楊亭榆, 傅成華
(四川理工學院自動化與信息工程學院, 四川自貢643000)
當今社會日新月異,隨著科學的飛快發(fā)展,我國急需一批綜合素質較強、具備獨擋一面能力的應用型人才。目前很多用人單位去各個高校招聘時只能通過查看學生的考試成績以及獲獎證書來判定學生的優(yōu)異度,這樣尤其突出了高校對學生綜合素質能力評判標準的重要性。高等教育多元化,各學科專業(yè)培養(yǎng)目標不同,因而需具備的能力素質不同,這就要求高校適時地加強對學生的綜合素質培養(yǎng)力度,既要培養(yǎng)學生具備較強的專業(yè)知識,又要培養(yǎng)學生適應社會的競爭力,還要培養(yǎng)學生的團隊凝聚力。因此需要一種方法對學生的綜合素質進行評估,以期準確地對學生進行評優(yōu),從而正確地反映學生的綜合素質能力。
學生的考試成績只能反映出學生的學習態(tài)度以及目前的學習狀況,并不能體現一個人的綜合素質能力,學生綜合能力包含了考試成績、思想道德素質、身心健康、動手操作、科學創(chuàng)新以及創(chuàng)新創(chuàng)業(yè)能力等多項能力[1-3]。傳統(tǒng)的評價方法大多采用線性方法,人為的設定各項指標的權重進行線性計算,具有較強的主觀性;模糊綜合評價法[4-5]對各項指標進行模糊處理,具備較強的人為經驗,雖然是一種非線性處理方法,但是不具備學習能力;神經網絡評價法[6-7]雖然具備學習能力,但是不能對一些模糊信息進行有效處理。
以上評估方法互有優(yōu)缺點,大多高校通常采用其中的一種方法進行評判。對此,本文采用人工智能的方法,通過模擬實際人工操作處理方式,提出一種基于信息融合的CS-SVM學生綜合能力評估方法。該方法與其他方法相比在一定程度上減小了人為主觀因素,增強了評價信息的完整性,對學生各方面的能力進行了更綜合更全面的融合,科學快速并較為精確地對學生綜合能力進行分類評估。此方法設計步驟為先將各科學習成績、活動創(chuàng)新成績、實踐實驗成績、畢業(yè)實習成績、綜合測評成績等數據融合為SVM的輸入樣本,再將樣本放入根據經驗知識訓練好的CS-SVM進行分類評估。其通過多信息融合,結合CS-SVM優(yōu)秀的分類能力進行分類,這樣能更全面的反應出學生的實際綜合素質能力。
信息融合是將多維信息進行分析和處理的方法和理論,通過將事物不同特征維度數據進行融合和處理,使得其結果能更加全面可靠。目前存在大量的融合算法,大致可分為三類:隨機式算法、最小二乘法算法以及人工智能式算法。隨機式算法包含多貝葉斯估計法、證據推理法、多級遞歸算法等;最小二乘法算法包含加權平均法、卡爾曼濾波法等優(yōu)化算法;人工智能算法包含粗糙集推理、模糊推理、神經網絡、支持向量機等[8]。伴隨著時代的進步與發(fā)展,人工智能化時代已悄然來臨,其中信息融合已逐漸變得更加智能并且能將多種具有不同特征的信息集成化。信息融合按照數據的抽象層次進行劃分可分為數據級層次的融合、特征級層次的融合以及決策級層次的融合。數據級層次的融合,具有數據損失量少,精確度高但其對數據資源要求極其嚴苛;決策級層次的融合數據丟失量最大、精度最低;特征級層次的融合有數據損失且融合性能較低,介于數據層融合與決策層融合二者之間[9-10]。
本文利用特征級融合采集思想道德水平(A1)、專業(yè)修養(yǎng)水平(A2)、身心修養(yǎng)水平(A3)、人文修養(yǎng)水平(A4)以及能力修養(yǎng)水平(A5)等能表明學生能力的特征數據,融合成輸入矩陣,最終通過SVM卓越的分類能力作出相應的決策。其中思想道德水平包括政治修養(yǎng)、道德修養(yǎng)、法律意識水平;專業(yè)修養(yǎng)水平包括專業(yè)理論成績、實驗實踐成績、畢業(yè)實習成績;身心修養(yǎng)水平包括心理素質水平和身體素質水平;人文修養(yǎng)水平包括自然科學知識、人文社科知識、文化藝術知識的修養(yǎng)水平;能力修養(yǎng)水平包括組織管理能力、學術研究能力、科技創(chuàng)新能力、藝術創(chuàng)新能力等。分別將以上多種能力利用加權平均法融合成能表征該類能力的數據(A1-A5),使得評價信息完整化。其中加權平均法[11]可以用以下表達式表示:
Ai=∑ai·Si
(1)
其中,Ai為第i個指標加權后的分數,ai為第i個指標信息融合中的權重,Si為第i個指標的分值。
(2)
(3)
(4)
其中,m為評價指標,n為評價對象。
SVM是人工智能領域能解決非線性數據分類的無監(jiān)督機器學習算法。與傳統(tǒng)的非線性分類模型相比,人工神經網絡(ANN)[12]是一種多感知器(Perceptron)相結合的方法來解決非線性分類問題,它在很大程度上依賴于學習速率、隱含層結構和節(jié)點數目等一系列參數,參數的好壞會極大影響神經網絡的分類效果。而支持向量機的關鍵是利用核函數將低維空間中難以分類的向量集映射到高維空間,建立分類超平面。將核函數的非線性問題的數據集轉化為核空間中的線性可分離數據集,其中基于最大裕度思想的支持向量機只需要少量的參數就能進行調整[13-14]。
就數據二分類問題而言,假設存在一個訓練樣本集(x(i),y(i)),其中i=1,…,n,x(i)是樣本特征,y(i)是樣本類型,n代表樣本編號,分類決策方程可表示為:
f(x(i))=wTx(i)+b
(5)
由此可得到超平面函數方程:
wTx(i)+b=0
(6)
其中,w代表超平面法向量,b代表偏置量。自變量x(i)則可以通過核函數映射到高維空間,利用wTx(i)+b>0或wTx(i)+b<0來判別x(i)屬于哪一類。最優(yōu)分類面如圖1所示。
圖1 最優(yōu)分類面
在實際數據分類應用中用函數間隔來表示點X到超平面的距離,“間隔”越大,分類可信度越高。得出較大化分類間隔器,可以將其表示為:
(7)
s.t.yi(wTxi+b)≥1-εi
εi≥0,i=1,2,…,n
(8)
其中,C是懲罰因子,是控制目標函數取得最大超平面以及最小偏差量權重的參數,εi為松弛變量,表示函數誤差。
將線性不可分數據原始問題轉化為對偶問題,其可以用函數表示為:
(9)
式中,αi為拉格朗日乘子,通過計算將其轉化成最優(yōu)分類函數:
(10)
其中,Κ(xi,xj)為SVM的核函數,核函數是連接低維空間與高維空間的橋梁,常見的核函數包括多項式核、徑向基核、Sigmoid核、Mercer核,本文采用徑向基核函數[15]。
布谷鳥是一種巢寄生繁殖的鳥類,它將自己的蛋產在別的鳥類的窩中,讓其他鳥類代為孵化和育雛。CS算法是由劍橋大學YangXS和DebS于2009年提出的一種模擬布谷鳥寄生尋窩繁殖、具有啟發(fā)性思維的智能算法[16]。該算法是通過將布谷鳥隨機尋窩下蛋的過程與鳥類的Levy Flight方式相結合形成。CS算法繁殖下一代的環(huán)境背景可定義為[17-18]:
(1) 種群內布谷鳥每次產卵量為1,即可假設該卵為最佳解,該最優(yōu)解在固定的可選鳥巢范圍內進行隨機選擇。
(2) 選擇出的最佳鳥窩和最佳解被保存至下一代。
(3) 布谷鳥產于其他鳥窩內的卵被鳥窩主人發(fā)現存在一定的概率,因而布谷鳥需要尋找新的鳥窩。
(4) 布谷鳥的Levy Flight方式可表示為如下函數:
(11)
其中,Sg,i為第i個鳥窩第g代參數值,Sg+1,i為執(zhí)行Levy Flight方式后的參數值,Sbest為最佳參數,?為步長控制系數,randu和randv為服從標準正態(tài)分部的隨機數,χ(β)的大小取決于β值大小,χ(β)通常取0.6667。由式(10)可知,當Sg,i取Sbest時,Sg,i與Sg+1,i相等,即當前取得最優(yōu)參數。
SVM對數據進行分類主要取決于C與g的大小。在本文中C值的大小將影響學生能力樣本的學習;g為核函數參數,其值的大小將影響樣本投射空間的分布復雜度。本文利用CS算法對C與g參數進行尋優(yōu)處理。詳細尋優(yōu)步驟如下:
(1) 對CS算法相關參數以及各參數取值范圍進行初始化。本文假設布谷鳥數量為30,外來卵被發(fā)現的概率取0.3,繁殖迭代次數取300代。
(2) 布谷鳥第一次產卵后,通過計算取出適應度最佳的鳥窩再將其保存給下一代。即計算出30組C、g參數進行交叉計算從而驗證出正確率,分別取出具有最大正確率的那組C、g參數保留起來以便與下一次進行對比。
(3) 布谷鳥通過Levy Flight方式飛行,尋找新的鳥窩,將其和舊鳥窩比較,選出最佳的那組窩。即利用Levy Flight處理原來的C、g參數以獲取新的C、g值,通過將產生的新的C、g值與之前的C、g值進行對比,選擇出最佳C、g值。
(4) 鳥窩主人發(fā)現布谷鳥蛋的概率為0.3,此時一部分布谷鳥就需要找尋新的鳥窩。即需要對30組C、g參數隨機分配一個0~1的數,對小于0.3的C、g參數隨機重置。
(5) 布谷鳥再次將新窩與舊窩進行對比,優(yōu)勝劣汰。即將各個C、g參數的交叉正確率進行比較并再次獲取新的C、g參數。再回到第(3)步,直到滿足迭代要求獲得最佳正確率以及最優(yōu)C、g參數。
在實際生活中,各高校對學生的學習成績等級的劃分參照的依據不同,本文將成績等級劃分為5個區(qū)間段,分別是[90,100]、[80,90]、[70,80]、[60,70]、[0,60]然后將其劃分為優(yōu)秀、良好、中等、及格、不及格5個等級。按此評價指標將能表現學生綜合素質能力的數據經過信息融合處理來訓練CS-SVM。根據以上分類依據,選取20組不同等級的訓練樣本以及測試樣本,作為訓練和測試CS-SVM,讓其具備智能化的分類評定經驗。將學生能力水平劃分成5種類型,并分別定義0為優(yōu)秀、1為良好、2為一般、3為及格、4為差。將某大學畢業(yè)生四年來能體現學生綜合素質能力的各項成績融合成數據樣本輸入至CS-SVM使其得出一個分類結果,其中通過信息融合處理后的部分樣本數據見表1。
表1 部分樣本數據
將該樣本數據通過SVM進行交叉驗證,通過交叉驗證可以看出參數C、g的值不同得到的正確率也存在差異,本文利用布谷鳥算法多次驗證找出了最大化正確率下對應的參數C、g,然后將其植入SVM中。圖2是利用布谷鳥算法交叉驗證取得的最優(yōu)正確率。
圖2 CS交叉驗證正確率
由圖2可知,通過布谷鳥算法進行交叉訓練獲得的最佳正確率為93.75%,其中C取2.8876,g取0.62316,然后將20組待測樣本數據通過訓練好的CS-SVM中進行分類測試,以達到檢驗CS-SVM準確度的目的。
圖3為利用CS-SVM對待測樣本進行測試的驗證圖,根據圖3可得出其分類正確率為87.5%,由此可知CS-SVM算法基本可以滿足對學生綜合能力的分類要求。
圖3 CS-SVM測試樣本預測
在不使用優(yōu)化算法直接用多分類的支持向量機對學生綜合素質能力進行分類,隨機選取核函數以及懲罰因子,同樣將能體現學生能力的上述數據樣本直接通過SVM進行訓練,然后對測試樣本進行預測驗證,得到的分類結果如圖4所示。由圖4可知,未通過優(yōu)化算法直接訓練測試得到的分類結果很差,其分類正確率僅有43.2%,很難正確地將學生綜合能力進行分類判定。
圖4 無優(yōu)化SVM測試樣本預測
通過將不使用優(yōu)化算法的SVM與使用CS-SVM算法對學生綜合素質能力進行分類獲得的分類正確率進行比較,顯然CS-SVM算法更為可靠。再將此分類結果與該校畢業(yè)生工作幾年的狀況進行對比分析可知,通過CS-SVM算法獲得的分類結果中成績優(yōu)秀者往往都成為了部門經理或者自己成為了老板,成績良好者則大多小有成就,成績中等者大多處于穩(wěn)定狀態(tài),成績及格者大多僅能解決溫飽問題且為月光族,成績差者仍舊處于四處找工作但四處碰壁整日勞累奔波的狀態(tài)。以上驗證了該方法能夠較為精確地對學生綜合能力進行評估,且實用性較好。
本文提出的基于信息融合和CS-SVM的學生綜合能力評估方法,將能夠體現學生綜合素質能力的各項成績提取其特征數據,然后再將其進行信息融合,以此作為訓練樣本以及測試樣本,進而利用CS算法對懲罰因子C和核函數g優(yōu)化,使得SVM擁有較強的分類經驗,最終利用此CS-SVM來對學生綜合素質能力進行預測分類。通過實例仿真以及畢業(yè)生就業(yè)調查結果可以得出此算法能夠在一定程度上對學生能力進行分類判別,從而較為準確地對學生的綜合能力進行評定。
[1] 王桂芳.基于人工智能的大學生綜合素質評價研究[D].北京:北京服裝學院,2010.
[2] 商利華.模糊聚類分析算法在學生成績綜合評估中的應用[J].電腦知識與技術,2014,10(5):1024-1026.
[3] 劉幸,高延春.大學生綜合能力評價體系與評價方法研究[J].西部素質教育,2015,1(8):33,49.
[4] 智德.航海技術專業(yè)學生適任能力綜合評估研究[J].電腦知識與技術,2015,11(22):176-177.
[5] 劉敏慧.模糊綜合評價法在核心素養(yǎng)評價中的應用研究[J].教育參考,2016(6):36-39.
[6] 宣國慶.基于神經網絡交叉覆蓋算法的學生成績預測[D].合肥:安徽大學,2011.
[7] 張新亮.BP神經網絡在高校學生綜合素質評價中的應用[C]//第5屆教育教學改革與管理工程學術年會論文集.重慶:重慶大學出版社,2012.
[8] 謝振南.多傳感器信息融合技術研究[D].廣州:廣東工業(yè)大學,2013.
[9] 化柏林,李廣建.大數據環(huán)境下多源信息融合的理論與應用探討[J].圖書情報工作,2015,59(16):5-10.
[10] 李會民,馬桂英.異構多源信息融合方法概述[J].嘉應學院學報,2016,34(2):21-26.
[11] 高超.淺析加權平均法在多目標決策中的應用[J].電腦知識技術,2010,6(16):4495-4496.
[12] 段玉三.人工神經網絡文獻綜述[J].科技風,2011(5):185.
[13] 房漢鳴,稅愛社,汪輝,等.支持向量機動態(tài)多分類方法[J].后勤工程學院學報,2017,33(2):90-96.
[14] 劉東啟,陳志堅,徐銀,等.面向不平衡數據分類的復合SVM算法研究[J/OL].計算機應用研究,2018,35(4).(優(yōu)先出版).
[15] 安旭,張樹東.基于支持向量機的模糊特征分類算法研究[J].計算機工程,2017,43(1):237-240,246.
[16] YANG X S,DEB S.Engineering optimization by cuckoo search[J].International Journal of Mathematical Modelling & Numerical Optimisation,2010,1(4):330-343.
[17] 黃繼達.布谷鳥算法的改進及其應用研究[D].武漢:華中科技大學,2014.
[18] 孫晨,李陽,李曉戈,等.基于布谷鳥算法優(yōu)化BP神經網絡模型的股價預測[J].計算機應用與軟件,2016,33(2):276-279.