• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The properties of fl ax fi ber reinforced wood fl our/high density polyethylene composites

    2018-03-19 05:08:46JingfaZhangHaigangWangRongxianOuQingwenWang
    Journal of Forestry Research 2018年2期

    Jingfa Zhang?Haigang Wang?Rongxian Ou?Qingwen Wang,

    Introduction

    Due to their increasing application,wood-plastic composites(WPC)have received signi fi cant attention from both applied science and industry.WPC is widely utilized in decking,trays,fencing,windows and playground equipment due to several advantages over wood or plastic alone(Jiang and Kamdem 2004;Markarian 2002).However,applications of WPC for structural construction are still restricted due to its weak mechanical performance resulting from the inherent incompatibility between hydrophilic wood and hydrophobic polyole fi n matrix(Wu et al.2014).This in turn results in low impact toughness and creep strain(Lai et al.2003).

    In order to enhance the mechanical and physical performance of WPC,different physical processing methods(Rong et al.2001;Ou et al.2014;Ferreira et al.2014),as well as chemical modi fi cations(Wei et al.2013;Bledzki et al.2015;Dong et al.2014)have been utilized to treat wood fl our(Facca et al.2007;Aggarwal et al.2013).However,all current methods have shortcomings,such as complicated operation,high cost,or pollution,constraining their commercial development.Adding reinforcement was always an effective method to improve the mechanical properties of the resulting composites.Hybridization of wood fi ber with high-strength fi bers is suspected to significantly improve the mechanical properties of resulting composites.Reinforcing fi bers,such as carbon fi ber,glass fi ber,basalt fi ber,and synthetic fi ber are widely used(Rahmat and Hubert 2011;Zhao et al.2015;Yuan et al.2013).Adding glass fi ber has been reported to enhance fl exure properties and impact strength of WF/PE composites(Thwe and Liao 2002;Zolfaghari et al.2013;Jiang et al.2003).Incorporation of basalt fi ber produced similar results(Chen et al.2013).The addition of a small amount(2–3%)of Kevlar fi ber has been shown to simultaneously improve the strength and toughness of WF/PE composites(Ou et al.2010).In addition,carbon fi bers have been used in WPC,resulting in signi fi cant improvements of mechanical properties(Zhou et al.2014).However,all of these fi bers are derived from non-renewable resources and all of them are mixed with wood fl our or plastic prior to pelleting.

    With increasing environmental consciousness,the use of natural cellulosic- fi ber (NC-Fiber) as reinforcement increased with a special emphasis on the use of hemp.Mechanical properties of different NC-Fibers(hemp,jute,kenaf and paper fi ber)indicate that they have the potential to substitute glass fi ber as a reinforcement in a speci fi c state(Wambua et al.2003;Yang et al.2015).Hemp fi ber has been widely used in a reinforced plastics matrix(Bledzki et al.2015;Corrales et al.2007).Recently,hemp has been added into WPC,resulting in improved tensile properties of wood fl our/kenaf fi ber/polypropylene hybrid composites compared to composites without kenaf fi bers(Mirbagheri et al.2007).

    Flax fi ber(FF)is a natural plant fi ber with high strength due to high cellulose content(Zhang and Yu 2003).The global production of FF was 311,000 tons in 2014(Chyxx.com 2016).Most of the FF is usually used in the textile industry.Although the cost of FF is higher than wood- fl our,it is less expensive than the cost of synthetic materials and is increasingly used in WPC.

    This study was designed to determine the reinforcing effects of fl ax fi bers( fl ax is widely planted in northeastern China)and the properties of the resulting WPC,while the biomass material content remained the same.Subsequent to mixture extrusion,the fi bers were mixed with the WF/PE particles to lessen the damage to the fi bers.Mechanical properties,dynamic mechanical properties,creep resistance,and rheological behavior of the composites were analyzed.Interfacial adhesion and fl ax features were characterized via scanning electron microscopy.

    Materials and methods

    Materials

    Flax fi bers with an average diameter of 20 μm were commercially obtained and cut into lengths of 5–10 mm.The fl ax is grown in Heilongjiang province,China.HDPE pellets(5000 S)with a density of 0.954 g cm-3and a melt fl ow index of 0.7 g 10 min-1were purchased from Daqing Petrochemical Co.,Daqing,China.Wood fl our(WF)measuring 40–80 mesh wassupplied by the Harbin Yongxu Company.Poplar is used for the wood fl our and is grown in Heilongjiang.Maleic anhydride grafted polyethylene(MAPE)was supplied by the Shanghai Sunny New Technology Development Co.,Ltd.,with a MA grafting ratio of 0.9 wt%and a melt fl ow index of 2 g 10 min-1(190°C).

    Sample preparation

    In order to avoid fi ber damaging during pelletizing,FF was added into the WF/PE composite subsequent to the twinscrew granulation process.This is different from most previous preparing processes of fi ber reinforced WPC and was as follows:(1)WF and FF were dried at 103°C for 24 h and then stored in a sealed container for later use;(2)WF,HDPE and MAPE were mixed using a speci fi c ratio(Table 1)in a high-speed mixer for a total of 5 min;(3)subsequently transferred to a twin-screw extruder to produce WF/PE pellet particles.The temperature of the extruder ranged from 145 to 170°C,increasing by increments of 5°C,with a rotation speed of 50 rpm;(4)particles and FF were then blended in the high-speed mixer for 20 min and then extruded,resulting in a FF/WF/PE composite sheetwith a cross sectionaldimension of 40 mm×4 mm.The processing temperature for extrusion was 160 °C during the melting period and 170 °C during the die zone.Rotation speed of the single-screw was 20 rpm.

    Mechanical tests

    Specimens measuring 80 mm×13 mm×4 mm were cut from the FF/WF/PE sheet and tested under three-point bending using a universal mechanical machine with a 50 KN load cell(CMT5504,The MTS(China)Co.,Ltd.),according to ASTM D790-2004.A cross head speed of 2.0 mm min-1was used and fi ve replicates used for each formulation.

    Dumbbell-shaped tensile specimens measuring 165 mm×13 mm×4 mm were tested in accordance with ASTM D638-2004 using the same universal mechanical machine.A cross head speed of 5.0 mm min-1and a span length of 50 mm were used.Five parallel samples were tested.

    Unnotched charpy impact testing was conducted on standard samples with nominal dimensions of 80 mm×10 mm×4 mm using an impact instrument(CJ5,Chengde Testing Machine Co.,Ltd.China)inaccordance with ISO 179-2000.There were ten parallel samples in each group.

    Table 1 Formulations of the composites for extruding

    Dynamic mechanical analysis

    Dynamic mechanical properties of the composites were analyzed via a dynamic mechanical analyzer(DMA Q800,TA Instruments,New Castle,USA).Tests were performed using the single cantilever strain controlled mode with oscillating amplitude of 50 μm and a frequency of 1 Hz.The temperature ranged from-40 to 130°C at increasing intervals of 3°C min-1.Three specimens with dimensions of 35 mm×12 mm×3 mm were tested.

    Creep measurement

    The 24 h creep test of the composite sample 100 mm×17 mm×4 mm was performed using a RD-100 electronic creep testing instrument(Changchun Ke Xin Experimental Instrument Co.,Ltd,China)at 23°C.The span was 64 mm and the loading force 30 N(approximately 15% of the maximum load).

    Torque rheology

    Rheological behavior was evaluated using the Haake torque rheometer(Polylab OS,Thermo Scienti fi c,Germany)equipped with two counter rotating rotors.WF/PE particles and FF were quickly forced into the mixing chamber when the rotors began to rotate.The test was run at 175°C and 50 rpm for a total of 10 min and with a constant degree of fi lling of 70%.Three parallel samples were tested.

    Scanning electron microscopy(SEM)

    Cryo-fractured surfaces were produced by breaking of the FF/WF/PE composites under liquid nitrogen conditions and subsequent sputter coating with gold.The fractured surfaces were analyzed with a scanning electron microscope(FEI QUNGTA200,USA)at an accelerating voltage of 10 kV.

    Fig.1 Effects of FF content on fl exure and tensile properties of WF/FF/PE composites:a fl exural strength and modulus,b tensile strength and modulus.The error shows the standard deviation from the average value

    Results and discussion

    Mechanical properties of composites

    Fig.2 The un-notched impact strength of FF/WF/PE composites.Ten specimens were tested for each FF content.The error bars show the standard deviation from the average value

    Compared to WF/PE,the fl exural strength and modulus of WF/FF/PE-9 increased by 14.6 and 51.4%,respectively(Fig.1a).However,the results started to decrease for values above 9%FF content.Numerous small cracks would generate when the composite was subjected to external loads.With increasing force,these cracks extended until the material was damaged.However,FF crosses a crack and prevents further expansion.At material failure,FF bears the majority of the force.With further loading,increasing FF would be pulled out or off,consuming a large amount of energy.Therefore,adding FF into WF/PE composites increases the fl exural strength of WF/FF/PE.The modulus of FF was higher than that of WF(Cao et al.2014),resulting in the improvent of fl exual modulus.In addition,synergistic enhancement of physical interaction among WF,FF and PE was detected,limiting their respective deformation.The interaction hindered polyethylene molecular chain slippage.Consequently,the fl exual strength and modulus improved.However,FF may bunch up with increasing content.This was the reason for decreasing fl exural strength and modulus of FF/WF/PE-12.Increasing the content of fl ax fi ber resulted in an increase in both tensile strength and modulus of the resulting composites of 4.3 and 13.6%,respectively(Fig.1b).Compared to fl exural strength and modulus,the tensile strength showed no obvious changes.This is due to FF being too short to generate suf fi cient interfacial shear strength to bear the force.Most of the FF was arranged along the extrusion direction and therefore,the tensile force would easily extend along the interface.The improvement of tensile performance was suboptimal.

    Fig.3 The Storage modulus(G′)and loss modulus(G′)of FF/WF/HDPE composites.The curve was an average of three parallel samples.WF wood fl our;FF fl ax fi ber;PE polyethylene

    The unnotched impact strengths of the composites increased considerably when fl ax fi ber was added.The results of the impact strength study are depicted in Fig.2.With fl ax fi ber loading of 12 wt%,an increase of 26.5%in unnotched impact strength was obtained.

    The unnotched impact strength of composites is affected by crack initiation and propagation energy.When fl ax fi ber was loaded,the impact strength improved due to the loading being transferred to the FF by the shear forces between FF and the matrix.Therefore,FF bore the impact force until the fi bers were either pulled off or out.At the same time,wood fl our and fl ax fi bers twined with each other.Based on the crazing cut and fi ber crack resistance theory(Jia et al.2007)WPC produces numerous small cracks during early damage due to external forces.FF stretched across the cracks,thus arresting developing cracks.Consequently,adding fl ax fi bersigni fi cantly improved the impact properties of WPC.

    Dynamic mechanical analysis

    Fig.4 The loss tangent(tanδ)of FF/WF/HDPE composites.WF wood fl our;FF fl ax fi ber;PE polyethylene

    The storage modulus of composites increased subsequent to adding FF(Fig.3),echoing the fl exure modulus.The storage modulus of FF/WF/PE composites decreased due to an increase in temperature and converged to a narrow range at high temperatures.The reduction of storage modulus(G′)with the temperature rise was due to matrix softening,and the G′of FF/WF/PE composites initiation of the relaxation process which is the natural character of polymers(Pothan et al.2003).The G′fi rst increased,but then decreased with increasing FF content.There are two reasons for this:on the one hand,the stiffness of FF is higher than that of WF(Cao et al.2014).Therefore,adding FF improves the modulus of composites.On the other hand,FF and WF interact and form a grid-like structure,embedded in the viscoelastic matrix(Huang and Terentjev 2012).However,as FF content increased to 12%,FF reunited,leading to a drop of the G′of FF/WF/PE.The loss modulus of the material is associated with either the viscous response or the dampening effect of the material.Figure 3 shows that the change in loss modulus(G′′)was similar to that of the storage modulus and peaked in the transition region at approximately 60°C.This relaxation peak is known as α-relaxation of HDPE,and is related to a complex multi-relaxation process associated with the molecular motion of the HDPE crystalline region.The temperature of α-relaxation increased with FF loading.However,it dropped back to initial levels when the content of FF was increased to 12 wt%.FF limited the movement of the HDPE molecules due to their three dimensional network structure(Fig.7e).However,the FF bunched up,disturbing the continuity of the matrix at relatively high contents of FF(12 wt%).

    Fig.5 Creep resistance behavior of WF/FF/PE composites.WF wood fl our;FF fl ax fi ber;PE polyethylene

    Fig.6 Effects of FF content on the mixing torque of the composites.The curve is an average of two parallel samples.WF wood fl our;FF fl ax fi ber;PE polyethylene

    The tanδ,which shows differences in the viscoelastic response of the composite,is a ratio between the loss modulus and the storage modulus.In a low temperature range,the content of FF had an obvious effect on the magnitude of tanδ(Fig.4).With increasing FF content,the FF/WF/PE showed a decreased value of tanδ as compared to WF/PE composites.This indicated that the FF/WF/PE composites had more elastic character than typical curves.

    Creep measurement

    Adding FF improved creep resistance(Fig.5)and with increasing content,the value gradually decreased.This indicates that a small amount of FF could improve creep resistance and a content of 9%FF was found to be optimal,resulting in effective creep reduction.Further increases of FF content may cause poor dispersion of FF within the matrix,a negative factor for properties such as creep value and tensile strength.Wang et al.(2015)reported that with increasing size of wood fi bers,the creep strain was reduced.This phenomenon was attributed to the large fi ber aspect ratio which can lead to improved creep resistance.Compared to WF,there were more friction forces between FF and plastic due to the larger surface area of a single FF fi ber compared to a WF particle.In addition,the interaction between FF,WF,and HDPE was enhanced with increasing FF content,restraining matrix deformation.

    Fig.7 The SEM micrographs of the fractured surfaces of WPCs(a),FF/FF/PE-3(b and c),FF/FF/PE-6(d),FF/FF/PE-9(e),and FF/FF/PE-12(f)

    Rheological properties during processing

    The balance torque and temperature of the composite melts increased with increasing FF content(Fig.6).This may be attributed to the interaction among FF,WF,and HDPE inhibiting the thermal mobility of the HDPE chains.Moreover,adding FF increased the internal friction of the composites and improved shear heat.This led to a rise in melt temperature.

    Micrographic analysis of fracture surface

    Most wood particles in the HDPE matrix were well-bonded as a result of coupling.However,the interface was noticeable(Fig.7a).Furthermore,the interface between FF and HDPE was similar to that of the WF/PE composites(Fig.7b).Figure 7c indicates that fi ber pullout was the dominant mode of failure for the WF/FF/PE composites.In a general way,the failure modes of fi ber-reinforced polymers included interface de-bonding, fi ber fracture, fi brillation,and buckling under different test conditions(Yue and Padmanabhab 1999).

    With increasing FF content,the complicated con fi guration ofFF becomesincreasingly bene fi cialto the mechanical interlocking among FF,wood- fl our,and the resin matrix forming a three-dimensional network structure(Fig.7e).This can lead to a more ef fi cient stress transfer between the FF and matrix,thereby producing a composite with superior strength and toughness as compared to that of WPCs.Figure 7f shows FF agglomeration present in the composite when the content was as high as 12%.This furtherdestroyed the continuity ofthe matrix and decreased the fl exural and tensile strength(Fig.1).

    Conclusions

    The incorporation of FF as a reinforcement material plays a vital role in WF/PE composites,improving mechanical properties and dynamic modulus without changing the content of biomass fi bers.This has mainly been attributed to the high strength of the fl ax fi ber and its excellent compatibility with both wood- fl our and HDPE matrix.Adding fl ax fi bers can improve toughness and creep resistance of WPC.However,the processing performance of WF/FF/PE declined.

    Aggarwal PK,Chauhan S,Raghu N,Karmarkar S,Shashidhar GM(2013)Mechanical properties of bio- fi bers reinforced high density polyethylene composites:effect of coupling agents and bio- fi llers.J Reinf Plast Compos 32:1722–1732

    Bledzki AK,Mamun AA,Jaszkiewicz A,Erdmann K(2015)Polypropylene biocomposites reinforced with softwood,abaca,jute,and kenaf fi bers.Ind Crop Prod 70:91–99

    Cao Y,Wang WH,Wang QW(2014)Application of mechanical model for natural fi bre reinforced polymer composites.Mater Res Innov 18:354–357

    Chen JX,Wang Y,Gu CL,Liu JX,Liu YF,Li M,Lu Y(2013)Enhancement of the mechanical properties of basalt fi ber-woodplastic composites via maleic anhydride grafted high-density polyethylene(mape)addition.Materials 6:2483–2487

    CNII(2016)The analysis of the regional distribution and production of fl ax fi ber and fi ber bundle in the world in 2014,China.http://www.chyxx.com/industry/201602/388177.html

    Corrales F,Vilaseca F,Llop M,Girones J,Mendez JA,Mutje P(2007)Chemical modi fi cation of jute fi bers for the production of green-composites.J Hazard Mater 144:730–735

    Dong AX,Yu YY,Yuan JG,Wang Q,Fan XR(2014)Hydrophobic modi fi cation of jute fi ber used for composite reinforcement via laccase-mediated grafting.Appl Surf Sci 301:418–427

    Facca AG,Kortschot MT,Yan N(2007)Predicting the tensile strength of natural fi bre reinforced thermoplastics.Compos Sci Technol 67:2454–2466

    Ferreira MS,Sartori MN,Oliveira RR,Guven O,Moura EA(2014)Short vegetal- fi ber reinforced HDPE—A study of electron-beam radiation treatment effects on mechanical and morphological properties.Appl Surf Sci 310:325–330

    Huang YY,Terentjev EM(2012)Dispersion of carbon nanotubes:mixing,sonication,stabilization,and composite properties.Polymers 4:275–295

    Jia Z,Jiang B,Cheng GX,Yang XB(2007)Research progress of fi bers reinforced cement based composites.Mater Adminicle 8:65–68

    Jiang HH,Kamdem DP(2004)Development of poly(vinyl chloride)/wood composites.A literature review.J Vinyl Addit Technol 10:59–69

    Jiang HH,Pascal Kamdem D,Bezubic B,Ruede P(2003)Mechanical properties of poly(vinyl chloride)/wood fl our/glass fi ber hybrid composites.J Vinyl Addit Technol 9:138–145

    Lai SM,Yeh FC,Wang Y,Chan HC,Shen HF(2003)Comparative study of maleated polyole fi ns as compatibilizers for polyethylene/wood fl our composites.J Appl Polym Sci 87:487–496

    Markarian J(2002)Additive developments aid growth in woodplastic composites.Plast Addit Compd 4:18–21

    Mirbagheri J,Tajvidi M,Hermanson JC,Ghasemi I(2007)ensile properties of wood fl our/kenaf fi ber polypropylene hybrid composites.J Appl Polym Sci 105:3054–3059

    Ou RX,Zhao H,Sui SJ,Song YM,Wang QW(2010)Reinforcing effects of kevlar fi ber on the mechanical properties of woodfl our/high-density-polyethylene composites.Compos A Appl Sci Manuf 41:1272–1278

    Ou RX,Xie YJ,Wang QW,Sui SJ,Wolcott MP(2014)Effects of ionic liquid on the rheological properties of wood fl our/high density polyethylene composites.Compos Part a Appl Sci Manuf 61:134–140

    Pothan LA,Oommen Z,Thomas S(2003)Dynamic mechanical analysis of banana fi ber reinforced polyester composites.Compos Sci Technol 63:283–293

    Rahmat M,Hubert P(2011)Carbon nanotube–polymer interactions in nanocomposites:a review.Compos Sci Technol 72:72–84

    Rong MZ,Zhang MQ,Liu Y,Yang GC,Zeng HM(2001)The effect of fi ber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites.Compos SciTechnol 61:1437–1447

    Thwe MM,Liao K(2002)Effects of environmental aging on the mechanical properties of bamboo–glass fi ber reinforced polymer matrix hybrid composites.Compos A Appl Sci Manuf 33:43–52

    Wambua P,Ivens J,Verpoest I(2003)Natural fi bres:can they replace glassin fi bre reinforced plastics.ComposSciTechnol 63:1259–1264

    Wang WH,Huang HB,Du HH,Wang H(2015)Effects of fi ber size on short-term creep behavior of wood fi ber/HDPE composites.Polym Eng Sci 55:693–700

    Wei LQ,McDonald AG,Freitag C,Morrell JJ(2013)Effects of wood fi ber esteri fi cation on properties,weatherability and biodurability of wood plastic composites.Polym Degrad Stab 98:1348–1361

    Wu QL,Chi K,Wu YQ,Lee S(2014)Mechanical,thermal expansion,and fl ammability properties of co-extruded wood polymer composites with basalt fi ber reinforced shells.Mater Des 60:334–342

    Yang XH,Zhang XQ,Wang WH,Huang HB,Sui SJ(2015)Properties of paper mill sludge–wood fi ber–HDPE composites after exposure to xenon-arc weathering.J For Res 26(2):509–515

    Yuan FP,Ou RX,Xi?e YJ,Wang QW(2013)Reinforcing effects of modi fi ed Kevlar fi ber on the mechanical properties of wood fl our/polypropylene composites.J For Res 24:149–153

    Yue CY,Padmanabhab K(1999)Interfacial studies on surface modi fi ed kevlar fi bre/epoxy matrix composites.Compos B Eng 30:205–217

    Zhang YM,Yu WD(2003)Study on the physical and chemical properties of fl ax fi bers.Plant Fiber Prod 25:130–134

    Zhao ZZ,Chen X,Wang X(2015)Deformation behavior of woven glass/epoxy composite substrate under thermo-mechanical loading.Mater Des 82:130–135

    Zhou ZF,Xu M,Yang ZZ,Li XX,Shao DW(2014)Effect of maleic anhydride grafted polyethylene on the properties of chopped carbon fi ber/wood plastic composites.J Reinf Plast Compos 33:1216–1225

    Zolfaghari A,Behravesh AH,Adli A(2013)Continuous glass fi ber reinforced wood plastic composite in extrusion process:mechanical properties.Mater Des 51:701–708

    中国国产av一级| 久久人妻av系列| 人妻少妇偷人精品九色| 好男人视频免费观看在线| 嫩草影院精品99| 99久久中文字幕三级久久日本| 国产av在哪里看| 婷婷色综合大香蕉| 久久国产乱子免费精品| 久久精品91蜜桃| 禁无遮挡网站| 天堂av国产一区二区熟女人妻| av卡一久久| 99久久中文字幕三级久久日本| 好男人视频免费观看在线| 中文精品一卡2卡3卡4更新| 国产一区二区三区在线臀色熟女| 午夜福利在线观看吧| 一本久久中文字幕| 久久中文看片网| av免费观看日本| 91av网一区二区| av国产免费在线观看| avwww免费| 菩萨蛮人人尽说江南好唐韦庄 | 欧美最黄视频在线播放免费| 啦啦啦韩国在线观看视频| 成人美女网站在线观看视频| 一个人看视频在线观看www免费| 白带黄色成豆腐渣| 熟妇人妻久久中文字幕3abv| 国产成人午夜福利电影在线观看| 91狼人影院| kizo精华| 99热精品在线国产| 国产精品伦人一区二区| 国内精品宾馆在线| 色综合站精品国产| 亚洲欧洲国产日韩| 国产精品一及| 国产成人精品婷婷| 长腿黑丝高跟| 乱人视频在线观看| 青青草视频在线视频观看| 毛片一级片免费看久久久久| 青青草视频在线视频观看| 欧美精品国产亚洲| 精品一区二区免费观看| 人人妻人人看人人澡| 久久久精品大字幕| 午夜福利成人在线免费观看| 韩国av在线不卡| 国产视频内射| 亚洲最大成人手机在线| 亚洲国产欧美人成| 久久久精品94久久精品| 亚州av有码| 亚洲最大成人av| 亚洲av第一区精品v没综合| 一级毛片我不卡| АⅤ资源中文在线天堂| av又黄又爽大尺度在线免费看 | 最近手机中文字幕大全| 中国美女看黄片| 美女内射精品一级片tv| 亚洲精品影视一区二区三区av| 免费人成视频x8x8入口观看| 在线免费十八禁| 国产v大片淫在线免费观看| 老师上课跳d突然被开到最大视频| 直男gayav资源| 天堂影院成人在线观看| av专区在线播放| 成人综合一区亚洲| 国产免费男女视频| 九九在线视频观看精品| 一区二区三区高清视频在线| 亚洲真实伦在线观看| 亚洲精品日韩av片在线观看| 黑人高潮一二区| 亚洲国产欧美在线一区| 国产一区二区在线av高清观看| 中国国产av一级| 给我免费播放毛片高清在线观看| 免费看av在线观看网站| 亚洲美女搞黄在线观看| 校园春色视频在线观看| 国产精品野战在线观看| 国内精品一区二区在线观看| 日韩欧美 国产精品| 亚洲av男天堂| 有码 亚洲区| 亚洲av一区综合| 亚洲国产色片| 日本撒尿小便嘘嘘汇集6| 免费观看精品视频网站| 国产精品99久久久久久久久| 看十八女毛片水多多多| 1000部很黄的大片| 只有这里有精品99| 国产乱人视频| 亚洲精华国产精华液的使用体验 | 一区二区三区四区激情视频 | 国语自产精品视频在线第100页| 免费av不卡在线播放| 精品熟女少妇av免费看| 亚洲av二区三区四区| 欧美激情国产日韩精品一区| 大香蕉久久网| 成人午夜精彩视频在线观看| 色视频www国产| 美女 人体艺术 gogo| 久99久视频精品免费| 最近2019中文字幕mv第一页| 精品一区二区三区视频在线| 熟女人妻精品中文字幕| 三级毛片av免费| 一本一本综合久久| 性欧美人与动物交配| 国产精品一区www在线观看| 最后的刺客免费高清国语| 精品欧美国产一区二区三| 美女cb高潮喷水在线观看| 男插女下体视频免费在线播放| 麻豆成人午夜福利视频| 久久久国产成人免费| 国产亚洲精品久久久com| 欧美色视频一区免费| 国产黄色视频一区二区在线观看 | 国产亚洲精品久久久com| 99久久人妻综合| 日韩欧美在线乱码| 日韩精品青青久久久久久| 在线观看美女被高潮喷水网站| 国产黄色视频一区二区在线观看 | 国产在线男女| 91av网一区二区| 嫩草影院新地址| 免费在线观看成人毛片| 在线播放无遮挡| 国产不卡一卡二| 一夜夜www| 成年免费大片在线观看| 在线国产一区二区在线| 国产亚洲精品久久久久久毛片| 欧美日韩综合久久久久久| 亚洲国产色片| 如何舔出高潮| 九草在线视频观看| 黄片wwwwww| 最好的美女福利视频网| 偷拍熟女少妇极品色| 日韩一区二区三区影片| 免费av观看视频| 亚洲成人久久性| 免费看光身美女| 91久久精品国产一区二区三区| 久久久久久大精品| 亚洲国产欧洲综合997久久,| 最近中文字幕高清免费大全6| 性色avwww在线观看| 国产日本99.免费观看| 一卡2卡三卡四卡精品乱码亚洲| 国产大屁股一区二区在线视频| 久久99热6这里只有精品| 99热全是精品| 啦啦啦啦在线视频资源| 欧美高清性xxxxhd video| 极品教师在线视频| 在线播放国产精品三级| 又黄又爽又刺激的免费视频.| 成人欧美大片| 午夜视频国产福利| 午夜精品一区二区三区免费看| 中国美白少妇内射xxxbb| 欧美人与善性xxx| 亚洲色图av天堂| 最好的美女福利视频网| 国产黄片视频在线免费观看| 午夜福利成人在线免费观看| 婷婷亚洲欧美| 男女做爰动态图高潮gif福利片| 18禁在线无遮挡免费观看视频| 人妻系列 视频| 中文资源天堂在线| 精品人妻视频免费看| 一级毛片久久久久久久久女| 蜜桃亚洲精品一区二区三区| 成人高潮视频无遮挡免费网站| www日本黄色视频网| 亚洲成人久久爱视频| 午夜精品国产一区二区电影 | 国内久久婷婷六月综合欲色啪| 黄色配什么色好看| 久久精品国产自在天天线| 97热精品久久久久久| 老师上课跳d突然被开到最大视频| 夜夜看夜夜爽夜夜摸| 爱豆传媒免费全集在线观看| 一本久久中文字幕| 日韩视频在线欧美| 12—13女人毛片做爰片一| 九九热线精品视视频播放| 久久久久性生活片| 日本熟妇午夜| 亚洲一级一片aⅴ在线观看| 男女视频在线观看网站免费| 如何舔出高潮| 黄色日韩在线| 亚洲内射少妇av| 成人性生交大片免费视频hd| 免费av观看视频| 少妇人妻一区二区三区视频| 亚洲国产精品成人综合色| 国产 一区 欧美 日韩| 小说图片视频综合网站| 亚洲国产欧洲综合997久久,| 国产精品一区www在线观看| 国产在线男女| 日韩中字成人| 亚洲欧美清纯卡通| 成人美女网站在线观看视频| 熟女电影av网| 国产成人精品婷婷| 夜夜夜夜夜久久久久| 人妻制服诱惑在线中文字幕| 国产精品一及| 精品人妻熟女av久视频| 久久久久免费精品人妻一区二区| 日本黄色视频三级网站网址| 日韩欧美一区二区三区在线观看| 免费人成视频x8x8入口观看| 国产亚洲欧美98| 九草在线视频观看| 99久久中文字幕三级久久日本| 亚洲国产精品成人久久小说 | 国产精品日韩av在线免费观看| 秋霞在线观看毛片| 久久久久久久久久成人| 亚洲av.av天堂| 亚洲欧美中文字幕日韩二区| 一个人看视频在线观看www免费| 国产真实伦视频高清在线观看| 日韩av在线大香蕉| av专区在线播放| 欧美日韩在线观看h| 国模一区二区三区四区视频| 可以在线观看毛片的网站| 亚洲自拍偷在线| 夜夜爽天天搞| 青春草视频在线免费观看| 日本免费一区二区三区高清不卡| 欧美在线一区亚洲| 中文字幕久久专区| 国产精品福利在线免费观看| 亚洲精品久久国产高清桃花| 国产日韩欧美在线精品| 亚洲精品成人久久久久久| 国产成人影院久久av| 精品久久久久久久人妻蜜臀av| 精华霜和精华液先用哪个| 亚洲精品国产av成人精品| 国产伦精品一区二区三区四那| 亚洲国产精品sss在线观看| 18禁裸乳无遮挡免费网站照片| 中文字幕久久专区| 18禁黄网站禁片免费观看直播| 男人的好看免费观看在线视频| 国产av麻豆久久久久久久| 国产一区二区三区av在线 | 特级一级黄色大片| 亚洲av男天堂| a级毛色黄片| 色5月婷婷丁香| 18禁黄网站禁片免费观看直播| 在线观看午夜福利视频| 午夜精品一区二区三区免费看| 99久久久亚洲精品蜜臀av| 观看美女的网站| av在线老鸭窝| 国产 一区精品| 好男人视频免费观看在线| 欧美变态另类bdsm刘玥| 26uuu在线亚洲综合色| 插阴视频在线观看视频| 中国美白少妇内射xxxbb| 国产蜜桃级精品一区二区三区| 亚洲欧美中文字幕日韩二区| 九草在线视频观看| 久久精品影院6| 一本一本综合久久| 成人永久免费在线观看视频| 99久久中文字幕三级久久日本| 午夜激情福利司机影院| 国产精品一区二区在线观看99 | 九草在线视频观看| 我要搜黄色片| 日韩在线高清观看一区二区三区| 欧美一区二区国产精品久久精品| 丝袜喷水一区| av免费在线看不卡| 精品人妻一区二区三区麻豆| 在线观看一区二区三区| 国内精品宾馆在线| 亚洲国产精品合色在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av在线蜜桃| 免费人成视频x8x8入口观看| kizo精华| 99久久精品热视频| 啦啦啦啦在线视频资源| 人妻夜夜爽99麻豆av| 两个人视频免费观看高清| 久久久久久久亚洲中文字幕| 黄片wwwwww| 国产麻豆成人av免费视频| 国产精品一区二区三区四区免费观看| 男女做爰动态图高潮gif福利片| 国产黄色视频一区二区在线观看 | 你懂的网址亚洲精品在线观看 | 变态另类丝袜制服| 91精品国产九色| 99久久久亚洲精品蜜臀av| 免费人成视频x8x8入口观看| 成人午夜精彩视频在线观看| 国产私拍福利视频在线观看| 国产单亲对白刺激| 日韩人妻高清精品专区| 中国美女看黄片| 久久亚洲国产成人精品v| 国产精品av视频在线免费观看| 乱系列少妇在线播放| 可以在线观看毛片的网站| 12—13女人毛片做爰片一| 国产男人的电影天堂91| 国产精品1区2区在线观看.| 亚洲色图av天堂| 男人舔奶头视频| 亚洲无线在线观看| 九九在线视频观看精品| 亚洲精品日韩av片在线观看| 我要搜黄色片| 蜜桃亚洲精品一区二区三区| 国产精品久久久久久久电影| www日本黄色视频网| 欧美xxxx性猛交bbbb| 伊人久久精品亚洲午夜| 国产亚洲91精品色在线| 一本一本综合久久| 丝袜喷水一区| 国产老妇女一区| 一区福利在线观看| 一区二区三区四区激情视频 | 欧美极品一区二区三区四区| 成人高潮视频无遮挡免费网站| 久久婷婷人人爽人人干人人爱| av在线播放精品| 老司机福利观看| .国产精品久久| www.色视频.com| 高清毛片免费观看视频网站| 亚洲欧美日韩高清在线视频| 12—13女人毛片做爰片一| 成人特级av手机在线观看| 国产精品一区www在线观看| 久久久久国产网址| 久久久久久久久大av| 国产精品美女特级片免费视频播放器| 在线播放国产精品三级| 国产熟女欧美一区二区| 日韩三级伦理在线观看| 国产精品一区www在线观看| 尾随美女入室| 亚洲电影在线观看av| 又粗又硬又长又爽又黄的视频 | 国产黄色小视频在线观看| 亚洲成a人片在线一区二区| 久久亚洲国产成人精品v| 免费观看a级毛片全部| 观看美女的网站| 蜜桃久久精品国产亚洲av| 国产精品1区2区在线观看.| 久久人人精品亚洲av| 午夜福利在线观看吧| 联通29元200g的流量卡| 日本黄大片高清| 国产一区二区亚洲精品在线观看| 精品日产1卡2卡| 99久久九九国产精品国产免费| 男女下面进入的视频免费午夜| 国产片特级美女逼逼视频| 国产在线精品亚洲第一网站| 亚洲真实伦在线观看| 性插视频无遮挡在线免费观看| 久久精品国产亚洲av天美| 少妇高潮的动态图| 亚洲成人中文字幕在线播放| 亚洲va在线va天堂va国产| 国产综合懂色| 久久久久久九九精品二区国产| 国产成人福利小说| 成人性生交大片免费视频hd| 欧美潮喷喷水| 三级国产精品欧美在线观看| 综合色av麻豆| 亚洲av不卡在线观看| 小说图片视频综合网站| 亚洲18禁久久av| 亚洲自拍偷在线| 又粗又爽又猛毛片免费看| 亚洲av第一区精品v没综合| 如何舔出高潮| 两性午夜刺激爽爽歪歪视频在线观看| 婷婷六月久久综合丁香| 99在线视频只有这里精品首页| 99久久精品一区二区三区| 一区二区三区高清视频在线| 69人妻影院| 午夜视频国产福利| 免费av毛片视频| 午夜激情欧美在线| 国产欧美日韩精品一区二区| 欧美日韩精品成人综合77777| 亚洲va在线va天堂va国产| 国产色爽女视频免费观看| 在线观看免费视频日本深夜| 有码 亚洲区| 一进一出抽搐动态| 婷婷精品国产亚洲av| 欧美性感艳星| 熟妇人妻久久中文字幕3abv| 久久99蜜桃精品久久| 午夜免费激情av| 免费无遮挡裸体视频| 狂野欧美激情性xxxx在线观看| 精品久久久久久久久久免费视频| 亚洲欧美成人综合另类久久久 | 亚洲精品国产av成人精品| 九草在线视频观看| 在线观看美女被高潮喷水网站| a级一级毛片免费在线观看| 色吧在线观看| 亚洲久久久久久中文字幕| 亚洲成人中文字幕在线播放| 久久精品久久久久久久性| 欧美+亚洲+日韩+国产| 亚洲精品国产av成人精品| 一个人看视频在线观看www免费| 九九热线精品视视频播放| 午夜精品一区二区三区免费看| 国内揄拍国产精品人妻在线| 欧美3d第一页| ponron亚洲| 毛片女人毛片| 欧美日韩综合久久久久久| 亚洲国产精品成人综合色| 欧美人与善性xxx| 亚洲国产日韩欧美精品在线观看| 最近2019中文字幕mv第一页| 国产高潮美女av| 国产视频内射| 五月玫瑰六月丁香| 听说在线观看完整版免费高清| 最近最新中文字幕大全电影3| 男女做爰动态图高潮gif福利片| 特大巨黑吊av在线直播| 波多野结衣高清无吗| 亚洲国产精品成人久久小说 | 欧美性猛交╳xxx乱大交人| 欧美潮喷喷水| www.色视频.com| 99久国产av精品| 午夜福利在线在线| 简卡轻食公司| 两个人的视频大全免费| 亚洲精品国产av成人精品| 国产熟女欧美一区二区| 亚洲aⅴ乱码一区二区在线播放| 在线国产一区二区在线| 久久久久久久午夜电影| av专区在线播放| 亚洲av成人av| 99精品在免费线老司机午夜| 99热只有精品国产| 可以在线观看毛片的网站| 校园人妻丝袜中文字幕| av.在线天堂| 99热全是精品| 日韩制服骚丝袜av| 波多野结衣巨乳人妻| 一夜夜www| 夜夜看夜夜爽夜夜摸| 少妇熟女欧美另类| 久久精品夜夜夜夜夜久久蜜豆| 午夜精品一区二区三区免费看| 国产精品精品国产色婷婷| 波野结衣二区三区在线| 国产麻豆成人av免费视频| 色噜噜av男人的天堂激情| 精品久久久噜噜| 黄色视频,在线免费观看| av福利片在线观看| 午夜激情欧美在线| 国产伦精品一区二区三区视频9| 99精品在免费线老司机午夜| 一区二区三区四区激情视频 | a级毛色黄片| 菩萨蛮人人尽说江南好唐韦庄 | 少妇高潮的动态图| 成人av在线播放网站| 国产真实伦视频高清在线观看| 老女人水多毛片| 最近视频中文字幕2019在线8| av天堂中文字幕网| 一级黄片播放器| 九九久久精品国产亚洲av麻豆| 看片在线看免费视频| 免费搜索国产男女视频| 日韩人妻高清精品专区| 亚洲精品乱码久久久v下载方式| 亚洲熟妇中文字幕五十中出| 国产精品乱码一区二三区的特点| 国产亚洲精品久久久com| 黄片无遮挡物在线观看| 日本一本二区三区精品| 日本免费a在线| 永久网站在线| 蜜桃亚洲精品一区二区三区| 又粗又硬又长又爽又黄的视频 | 久久久精品欧美日韩精品| 在线观看66精品国产| 国产中年淑女户外野战色| 菩萨蛮人人尽说江南好唐韦庄 | 99久久九九国产精品国产免费| 麻豆成人午夜福利视频| 久久精品久久久久久噜噜老黄 | 日日啪夜夜撸| 如何舔出高潮| 国产成人福利小说| 国语自产精品视频在线第100页| 国产麻豆成人av免费视频| 国产精品av视频在线免费观看| 波多野结衣巨乳人妻| 日本av手机在线免费观看| 精品一区二区三区人妻视频| 成人鲁丝片一二三区免费| av免费在线看不卡| 国产精品99久久久久久久久| 一本一本综合久久| 色噜噜av男人的天堂激情| 国产精品野战在线观看| 好男人视频免费观看在线| 久久久午夜欧美精品| 乱码一卡2卡4卡精品| 国产精品女同一区二区软件| 永久网站在线| 日本撒尿小便嘘嘘汇集6| 日本色播在线视频| 国产蜜桃级精品一区二区三区| 啦啦啦啦在线视频资源| 成人三级黄色视频| 99久久成人亚洲精品观看| 国产 一区精品| 久久久国产成人免费| 亚洲精品乱码久久久久久按摩| 久久久久性生活片| 欧美日本视频| 久久久午夜欧美精品| 又爽又黄无遮挡网站| 99热网站在线观看| 99热精品在线国产| 我要看日韩黄色一级片| 日韩,欧美,国产一区二区三区 | 五月玫瑰六月丁香| 日韩一区二区视频免费看| 九九热线精品视视频播放| 99久久九九国产精品国产免费| 久久精品夜色国产| 美女黄网站色视频| 看免费成人av毛片| 热99re8久久精品国产| 国产精品免费一区二区三区在线| 人人妻人人看人人澡| av视频在线观看入口| 欧美区成人在线视频| 欧美成人a在线观看| 老司机福利观看| 中文欧美无线码| 中出人妻视频一区二区| 亚洲成人久久性| 热99re8久久精品国产| av国产免费在线观看| 又黄又爽又刺激的免费视频.| 成人漫画全彩无遮挡| 黄色日韩在线| 成人av在线播放网站| www日本黄色视频网| 亚洲av成人精品一区久久| 一级毛片久久久久久久久女| 国产精品1区2区在线观看.| 美女cb高潮喷水在线观看| 国产免费一级a男人的天堂| 三级毛片av免费| 97人妻精品一区二区三区麻豆| 亚洲图色成人| av免费在线看不卡| 国产精品乱码一区二三区的特点| 亚洲人与动物交配视频| 爱豆传媒免费全集在线观看| 伦理电影大哥的女人| 桃色一区二区三区在线观看| 床上黄色一级片| 国产熟女欧美一区二区| 午夜精品国产一区二区电影 | 99热这里只有精品一区|