;VECTOR-22型傅立葉變換紅外光譜,德國(guó)布魯克Bruker公司;D/max-2200PC型X射線衍射儀,日本理學(xué)公司;Turbiscan Lab型穩(wěn)定性分析儀,法國(guó)Formulation公司。
1.3.1 CS/AgNPs溶膠制備
配制pH值為5的乙酸-乙酸鈉緩沖溶液,用該緩沖溶液配制質(zhì)量分?jǐn)?shù)為0.5%殼聚糖溶液,再量取100 mL,加入250 mL 0.6 mol/L的硝酸銀溶液,磁力攪拌0.5 h后加入800L的0.8%安石榴苷,室溫下持續(xù)攪拌6 h后,待測(cè)。單因素試驗(yàn)時(shí),其他試驗(yàn)條件不變,分別改變?nèi)芤簆H值(3、4、5、6),殼聚糖質(zhì)量分?jǐn)?shù)(0.1%、0.3%、0.5%、1.0%、1.5%),AgNO3濃度(0.1、0.3、0.6、0.9 mol/L),安石榴苷加入量(0.2%、0.4%、0.6%、0.8%、1%)以體積分?jǐn)?shù)計(jì),反應(yīng)溫度(25、40、60、80 ℃)以及室溫下的持續(xù)攪拌時(shí)間(2、4、6、8 h),以納米銀特征吸收光譜為指標(biāo)研究各因素對(duì)CS/AgNPs溶膠生成的影響。以安石榴苷溶液為對(duì)照,將不同單因素條件下所制備的CS/AgNPs溶膠用紫外-可見(jiàn)分光光度計(jì)進(jìn)行掃描,掃描波長(zhǎng)范圍300~600 nm,納米銀的表面等離子共振(surface plasmon resonance,SPR)吸收峰范圍在400~500 nm內(nèi)[15-16],根據(jù)峰高反映納米銀質(zhì)量分?jǐn)?shù),峰寬反映納米銀粒徑分布范圍探討最佳制備條件。每個(gè)試驗(yàn)設(shè)置3組平行。對(duì)采用最佳制備條件制備出的CS/AgNPs溶膠樣品經(jīng)聚乙烯砜膜超濾濃縮2倍,除去殘余Ag+后進(jìn)行結(jié)構(gòu)表征和用于抑菌性能及機(jī)理研究。
1.3.2 CS/AgNPs的結(jié)構(gòu)表征
1)CS/AgNPs溶膠的穩(wěn)定性。對(duì)采用優(yōu)化工藝參數(shù)所制備的CS/AgNPs溶膠的穩(wěn)定性使用Turbiscan Lab穩(wěn)定性分析儀測(cè)定[17]。
設(shè)定每個(gè)樣品每隔10 min掃1次,掃18次,即掃描3 h,溫度為25℃對(duì)20 mL樣品溶膠進(jìn)行測(cè)試。
2)CS/AgNPs溶膠的透射電鏡觀察(transmission electron microscope, TEM)。將制備的CS/AgNPs溶膠和同等條件制備的納米銀分別滴在銅網(wǎng)上,室溫干燥后用透射電鏡進(jìn)行觀察。
3)傅立葉變換紅外光譜分析(Fourier transform infrared spectroscopy, FTIR)。在上述制備好的CS/AgNPs溶膠加入氨水使pH值為7,離心并冷凍干燥即得殼聚糖/納米銀的固體樣品。將待測(cè)樣與KBr干粉按1:100混合后進(jìn)行研磨,然后壓制成透明的薄片,用傅立葉變換紅外光譜儀測(cè)定純殼聚糖及殼聚糖/納米銀樣品的紅外光譜[18]。
4)X-射線衍射儀(X-ray diffraction, XRD)檢測(cè)。將3)中制得的殼聚糖/納米銀固體、殼聚糖以及安石榴苷在管電壓36 kV,管電流20 mA,掃描范圍5°~80°,掃描速度2 °/min的條件下連續(xù)掃描,采樣步長(zhǎng)0.01°。參考JCDPS卡片分析納米銀的晶型[19]。
1.3.3 CS/AgNPs溶膠的抑菌性能試驗(yàn)
將織物剪成直徑5 cm大小圓形樣片,121 ℃,20 min高壓滅菌后浸泡于CS/AgNPs溶膠和PBS緩沖溶液中24 h后取出干燥,即得抑菌織物和對(duì)照織物。在無(wú)菌超凈工作臺(tái)中,吸取50L活化好的濃度為106~107cfu/mL的、.分別均勻涂抹在瓊脂固體培養(yǎng)基上,待幾分鐘菌懸液干后將上述的抑菌織物和對(duì)照織物放于固體培養(yǎng)基上,以雙抗作為陽(yáng)性對(duì)照,二甲基亞砜作為陰性對(duì)照,置于37 ℃恒溫培養(yǎng)箱18 h后,取培養(yǎng)皿,觀察結(jié)果。
將上述準(zhǔn)備的抑菌織物和對(duì)照織物,參照魯波的定量試驗(yàn)[20],計(jì)算CS/AgNPs溶膠的抑菌率,計(jì)算方法如公式(1)。
1.3.4 CS/AgNPs溶膠抑菌機(jī)理的研究
1)CS/AgNPs溶膠的最小抑菌濃度的測(cè)定。將5 mL的菌液(107cfu/mL)和8L的刃天青指示劑(0.07 g/100 mL)混合,取100L混合液于無(wú)菌96孔板中,按張雨菲等[21]法用NaBH4作還原劑制備的CS/AgNPs溶膠樣品(CS/AgNPs-B)和本文用安石榴苷作還原劑制備的CS/AgNPs溶膠樣品(CS/AgNPs-A),采用對(duì)半稀釋法稀釋7次,分別加入于96孔中,無(wú)菌生理鹽水為對(duì)照組,37℃恒溫培養(yǎng),每12 h左右用肉眼觀察,有細(xì)菌生長(zhǎng)孔的顏色會(huì)變紅或者粉,無(wú)菌生長(zhǎng)的孔仍然為藍(lán)色,以發(fā)生顏色變化的前一孔為最低抑菌濃度(minimal inhibitory concentration,MIC)。重復(fù)3次,同時(shí),用二甲基亞砜(dimethyl sulfoxide,DMSO)作為陰性對(duì)照,以雙抗(青霉素-鏈霉素)作為陽(yáng)性對(duì)照。
2) CS/AgNPs溶膠對(duì)細(xì)菌生長(zhǎng)曲線的影響。取20L培養(yǎng)至對(duì)數(shù)期、濃度106cfu/mL的菌懸液于96孔板上,再加200L液體培養(yǎng)基的96孔板中,其中,2孔分別加入終濃度為1×MIC、2×MIC濃度的抑菌劑,對(duì)照組加PBS。在37 ℃培養(yǎng),分別在培養(yǎng)0、2、4、6、8、12、24 h時(shí),在波長(zhǎng)600 nm處測(cè)定吸光度,并繪制微生物的生長(zhǎng)曲線,該操作重復(fù)3次。
3)微生物掃描電鏡觀察。將E.和制成終濃度為106~107cfu/mL的菌懸液。分別加入CS/AgNPs-A和CS/AgNPs-B(終濃度是MIC),對(duì)照組加pH值為7.2的無(wú)菌緩沖溶液,在37℃培養(yǎng)6 h后結(jié)束培養(yǎng)。將菌懸液10 000 r/min離心15 min,棄去上清夜,菌體用2.5%戊二醛在4℃冰箱固定過(guò)夜。然后用乙醇的水溶液進(jìn)行梯度洗脫(乙醇濃度30%、50%、70%、90%、100%),用叔丁醇置換乙醇,放入臨界點(diǎn)干燥儀干燥,最后進(jìn)行噴金處理,用掃描電鏡觀察微生物抑菌前后形態(tài)的變化。
4)CS/AgNPs溶膠對(duì)細(xì)胞內(nèi)容物滲漏的影響。將2種受試菌活化,分別將菌懸液分為3等份,每份10 mL,分別加入終濃度為MIC值的CS/AgNPs-A和CS/AgNPs-B,對(duì)照組加PBS。5 h后分別取10 mL,離心(5 000 r/min,15 min)取上清液,用紫外可見(jiàn)分光光度計(jì)測(cè)定A260。再各取離心后上清液0.5 mL,加入5 mL考馬斯亮藍(lán)試劑,5 min后測(cè)定A595,考馬斯亮藍(lán)法測(cè)上清中蛋白質(zhì)質(zhì)量分?jǐn)?shù)[22],通過(guò)標(biāo)準(zhǔn)曲線查得待測(cè)樣品的蛋白質(zhì)質(zhì)量分操作重復(fù)3次。
納米銀的紫外吸收在380~420nm之間,對(duì)制備的溶膠樣品在300~600nm進(jìn)行波長(zhǎng)掃描。不同pH值對(duì)CS/AgNPs溶膠的影響結(jié)果如圖1a所示。pH值為5時(shí)峰形窄而高,峰強(qiáng)較強(qiáng),說(shuō)明納米銀顆粒的粒徑分布較窄,顆粒尺寸較均一。因此pH值為5為較佳制備條件。因?yàn)闅ぞ厶欠肿渔溕嫌写罅康姆恿u基,在酸性條件下會(huì)質(zhì)子化,隨著H+濃度變小,質(zhì)子化的強(qiáng)度會(huì)隨之變小,進(jìn)而會(huì)導(dǎo)致殼聚糖分子鏈上可以與銀離子絡(luò)合的氨基數(shù)變多,殼聚糖分子鏈間相對(duì)于質(zhì)子化程度較高時(shí)較緊密,均使得銀粒子在體系中更穩(wěn)定不易團(tuán)聚。所以pH值不宜過(guò)小,但pH值過(guò)高時(shí),殼聚糖上-NH2質(zhì)子化程度變?nèi)酰饘匐x子難容易接近-NH2發(fā)生配位反應(yīng)[23]。所以體系的pH值也不能太大。
據(jù)圖1b所示,溫度高于25 ℃時(shí)制備的CS/AgNPs溶膠均沒(méi)有25 ℃生成的納米銀理想,這可能是安石榴苷在高溫下不穩(wěn)定[24]。溫度過(guò)高導(dǎo)致反應(yīng)速率過(guò)快,穩(wěn)定劑還來(lái)不及包裹AgNPs粒子,出現(xiàn)了二次團(tuán)聚[25],從而使生成AgNPs的粒徑減小且分布不均勻[26]。當(dāng)溫度為25 ℃時(shí),CS/AgNPs溶膠中生成的納米銀很穩(wěn)定[27]。因此在本試驗(yàn)選用最適反應(yīng)溫度為25 ℃。
注: 單因素試驗(yàn)時(shí),初始條件為:反應(yīng)pH值為5,反應(yīng)溫度為25 ℃,殼聚糖溶液質(zhì)量分?jǐn)?shù)為0.5%,硝酸銀濃度為0.6 mol/L,安石榴苷質(zhì)量分?jǐn)?shù)為0.8%,室溫下持續(xù)攪拌6 h。
如圖1c所示,在不同的殼聚糖濃度在380~420 nm范圍內(nèi)都出現(xiàn)了納米銀的紫外吸收峰[28],有納米銀生成。隨殼聚糖濃度增大,吸收值減小。當(dāng)殼聚糖濃度大于1.0%時(shí),吸收值峰下降幅度增大。可能因?yàn)闅ぞ厶巧系牧u基以及部分沒(méi)有質(zhì)子化的氨基形成分子內(nèi)氫鍵和分子間氫鍵,使得殼聚糖成網(wǎng)狀結(jié)構(gòu),且殼聚糖上未質(zhì)子化的氨基以及羥基均可以與銀離子發(fā)生鰲合作用[29],銀離子會(huì)被殼聚糖的網(wǎng)狀結(jié)構(gòu)包裹,而還原劑安石榴苷需滲透殼聚糖分子后才能還原銀離子。殼聚糖的濃度越大,銀離子會(huì)被包裹得越嚴(yán),還原劑安石榴苷越難滲透,被還原出來(lái)的銀粒子越少,另外,從圖1c殼聚糖濃度為0.1%和0.3%時(shí)吸收峰較其他濃度有紅移及二次出峰現(xiàn)象,這是因?yàn)椴糠帚y粒子發(fā)生團(tuán)聚使粒徑增大且不均一,所以殼聚糖濃度也不應(yīng)太小。因此,在制備CS/AgNPs溶膠時(shí)選用殼聚糖質(zhì)量分?jǐn)?shù)為0.5%~1.0%較佳。
由圖1d可知,隨著安石榴苷用量增大納米銀的量也會(huì)增大,這是因?yàn)檫€原劑量大就會(huì)增加滲透到殼聚糖網(wǎng)狀結(jié)構(gòu)內(nèi)還原銀離子的幾率。但是當(dāng)安石榴苷的質(zhì)量分?jǐn)?shù)為1%時(shí)UV-Vis吸收峰峰形較寬,而且吸收峰發(fā)生紅移及二次出峰,說(shuō)明納米銀可能發(fā)生團(tuán)聚。所以,在制備CS/AgNPs溶膠時(shí)還原劑安石榴苷的用量選擇質(zhì)量分?jǐn)?shù)0.8%。
由圖1e可知,當(dāng)銀離子濃度為0.1~0.6 mo1/L時(shí),制備的CS/AgNPs溶膠中的銀粒子均為納米級(jí)的。隨著銀離子的濃度增加,溶膠的紫外吸收峰峰強(qiáng)度一直在增加。但當(dāng)硝酸銀濃度為0.9 mo1/L時(shí)峰寬增大,而且最大吸收峰發(fā)生紅移,這是由于銀濃度太大還原反應(yīng)的速率加大,更容易發(fā)生團(tuán)聚現(xiàn)象,所以制備過(guò)程中硝酸銀的濃度不宜太大。當(dāng)硝酸銀濃度為0.6 mo1/L時(shí),UV-Vis吸收峰的峰寬較窄;且峰強(qiáng)度明顯高于其他的吸收峰,說(shuō)明此條件下制備的CS/AgNPs溶膠中納米銀粒子含量高且粒徑分布較集中。因此制備CS/AgNPs溶膠時(shí)硝酸銀濃度選用0.6 mol/L。
由圖1f可以看出:隨著反應(yīng)時(shí)間的增長(zhǎng),生成吸收峰的強(qiáng)度也隨之加強(qiáng)。即在還原時(shí)間為2和4 h時(shí),并沒(méi)有出現(xiàn)明顯的吸收峰,可能是安石榴苷和銀離子反應(yīng)幾率小所致。隨著還原時(shí)間的加長(zhǎng),還原劑安石榴苷與銀離子反應(yīng)幾率增大導(dǎo)致吸收強(qiáng)度增強(qiáng)。但是當(dāng)反應(yīng)時(shí)間為8 h時(shí)峰值不再增高可能是由于還原反應(yīng)較完全。因此在用安石榴苷作為還原劑制備CS/AgNPs溶膠時(shí)選用還原時(shí)間為6 h為理想的反應(yīng)時(shí)間
2.2.1 CS/AgNPs溶膠穩(wěn)定性的結(jié)果
多次掃描所接收光強(qiáng)(backscattered, BS)的偏差反映體系穩(wěn)定程度,曲線從左到右代表樣品從底部到頂部。圖2比較了3種膠體體系穩(wěn)定性,可知質(zhì)量分?jǐn)?shù)5%的殼聚糖光強(qiáng)度變化不大,說(shuō)明其較穩(wěn)定,納米銀溶液的光強(qiáng)度變化很大,說(shuō)明納米銀溶液不穩(wěn)定,而CS/AgNPs溶膠的光強(qiáng)度變化比純納米銀溶液變化小的多,表明殼聚糖可以穩(wěn)定納米銀。
圖2 穩(wěn)定性分析的典型圖譜
2.2.2 透射電鏡(TEM)分析
TEM可以表征納米銀離子是否發(fā)生團(tuán)聚。由圖3a AgNPs圖中顆粒不均勻,而圖3b中的AgNPs分散而且顆粒均勻,粒徑較小為8~11 nm。圖3說(shuō)明殼聚糖能夠有效的抑制納米銀的團(tuán)聚。通過(guò)磁力攪拌可以使銀離子均勻的分散在殼聚糖分子鏈之間,殼聚糖分子中的氮原子和氧原子上的孤對(duì)電子與銀離子可以發(fā)生螯合反應(yīng)[30],加入還原劑安石榴苷,在銀離子螯合部位發(fā)生還原反應(yīng),得到的納米銀因?yàn)橛袣ぞ厶蔷W(wǎng)絡(luò)結(jié)構(gòu)的的包裹而相對(duì)穩(wěn)定,不易團(tuán)聚,因此可以生成分布的比較均勻、粒徑小的納米銀顆粒。這與穩(wěn)定性分析結(jié)果一致。
圖3 納米銀及殼聚糖/納米銀的TEM圖
2.2.3 傅立葉紅外光譜分析(FTIR)
FTIR可以分析納米銀與殼聚糖的螯合程度。圖4為CS和CS/AgNPs的紅外圖譜,與殼聚糖的紅外圖譜相比,CS/AgNPs溶膠的整體基本沒(méi)有變化,即特征吸收峰仍然存在,但1 425.12、1 319.07 cm-1處的C-N的伸縮振動(dòng)吸收峰[31]消失,說(shuō)明殼聚糖上的氨基(-NH2)與Ag+發(fā)生了螯合反應(yīng),1 087.65 cm-1所對(duì)應(yīng)的伯醇C-O伸縮振動(dòng)吸收峰[32-33]基本未變,說(shuō)明殼聚糖的伯醇的羥基沒(méi)有與銀發(fā)生配位反應(yīng),1 405.85 cm-1出現(xiàn)對(duì)應(yīng)的Ag-N伸縮振動(dòng)吸收峰,說(shuō)明殼聚糖的氨基上的氮與銀形成了配位鍵。而1 554.34 cm-1出現(xiàn)的特征吸收峰[34]對(duì)應(yīng)于納米銀的特征峰。說(shuō)明CS/AgNPs溶膠中AgNPs的螯合形成。
圖4 殼聚糖和殼聚糖/納米銀的傅立葉紅外光譜圖
2.2.4 XRD分析結(jié)果
圖5為殼聚糖/納米銀、殼聚糖和40%安石榴苷的XRD圖。
圖5 最佳條件制備的殼聚糖/納米銀(CS/AgNPs)的X-射線衍射圖
圖5中殼聚糖和40%安石榴苷的衍射峰峰形復(fù)雜,說(shuō)明殼聚糖和該純度的安石榴苷為典型的無(wú)定形晶型。此外殼聚糖/納米銀的衍射圖在2為38.58°、44.36°、64.92°和77.96°處有4個(gè)明顯的衍射峰,這些衍射峰分別對(duì)應(yīng)標(biāo)準(zhǔn)晶態(tài)銀卡片上的(111),(200),(220)和(311)晶面,與樊新等[35]分析的相近,說(shuō)明CS/AgNPs溶膠中形成了單質(zhì)銀,且為典型面心的立方晶型。
2.3.1 改進(jìn)濾紙法試驗(yàn)結(jié)果
由圖6可知,用NaBH4作還原劑制備的CS/AgNPs-B和用安石榴苷作還原劑制備的CS/AgNPs-A均對(duì)受試菌都有抑菌作用。CS/AgNPs-B中.的抑菌圈直徑是6 mm,而.的抑菌圈直徑是6.5 mm。CS/AgNPs-A中.的抑菌圈直徑是4.5 mm,而.的抑菌圈直徑是5.5 mm。說(shuō)明CS/AgNPs對(duì)革蘭氏陽(yáng)性菌抑制能力強(qiáng)于對(duì)革蘭氏陰性菌的能力。
注 :CS/AgNPs-B、A、雙抗和DMSO分別為安石榴苷制備的殼聚糖/納米銀溶膠,硼氫化鈉還原制備的溶膠,以及陽(yáng)性對(duì)照雙抗(青霉素-鏈霉素),陰性對(duì)照二甲基亞砜(DMSO)。
同時(shí)CS/AgNPs溶膠浸泡織物后織物有較好的抑菌能力,與Jung等[36]的結(jié)論是一致的。原因是革蘭氏陽(yáng)性菌的細(xì)胞壁壁厚15~80 nm,主要成分是肽聚糖以及磷壁酸,可以在細(xì)胞壁的周圍形成帶有負(fù)電荷的環(huán)境,與殼聚糖直鏈分子上的大量的-NH2發(fā)生反應(yīng)使細(xì)菌的細(xì)胞壁不完整起到抑菌的效果[37-38],為以后應(yīng)用提供理論依據(jù)。
由圖7a可知抑菌織物與作用1 min時(shí)抑菌率為72.9%,作用24 h時(shí)抑菌率是95.5%;由圖7b可得抑菌織物與作用1 min時(shí)抑菌率為77.6%,作用24 h時(shí)抑菌率是97.6%。研究表明CS/AgNPs溶膠具有良好的抑菌性。
注:圖中a、c為空白對(duì)照組,b、d為CS/AgNPs溶膠試驗(yàn)組;圖中e、g為空白對(duì)照組,f、h為CS/AgNPs溶膠試驗(yàn)組。
2.3.2 最小抑菌濃度的測(cè)定結(jié)果
當(dāng)微生物繁殖時(shí)產(chǎn)生還原酶,使得刃天青顏色從藍(lán)變紅,從而證明其中存在微生物且在不斷繁殖。由表1可知CS/AgNPs-B對(duì).和.的最小抑菌濃度(minimal inhibitory concentration, MIC)均為0.19L/mL,CS/AgNPs-A對(duì).和.的最小抑菌濃度均為0.096L/mL,由此可知用安石榴苷制備代替NaBH4作為還原劑制備得到的CS/AgNPs溶膠的抑菌效果好,這與所制備的溶膠中AgNPs的粒徑及安石榴苷本身具有抑菌效果有關(guān)[39],也可能是由于CS/AgNPs-A和CS/AgNPs-B中前者粒徑對(duì)2種菌的抑菌效果更好。
表1 4種樣品對(duì)受試菌的最小抑菌濃度
2.3.3 CS/AgNPs溶膠對(duì)細(xì)菌生長(zhǎng)曲線影響的結(jié)果
由圖8可知,加入CS/AgNPs-B和CS/AgNPs-A的試驗(yàn)組中微生物均比正常組微生物生長(zhǎng)緩慢,且加入CS/AgNPs-A試驗(yàn)組的微生物比加入CS/AgNPs-B微生物生長(zhǎng)趨勢(shì)更緩慢,原因可能是前者溶膠的粒徑更適合抑制2種細(xì)菌,或者因?yàn)榍罢呷苣z中仍有未發(fā)生反應(yīng)具有抑菌性能的安石榴苷的存在。
圖8 CS/AgNPs溶膠對(duì)微生物的生長(zhǎng)曲線的影響
2.3.4 微生物與抑菌溶膠結(jié)合的掃描電鏡觀察結(jié)果
掃描電鏡觀察CS/AgNPs溶膠處理前后微生物形態(tài)上的變化。圖9中空白對(duì)照組的.表面光滑,細(xì)胞完整而且飽滿,而2組試驗(yàn)組中.的細(xì)胞壁損害嚴(yán)重,表面粗糙有大量附著物,且大部分桿菌的長(zhǎng)度很短,尤其是CS/AgNPs-A作用.中有部分細(xì)胞成扁平狀,細(xì)胞被破壞嚴(yán)重。.的電鏡圖發(fā)現(xiàn)(右邊),空白對(duì)照組.的表面光滑,細(xì)胞完整而且飽滿,而2試驗(yàn)組.表面粗糙有大量附著物,且球形發(fā)生變小和不規(guī)則的變形。CS/AgNPs溶膠對(duì)微生物的破壞主要表現(xiàn)為微生物細(xì)胞壁變形內(nèi)容物泄露。
圖9 受試菌掃描電鏡觀察圖片
2.3.5 CS/AgNPs溶膠對(duì)細(xì)胞內(nèi)容物滲漏影響結(jié)果
用上清液的OD260nm和上清液中的蛋白質(zhì)的量作為細(xì)胞內(nèi)容物滲漏的指標(biāo)如表2,經(jīng)過(guò)CS/AgNPs-B和CS/AgNPs-A作用的2種細(xì)菌外蛋白質(zhì)的量和OD260nm值均比對(duì)照組大,說(shuō)明CS/AgNPs溶膠可以使得細(xì)胞膜的通透性增大甚至可以損壞細(xì)胞膜。由表2還可知,CS/AgNPs-A 2個(gè)指標(biāo)比CS/AgNPs-B高,說(shuō)明前者抑菌性能強(qiáng),此結(jié)果與前面結(jié)果一致。
表2 CS/AgNPs溶膠對(duì)細(xì)胞內(nèi)容物滲漏的影響
以植物提取物安石榴苷作為還原劑,經(jīng)過(guò)試驗(yàn)可以制得粒徑較小的AgNPs顆粒,在此粒徑范圍下,制得的CS/AgNPs溶膠的抑菌效果最好。與劉沖沖等[11,40-42]利用姜和黑胡椒以及海藻江蘺菜提取液作為還原劑和穩(wěn)定劑成功制備了納米銀抑菌材料,粒徑在20~100 nm之間的結(jié)果一致。與殼聚糖和殼聚糖衍生物的抑菌效果[43]相比,對(duì)革蘭氏陽(yáng)性菌的抑制能力大大增加,提高了殼聚糖復(fù)合材料的抑菌廣譜性。CS/AgNPs溶膠可以吸附于菌體細(xì)胞,破壞菌體細(xì)胞膜,增加細(xì)胞的通透性,從而抑制菌體生長(zhǎng)。納米銀除抑制細(xì)菌外,對(duì)真菌也有良好的抑制效果,所制備的CS/AgNPs溶膠對(duì)真菌的抑制效果有待進(jìn)一步研究。
采用安石榴苷原位還原制備CS/AgNPs溶膠的最佳制備條件為,pH值為5,質(zhì)量分?jǐn)?shù)為0.5%~1%的殼聚糖100 mL,加入0.6 mol/L硝酸銀250mL,磁力攪拌30 min后,再加入0.8%安石榴苷800L,在25 ℃反應(yīng)6 h??芍频眉{米銀顆粒的粒徑為8~11 nm CS/AgNPs溶膠。殼聚糖可以穩(wěn)定納米銀,阻止納米銀發(fā)生團(tuán)聚現(xiàn)象。在制備過(guò)程中殼聚糖與銀離子確實(shí)發(fā)生了螯合反應(yīng),并被還原成納米銀,其中納米銀是典型的面心立方晶型結(jié)構(gòu)。抑菌性能研究表明CS/AgNPs溶膠具有良好的抑菌性能,且對(duì)S.的抑制效果強(qiáng)于E.。進(jìn)一步對(duì)該復(fù)合物的抑菌機(jī)理研究表明,CS/AgNPs溶膠可以粘附在菌體表面,增加細(xì)胞的通透性,甚至可以破壞細(xì)胞膜,抑制菌體生長(zhǎng)。
因此采用多酚類物質(zhì)安石榴苷代替?zhèn)鹘y(tǒng)的無(wú)機(jī)還原劑硼氫化鈉制備CS/AgNPs溶膠具有可行性,能夠提高此類復(fù)合物安全性并拓展其在食品醫(yī)藥行業(yè)的應(yīng)用。
[1] 王鴻,沈月新. 不同脫乙酰度殼聚糖的抑菌性[J]. 上海海洋大學(xué)學(xué)報(bào),2001,10(4):380-382.Wu Hong, Shen Yuexin. The antibiotic activities of chitosan with different deacetyl degrees[J]. Journal of Shanghai Ocean University, 2001, 10(4): 380-382. (in Chinese with English abstract)
[2] 張賓,汪東風(fēng),鄧尚貴,等. 殼聚糖-胰蛋白酶抑制劑復(fù)合可食性膜的制備及抗黃曲霉活性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(4):287-292.
Zhang Bin, Wang Dongfeng, Deng Shanggui, et al. Preparation and anti-Aspergillus flavus activity of chitosan-trypsin inhibitor blend edible film[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(4): 287-292. (in Chinese with English abstract)
[3] Suzuki S, Ying B, Yamane H, et al. Surface structure of chitosan and hybrid chitosan-amylose films-restoration of the antibacterial properties of chitosan in the amylose film[J]. Carbohy drate Research, 2007, 342(16): 2490-2493.
[4] 魏坤,吳遠(yuǎn),席云,等. 復(fù)方納米銀抗菌乳液殺菌效果的研究[J]. 中國(guó)消毒學(xué)雜志,2010,27(5):521-523.
Wei Kun, Wu Yuan, Xi Yun, et al. Rsearch on disinfection efficacy of the compound antimicrobila emulsion containing silver nanoparticles[J]. Chinese Journal of Disinfection, 2010, 27(5): 521-523. (in Chinese with English abstract)
[5] Gao J, Zhao C, Zhou J, et al. Plasma sprayed rutile titania-nanosilver antibacterial coatings[J]. Applied Surface Science, 2015, 355: 593-601.
[6] Ivask A, Elbadawy A, Kaweeteerawat C, et al. Toxicity mechanisms invary for silver nanoparticles and differ from ionic silver[J]. Acs Nano, 2014, 8(1): 374-86.
[7] 王瑤,王瑜,程昱,等. 納米銀粒徑與抗細(xì)菌性能的關(guān)系[J]. 中國(guó)皮革,2016,45(5):1-4.
Wang Yao, Wang Yu, Cheng Yu, et al. Antibacterial properties of different sizes of nano/sliver to bacteria[J]. China Leather, 2016, 45(5): 1-4. (in Chinese with English abstract)
[8] 王立英,蔡靈劍,沈頔,等. 金屬納米顆粒制備中的還原劑與修飾劑[J]. 化學(xué)進(jìn)展,2010,22(4):580-592.
Wang Liying, Cai Lingjian, Shen Di, et al.Reducing agents and capping agents in the preparation of metal nanoparticles[J]. Chemical Industry and Engineering Progress, 2010, 22(4): 580-592. (in Chinese with English abstract)
[9] Vigneshwaran N, Nachane R P, Balasubramanya R H, et al. A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch[J]. Carbohydrate Research, 2006, 341(12): 2012-2018.
[10] 高向華. 納米銀/天然高聚物復(fù)合抗菌溶膠的合成及其性能研究[D]. 太原:太原理工大學(xué),2013.
Gao Xianghua. Preparation and Properties of Nanoscaled Silver/natural Polymer Antibacterial Sols[D]. Taiyuan: Taiyuan University of Technology, 2013. (in Chinese with English abstract)
[11] 劉沖沖,王磊,徐慧,等. 姜提取物生物合成納米銀抑菌活性的研究[J]. 食品與生物技術(shù)學(xué)報(bào),2017,36(6):590-597.
Liu Chongchong, Wang Lei, Xu Hui, et al. Antibacterial study of silver nanoparticles biosynthesized with ginger extract[J]. Journal of Food Science and Biotechnology, 2017, 36(6): 590-597. (in Chinese with English abstract)
[12] Nersisyan H H, Lee J H, Son H T, et al. A new and effective chemical reduction method for preparation of nanosized silver powder and colloid dispersion[J]. Materials Research Bulletin, 2003, 38(6): 949-956.
[13] 姬振行. 殼聚糖/銀納米微球的制備與表征[D]. 石家莊:河北科技大學(xué),2010.
Ji Zhenxing. Preparation and Characterization of Chitosan/Silver Nano Microspheres[D]. Shi Jiazhuang: Heibei University of Science and Technology, 2010. (in Chinese with English abstract)
[14] 李思諾,周宏勇,何彥剛,等. 改性殼聚糖及其膜材料的制備與表征[J]. 高分子材料科學(xué)與工程,2014,30(12):128-133.Li Sinuo, Zhou Hongyong, He Yan’gang, et al. Preparation and characterization of n-Methylene phosphonic chitosan and its membrane material[J]. Polymeric Materials Science and Engineering, 2014, 30(12): 128-133. (in Chinese with English abstract)
[15] Sadeghi B, Gholamhoseinpoor F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2015, 134(134C): 310-315.
[16] 孔杰,李國(guó)強(qiáng),葉菁蕓,等. 納米銀/殼聚糖復(fù)合水凝膠的原位制備、表征及抗菌性能研究[J]. 功能材料,2012,43(12):1662-1664.
Kong Jie, Li Guoqiang, Ye Jingyun, et al. In situ preparation, characterization and zntibacterial properties research of nano-silver/chitosan composite hydrogels[J]. Functional Materials, 2012, 43(12): 1662-1664. (in Chinese with English abstract)
[17] 馮建國(guó),郁倩瑤,史雅麗,等. Turbiscan Lab分散穩(wěn)定性分析儀研究異丙甲草胺水乳劑物理穩(wěn)定性[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2015,20(6):152-159.
Feng Jianguo, Yu Qianyao, Shi Yali, et al. Study on the physical stability of metolachlor emulsionoil in water by Tturbiscan Lab analyzer[J]. Journal of China Agricultural University, 2015, 20(6): 152-159. (in Chinese with English abstract)
[18] 徐雄立,周美華. 含納米銀的明膠/殼聚糖納米纖維的制備及其抗菌性能研究[J]. 化工新型材料,2010,38(2):23-25.
Xu Xiongli, Zhou Meihua. Study on the preparation and antibacterial activity of gelatin/chitosan nanofibers containing silver nanoparticles[J]. New Chemical Materials, 2010, 38(2): 23-25.(in Chinese with English abstract)
[19] 康虹,馬森源,高向華,等. 殼聚糖/銀-銅復(fù)合抗菌劑的制備及在硅橡膠基體上的應(yīng)用[J]. 太原理工大學(xué)學(xué)報(bào),2015,46(5):489-494.
Kang Hong, Ma Senyuan, Gao Xianghua, et al. Preparation of chitosan/silver-copper composite antibacterial agent and its application on silicone rubber matrix[J]. Journal of Taiyuan University of Technology, 2015, 46(5): 489-494. (in Chinese with English abstract)
[20] 魯波,李霞,陳西平,等. 抗菌織物抑菌效果評(píng)價(jià)[J]. 中國(guó)公共衛(wèi)生,2002,18(4):491-491.
[21] 張雨菲,李友良,姚遠(yuǎn),等. 殼聚糖納米銀溶液的穩(wěn)定性及在織物抗菌整理上的應(yīng)用[J]. 高等學(xué)校化學(xué)學(xué)報(bào),2012,33(8):1860-1865.
Zhang Yufei, Li Youliang, Yao Yuan, et al. Stabiliby of chitosan-stablized nanosilver solutions and its application for antibacterial durability of cotton fabrics[J]. Chemical Journal of Chinese Universities, 2012, 33(8): 1860-1865. (in Chinese with English abstract)
[22] 馮昕,王吉中,堯俊英,等. 考馬斯亮藍(lán)法測(cè)定乳與乳制品中蛋白質(zhì)含量[J]. 糧食與食品工業(yè),2010,17(3):57-59.
Feng Xin, Wang Jizhong, Yao Junying, et al.Determination of protein content in milk and dairy products by Coomassie Brilliant Blue method[J]. Cereal & Food Industry, 2010, 17(3): 57-59. (in Chinese with English abstract)
[23] 張藝鐘,劉珊,劉志文,等. 殼聚糖凝膠球?qū)u(Ⅱ)和Cr(Ⅵ)吸附行為的對(duì)比[J]. 化工進(jìn)展,2017,36(2):712-719.
Zhang Yizhong, Liu Shan, Liu Zhiwen, et al. Comparison for Cu(Ⅱ) and Cr(Ⅵ) adsorption behavior onto chitosan hydrogel beads[J]. Chemical Industry and Engineering Progress, 2017, 36(2): 712-719. (in Chinese with English abstract)
[24] 崔艷娜. 石榴皮中安石榴苷的純化工藝及其酪氨酸酶活性抑制研究[D]. 開(kāi)封:河南大學(xué),2014.
Cui Yanna. Study on the Purification Technology of Pomegranate Peel and the Inhibition of Tyrosinase Activity[D]. Kaifeng: Henan University, 2014. (in Chinese with English abstract)
[25] Kim B H, Lee J S. One-pot photochemical synthesis of silver nanodisks using a conventional metal-halide lamp[J]. Materials Chemistry & Physics, 2015, 149: 678-685.
[26] 呂佳,張浩春,張冰,等. 納米材料比色分析傳感器在食品檢測(cè)中的應(yīng)用進(jìn)展[J]. 化工進(jìn)展,2017,36(1):20-28.
Lü Jia, Zhang Haochun, Zhang Bing, et al. Application of colorimetric sensor based nanomaterials in food detection[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 20-28. (in Chinese with English abstract)
[27] 賈瑞秀,邱苗,黃建穎,等. 殼聚糖及其衍生物對(duì)鐮孢菌的抑菌機(jī)理[J]. 中國(guó)食品學(xué)報(bào),2016,16(11):70-75.
Jia Ruixiu, Qiu Miao, Huang Jianying, et al. Antibacterial mechanism of chitosan and its derivatives on fusarium concentricum[J]. Journal of Chinese Institute of Food Science and Technology, 2016, 16(11): 70-75. (in Chinese with English abstract)
[28] 李高青,桑青,崔凱. 殼聚糖納米銀復(fù)合物基溫敏水凝膠的抑菌性及細(xì)胞相容性研究[J]. 中國(guó)生化藥物雜志,2016,36(6):63-66.
Li Gaoqing, Sang Qing, Cui Kai. Antibacterial activity and cytocompatibility of chitosan-nano-silver complex thermosensitive hydrogel[J]. Chinese Journal of Biochemical and Pharmaceutics, 2016, 36(6): 63-66. (in Chinese with English abstract)
[29] 田華. 飲用水體系銀/殼聚糖類抑菌材料的制備及其性能研究[D]. 西安:西安建筑科技大學(xué),2011.
Tian Hua. Preparation and Application of Chitosan/Silver Anti-bacterial Materials for Drinking Water[D]. Xi’an: Xi’an University of Architecture and Technology, 2011. (in Chinese with English abstract)
[30] Junlabhut P, Boonruang S, Mekprasart W, et al. Ag nanoparticle-doped SiO2/TiO2, hybrid optical sensitive thin film for optical element applications[J]. Surface & Coatings Technology, 2016, 306: 262-266.
[31] 孫金旭. 納米銀的抑菌研究[J]. 衡水學(xué)院學(xué)報(bào),2010,12(4):28-30.
Sun Jinxu. On the bactriostasis of nano silver[J]. Journal of Hengshui University, 2010, 12(4): 28-30. (in Chinese with English abstract)
[32] Yuan Q, Venkatasubramanian R, Hein S, et al. A stimulus-responsive magnetic nanoparticle drug carrier: Magnetite encapsulated by chitosan-grafted-copolymer[J]. Acta Biomaterialia, 2008, 4(4): 1024-1037.
[33] Papadimitriou S, Bikiaris D, Avgoustakis K, et al. Chitosan nanoparticles loaded with dorzolamide and pramipexole[J]. Carbohydrate Polymers, 2008, 73(1): 44-54.
[34] Zhao Y, Jiang Y, Fang Y. Spectroscopy property of Ag nanoparticles.[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2006, 65(5): 1003-1006.
[35] 樊新,黃可龍,劉素琴,等. 化學(xué)還原法制備納米銀粒子及其表征[J]. 功能材料,2007,38(6):996-999.
Fan Xin, Huang Kelong, Liu Suqin, et al. Preparation and characteristic of silver nanoparticles by chemical reduction[J]. Functional Materials, 2007, 38(6): 996-999. (in Chinese with English abstract)
[36] Jung E J, Youn D K, Lee S H, et al. Antibacterial activity of chitosans with different degrees of deacetylation and viscosities[J]. International Journal of Food Science & Technology, 2010, 45(4): 676-682.
[37] Liu H, Du Y, Wang X, et al. Chitosan kills bacteria through cell membrane damage[J]. International Journal of Food Microbiology, 2004, 95(2): 147-155.
[38] Mignot T, Denis B, Couture-Tosi E, et al. Distribution of S-layers on the surface of, strains: Phylogenetic origin and ecological pressure[J]. Environmental Microbiology, 2001, 3(8): 493-501.
[39] 徐霄龍. 安石榴苷通過(guò)誘導(dǎo)小鼠巨噬細(xì)胞M2型分化抑制急性炎癥反應(yīng)[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2015.
Xu Xiaolong. Punicalagin Suppresses Acute Inflammatory Response via Promoting Mouse Macrophages M2 Polarization[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract)
[40] Shukla V K, Singh R P, Pandey A C. Black pepper assisted biomimetic synthesis of silver nanoparticles[J]. Journal of Alloys & Compounds, 2010, 507(1): 13-16.
[41] Arag?o A P D, Oliveira T M D, Quelemes P V, et al. Green synthesis of silver nanoparticles using the seaweed gracilaria birdiae, and their antibacterial activity[J]. Arabian Journal of Chemistry, 2016.
[42] Sankar R, Rahman P K S M, Varunkumar K, et al. Facile synthesis of curcuma longa, tuber powder engineered metal nanoparticles for bioimaging applications[J]. Journal of Molecular Structure, 2017, 1129: 8-16.
[43] 鐘宇,李云飛. 酸溶劑對(duì)葛根淀粉/殼聚糖復(fù)合可食膜性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(13):263-268.
Zhong Yu, Li Yunfei. Effects of acid solvents on properties of kudzu starch/chitosan composite edible films[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(13): 263-268. (in Chinese with English abstract)
Preparation characterization and bacteriostatic properties of punicalagin reducing chitosan/nano silver sol
Xue Haiyan, Zhang Ying, Zhang Baoyan, Xue Lihuan
(,,’710021,)
Chitosan is the only natural cation polysaccharides derived from shrimp and crab shell, which displays some bioactive functions and antibacterial properties with a narrow antimicrobial spectrum. Here, we investigated in situ synthesis of nano-silver particles to enhance the antibacterial properties of chitosan. The chitosan/nano-silver particles (CS/AgNPs) sol was prepared by reducing silver nitrate in situ synthesis within chitosan using punicalagin as a green reducing agent, and then its antibacterial properties and mechanism were investigated. The preparation of CS/AgNPs sol was optimized by single factor experiments. The effects of the preparation conditions pH, temperature and reaction time, with concentration of chitosan, silver nitrate and punicalagin solution were evaluated by characteristic ultraviolet-visible spectrophotometry of nano-silver particles. The existence AgNPs in CS/AgNPs sol was confirmed by UV-visible spectra, Turbiscan Lab, XRD diffraction patterns and TEM images. The optimal conditions to prepare CS/AgNPs sol were found as follows. Every 100 mL of chitosan at pH value 5 in concentration of 0.5% - 1% blended well with 250 mL of silver nitrate in concentration of 0.6 mol/L, and then chelated for 30 min at room temperature. The silver nitrate in this mixture was reduced by adding 800L of punicalagin solution in concentration of 1%, bathing at 25℃ and stirring for 6 h. Consequently, a kind of stable CS/AgNPs sol with high content of AgNPs was produced. Transmission electron microscopy (TEM) images indicated that the AgNPs nanoparticles were between 8 and 11 nm in diameter dispersed uniformly in the sol. The X-ray diffraction (XRD) showed that AgNPs formed in a type of face-centered cubic structure reflected by the enhanced diffraction intensity of Ag. And the Fourier transform infrared spectroscopy (FTIR) showed that -NH2 groups of chitosan chelated with Ag+in the CS/AgNPs. We used methods of disc agar diffusion and liquid medium dilution to study the bacteriostasis. For disc agar diffusion, the experiment was modified that the filters would be replaced by the fabric, so as to improve the diffusion ability of chitosan in agar. The results indicated that the CS/AgNPs sol could inhibit the two typical species of bacteria (and) which caused infection. The inhibition zone of thewas 5.5 mm, slightly higher than the inhibition zone of the, when soaked in the fabric. The inhibitory rate of CS/AgNPs sol on E. coli and S. aureus was 95.5% and 97.6% after a 24 h-incubation respectively. The antibacterial effect of CS/AgNPs sol was tested by the minimum inhibitory concentrations (MIC). The results showed that the MIC for bothandwere 0.096L/mL detected by resazurin test for the CS/AgNPs sol taking punicalagin as the reducing agent, which was moderately better than that taking sodium borohydride as the reducing agent from which the MIC for bothandwere 0.19L/mL by resazurin test. The bacteriostatic mechanism of this kind of composites was explored. The SEM scanning and cell contents leakage experiments of the cultures after a 24 h-incubation showed that the CS/AgNPs sol can adsorb to bacterial cells, disrupted the cell membrane, and increased the cell permeability and then inhibited the cell growth. The CS/AgNPs sol prepared by the green reducing reagent punicalagin showed a good performance on technical parameters and bacteriostatic. This article provides a theoretical basis for the application in the future, which could be used in food preservative or as the medical material.
nanocomposites; sterilization; optimization; chitosan; nanoscale silver; punicalagin; antibacterial properties
2017-10-16
2018-01-26
國(guó)家自然科學(xué)基金項(xiàng)目(31301405);陜西省科技統(tǒng)籌計(jì)劃項(xiàng)目(2013KTZB02-02-05(2));陜西省教育廳專項(xiàng)項(xiàng)目(16JK1101)。
薛海燕,女,陜西興平人,研究方向食品加工與保藏技術(shù)。Email:xuehaiyan@sust.edu.cn
10.11975/j.issn.1002-6819.2018.04.038
TB333
A
1002-6819(2018)-04-0306-09
薛海燕,張 穎,張寶艷,薛麗歡. 安石榴苷還原殼聚糖/納米銀溶膠制備表征及其抑菌性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(4):306-314.doi:10.11975/j.issn.1002-6819.2018.04.038 http://www.tcsae.org
Xue Haiyan, Zhang Ying, Zhang Baoyan, Xue Lihuan. Preparation characterization and bacteriostatic properties of punicalagin reducing chitosan/nano silver sol[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 306-314. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.04.038 http://www.tcsae.org