• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      新生代帕米爾構(gòu)造結(jié)演化研究進(jìn)展

      2018-03-22 10:15:13李長安彭保發(fā)吳泉源
      地球環(huán)境學(xué)報(bào) 2018年1期
      關(guān)鍵詞:葉城喀喇昆侖帕米爾

      林 旭,常 宏,李長安,彭保發(fā),吳泉源

      1. 湖南文理學(xué)院 資源環(huán)境與旅游管理學(xué)院,常德 415000 2. 山東師范大學(xué) 地理與環(huán)境學(xué)院,濟(jì)南 250358 3. 中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室,西安 710061 4. 中國地質(zhì)大學(xué)(武漢) 地球科學(xué)學(xué)院,武漢 430074

      印度板塊與歐亞大陸在新生代早期發(fā)生了碰撞(Burg,2011;Ding et al,2016;Hu et al,2017),引起亞洲大陸古生代和中生代古老構(gòu)造帶再次活化,改變了中亞地區(qū)的構(gòu)造格局(Tapponnier et al,1981;Burtman,2013;Bosboom et al,2015;Cao et al,2015;Sun et al,2016)。帕米爾高原位于青藏高原西北緣,南北向的地殼縮短導(dǎo)致帕米爾地塊的寬度與東側(cè)的青藏高原主體部分形成了鮮明的對(duì)比(Cowgill,2010;Burtman,2013),同時(shí)中南帕米爾片麻質(zhì)穹窿的廣泛分布(Robinson et al,2007,2010;Smit et al,2014),在北帕米爾擴(kuò)展體系的出現(xiàn)(Brunel et al,1994;Strecker et al,1995), 說明帕米爾地塊受印度與歐亞大陸碰撞后遠(yuǎn)程效應(yīng)的強(qiáng)烈影響,并形成著名的帕米爾弧形構(gòu)造帶(Cowgill,2010; 陳 杰 等,2011;Sobel et al,2013;陳漢林等,2014;Bosboom et al,2014;Sun et al,2016),屬于典型的山彎構(gòu)造(Macedo and Marshak,1999;Marshak,2004),引起國內(nèi)外學(xué)者的廣泛關(guān)注和研究。但國內(nèi)外學(xué)者對(duì)這一地質(zhì)構(gòu)造現(xiàn)象的稱呼有細(xì)微的差異,例如國外學(xué)者稱其為“Pamir wedge”(帕米爾楔)(Tapponnier et al,1981)和 “Pamir salient”(帕米爾突刺)(Sobel et al,2011;Bosboom et al,2014),國內(nèi)學(xué)者習(xí)慣稱為“帕米爾構(gòu)造結(jié)”(Pamir syntax)(陳杰等,2011;劉棟梁等,2011)或“帕米爾弧形構(gòu)造帶”(陳漢林等,2014),但無論“帕米爾楔”和“帕米爾突刺”,還是“帕米爾構(gòu)造結(jié)”和“帕米爾弧形構(gòu)造帶”,都是從外部輪廓和形狀去定義這一構(gòu)造現(xiàn)象。根據(jù)傳統(tǒng)和習(xí)慣,下文中采用“帕米爾構(gòu)造結(jié)”這一稱呼。

      目前帕米爾構(gòu)造結(jié)的研究熱點(diǎn)集中在帕米爾地塊劃分與青藏高原各個(gè)地塊的對(duì)比(Yin and Harrison,2000;Schwab et al,2004;Robinson et al,2007;Cowgill,2010), 帕 米 爾 高 原 南北俯沖帶的俯沖深度(Negredo et al,2007;Burtman,2013;Sippl et al,2013;Kufner et al,2015),帕米爾變質(zhì)穹窿出現(xiàn)的時(shí)間(Robinson et al,2007;Sobel et al,2011;Cao et al,2013;Thiede et al,2013),帕米爾東北緣擴(kuò)展體系何 時(shí) 出 現(xiàn)(Brunel et al,1994;Strecker et al,1995;Murphy et al,2000;Yin and Harrison,2000;Amidon and Hynek,2010;Robinson et al,2010),帕米爾構(gòu)造結(jié)的演化過程和形成機(jī)制等方面。這其中有關(guān)帕米爾構(gòu)造結(jié)何時(shí)開始發(fā)育仍存在較大爭議,例如出現(xiàn)了~50 Ma(Cao et al,2013),~47 Ma(Sun et al,2016),~30 Ma(Tapponnier et al,1981),晚漸新世(Robinson et al,2010)等幾種不同的觀點(diǎn)。雖然國內(nèi)外學(xué)者對(duì)帕米爾構(gòu)造結(jié)的形成機(jī)制進(jìn)行了研究(Cowgill,2010;Sobel et al,2013;Bosboom et al,2014)。但是,大部分研究結(jié)果是從構(gòu)造結(jié)東部的剖面獲得,構(gòu)造結(jié)西部大部分是20世紀(jì)80年代和20世紀(jì)90年代的結(jié)果,缺乏最新的研究結(jié)果與東部進(jìn)行對(duì)比。因而,帕米爾構(gòu)造結(jié)形成機(jī)制的研究程度并不深入。

      帕米爾構(gòu)造結(jié)的出現(xiàn)及演化涉及到板塊俯沖、地殼增厚以及由此引起的山脈隆升等地質(zhì)過程,是研究印度板塊與歐亞大陸西段碰撞的遠(yuǎn)程效應(yīng)何時(shí)向中亞傳遞(Burtman,2013;Sun et al,2016)、中亞及塔里木盆地新特提斯洋 消 退(Sun and Jiang,2013;Bosboom et al,2014;Carrapa et al,2015)、塔吉克 -塔西南盆地與帕米爾高原盆山耦合過程(Leith,1985;Arnaud et al,1993;丁道桂,1996;賈承造等,1997;Bershaw et al,2012)、 塔 里 木 盆 地 干旱 化 的 驅(qū) 動(dòng) 因 素(Sun and Liu,2006;Zheng et al,2009;Chang et al,2013,2017;Sun et al,2015)等地質(zhì)問題需要考慮的重要環(huán)節(jié)。然而,帕米爾構(gòu)造結(jié)形成機(jī)制的研究并不深入,構(gòu)造結(jié)的形成時(shí)序還存在爭議,這些都阻礙了對(duì)構(gòu)造結(jié)演化過程的清晰認(rèn)識(shí),導(dǎo)致上述科學(xué)問題的解決缺少重要的地質(zhì)證據(jù)支撐。因而,在國內(nèi)外研究資料的基礎(chǔ)上,通過對(duì)這些成果進(jìn)行梳理,給出帕米爾構(gòu)造結(jié)的研究現(xiàn)狀,對(duì)今后進(jìn)一步深入詳細(xì)地研究構(gòu)造結(jié)演化等問題提供借鑒資料。

      1 地質(zhì)背景

      1.1 帕爾米高原主要地塊劃分

      帕米爾高原位于青藏高原的西北端,南側(cè)與科西斯坦-拉達(dá)克島弧連接,西側(cè)靠近興都庫什山和阿富汗地塊,北側(cè)與西南天山對(duì)接(圖1)。帕米爾-喀喇昆侖地區(qū)主要分為四個(gè)地塊(Strecker et al,1995;Robinson et al,2004;Cowgill,2010):(1)北帕米爾,主帕米爾斷裂為其北界,以南到坦瑪斯(Tanymas)縫合線;(2)中帕米爾,位于坦瑪斯縫合線和如山-薩特(Rushan-Pshart)斷層之間;(3)南帕米爾,以北到如山-薩特?cái)鄬樱阅系绞布s克(Shyok)縫合線;(4)科西斯坦-拉達(dá)克,以北到什約克縫合線,以南到雅魯藏布-印度縫合線。

      1.2 帕米爾地塊主要斷裂帶

      帕米爾高原內(nèi)部發(fā)生彎曲并在靠近塔吉克和塔里木盆地的邊緣發(fā)育山前逆沖斷裂帶,其東西兩側(cè)被大型走滑斷裂所圍限,東側(cè)以喀喇昆侖右行走滑斷裂和喀什-葉城轉(zhuǎn)換帶為主,恰曼左行走滑斷裂分布在西側(cè)(Cowgill,2010;Sobel et al,2011)(圖1)。

      1.2.1 主帕米爾逆沖斷裂帶

      主帕米爾斷裂位于北帕米爾山前,可分為塔西南段、阿萊谷地段和阿萊谷地西段三部分 (Sobel et al,2011)。主帕米爾逆沖斷裂是阿萊俯沖板片在地表投影的最上端部分,吸收和調(diào)節(jié)帕米爾和天山之間的地殼匯聚引起的地殼縮短,至今仍為一活動(dòng)的斷裂帶,其現(xiàn)今移動(dòng)速率為15 — 10 mm ? a-1(Zubovich et al,2010)。主帕米爾逆沖斷裂在~50 Ma已經(jīng)開始活動(dòng)(Cao et al,2013),~20 Ma時(shí)發(fā)生快速活動(dòng)(Sobel and Dumitru,1997)。但在晚中新世后,主帕米爾逆沖斷裂的活動(dòng)速率明顯下降(Sobel et al,2011)。6 — 3.5 Ma,帕米爾前緣逆沖斷裂進(jìn)入活躍期(Arrowsmith and Strecker,1999;Fu et al,2010;Thompson et al,2015)。

      1.2.2 喀喇昆侖走滑斷裂帶

      喀喇昆侖右行走滑斷裂自青藏高原東南端的岡仁波齊山脈一直延伸到中帕米爾,構(gòu)成了帕米爾高原東南部的邊界(Peltzer and Tapponnier,1988)(圖1)。進(jìn)入始新世(40 Ma),喀喇昆侖走滑斷裂開始初步活動(dòng)(Bouilhol et al,2013),并在25 — 23 Ma進(jìn)入快速走滑階段,形成了 480 — 250 km 的位移(Lacassin et al,2004;Valli et al,2008;李海兵等,2007)。

      1.2.3 喀什-葉城轉(zhuǎn)換體系

      喀什-葉城轉(zhuǎn)換體系具有右行走滑的特性,由幾條右行擠壓轉(zhuǎn)換斷層組成,自西向東依次為:阿爾塔什、葉爾羌、庫木塔格和紅其拉甫斷裂(Sobel and Dumitru,1997;Cowgill,2010),將塔里木盆地與帕米爾東北緣分隔??κ?葉城轉(zhuǎn)換體系在~50 Ma開始發(fā)育(Cao et al,2013),后又分別在~37 Ma和25 — 18 Ma發(fā)生活動(dòng)(Yin et al,2002;Cowgill,2010),自 ~20 Ma 開始出現(xiàn)走滑擠壓現(xiàn)象,導(dǎo)致帕米爾東北緣逆沖斷裂上盤快速隆升(Sobel and Dumitru,1997),從12 Ma經(jīng)歷持續(xù)的走滑擠壓過程,在5 Ma以后逐漸減速(Sobel et al,2011,2013;Cao et al,2013)。

      圖1 a:帕米爾構(gòu)造結(jié)的位置及周圍主要構(gòu)造單元分布示意圖(修改自Robinson et al(2004));b:帕米爾構(gòu)造結(jié)主要組成單元示意圖,自南向北依次為科西斯坦-拉達(dá)克、南帕米爾、中帕米爾、北帕米爾,西側(cè)以恰曼左行走滑斷裂與塔吉克盆地分隔,東部與塔里木盆地以喀什-葉城轉(zhuǎn)換體系為界(修改自 Robinson et al(2004),Cowgill(2010))Fig.1 a: Simpli fi ed map of major faults within the Indo-Asian collision zone, showing the location of the Pamir salient and major tectonic units around the Pamir (modi fi ed from Robinson et al (2004)); b: Simpli fi ed map of major tectonic domains within the Pamir structural knots, they are the Kohistan-Ladakh, south Pamir, central Pamir, north Pamir from south to north, which are separated from the Tajik and Tarim basins by the Chaman left-lateral slip fault and Kashgar-Yecheng transfer system, respectively(modi fi ed from Robinson et al (2004), Cowgill (2010))

      1.2.4 恰曼走滑斷裂帶

      恰曼走滑斷裂帶位于印度板塊西側(cè),南端連接麥克蘭增生匯聚帶,北側(cè)與喜馬拉雅匯聚帶相接,南北長~1000 km,東西寬30 — 20 km(Lawrence et al,1981;Tapponnier et al,1981;Dewey et al,1988; 許 志 琴 等,2012)(圖2)。恰曼走滑斷裂從~45 Ma開始活動(dòng),自晚漸新世以來位移了至少200 km的距離(Dewey et al,1988;Critelli et al,1990;Lacombe et al,2007)。

      圖2 恰曼走滑斷裂3D模式圖Fig.2 Schematic model for the development of Chaman fault

      1.3 帕米爾高原深部結(jié)構(gòu)

      地質(zhì)和地球物理的研究結(jié)果表明,在印度與歐亞大陸碰撞帶的西部帕米爾構(gòu)造結(jié)存在南北兩個(gè)俯沖帶(Burtman and Molnar,1993;Pavlis et al,1997;Negredo et al,2007;Sippl et al,2013)(圖3)。南帶是印度板塊向北俯沖到興都庫什山之下,北帶則是塔吉克-塔里木盆地基底向帕米爾地塊下俯沖。帕米爾地塊向北移動(dòng)的過程中,引起~600 km的地殼縮短,其中~300 km由塔吉克-塔里木盆地基底向南陸內(nèi)俯沖吸收,另外~300 km則由帕米爾高原內(nèi)部的地殼縮短消解(Burtman and Molnar,1993;Fan et al,1994;Cowgill,2010)。

      1.4 帕米爾地塊拼合過程及隆升時(shí)間

      帕米爾高原經(jīng)歷了一系列的板塊碰撞拼合過程。二疊紀(jì) — 三疊紀(jì),古特提斯洋向西昆侖地塊下俯沖,北帕米爾地塊(喀拉湖-麻扎)發(fā)展成廣闊的增生帶(Robinson et al,2012)(圖4)。早侏羅紀(jì),中帕米爾和北帕米爾地塊碰撞導(dǎo)致如山洋盆關(guān)閉(古特提斯洋),同時(shí)向北逆沖到西昆侖地塊之上(Arnaud et al,1993;Sobel,1999;Robinson et al,2010;Burtman,2013)。 侏 羅紀(jì) — 白堊紀(jì),喀喇昆侖和南帕米爾地區(qū)因新特提斯洋的俯沖而形成安第斯型大陸邊緣(Burg,2011;Robinson et al,2012)。科西斯坦-拉達(dá)克島弧和喀喇昆侖地塊在~85 — 75 Ma發(fā)生碰撞,什約克縫合線形成。隨著印度板塊西北端與拉達(dá)克-科西斯坦島弧的碰撞,安第斯型海陸分布特征結(jié)束于 ~50 — 47 Ma(Searle et al,1999;Fraser et al,2001;Bouilhol et al,2013;Sun et al,2016)。

      進(jìn)入新生代,帕米爾的隆升和地殼變形主要受控于印度板塊與歐亞大陸的碰撞(Ducea et al,2003;Schmalholz,2004;Amidon and Hynek,2010;Burtman,2013)。國內(nèi)外研究學(xué)者在高原內(nèi)部和高原前緣進(jìn)行了廣泛的基巖和碎屑 鋯 石 U-Pb年 齡(Fraser et al,2001;Schwab et al,2004;Bershaw et al,2012;Smit et al,2014;Sun et al,2016)、云母和鉀長石40Ar /39Ar年 齡(Arnaud et al,1993;Hacker et al,2005;Robinson et al,2007;Jiang et al,2012;Carrapa et al,2014)、鋯石和磷灰石低溫?zé)崮甏鷮W(xué)分析(Schmalholz,2004;Amidon and Hynek,2010;Sobel et al,2011,2013;Cao et al,2013;Carrapa et al,2014),發(fā)現(xiàn)高原中部和北部在~50 — 40 Ma、34 Ma、~27 — 16 Ma、11 — 7 Ma和5 Ma發(fā)生隆升。而帕米爾高原南部自~50 Ma出現(xiàn)隆升之后,在40 Ma、25 Ma和18 Ma又發(fā)生多次的構(gòu)造隆升。

      圖3 帕米爾高原南北兩側(cè)的俯沖區(qū)(修改自Sippl et al(2013))Fig.3 Schematic representation of the geometry outlined by the earthquake locations presented in the Pamir (modif i ed from Sippl et al (2013))

      2 帕米爾構(gòu)造結(jié)的演化過程

      帕米爾構(gòu)造結(jié)是陸內(nèi)俯沖引起地殼縮短而形成的山彎構(gòu)造的典型案例(Macedo and Marshak,1999)。許多研究者對(duì)其形成機(jī)制、演化過程進(jìn)行了研究。典型的山彎構(gòu)造主要由頂點(diǎn)(apex)、前緣邊界(leading edge)、端點(diǎn)(endpoints)、參考線(reference line)以及彎曲幅度(amplitude)等要素組成(Macedo and Marshak,1999)(圖5a)。頂點(diǎn)是彎曲部分的最小直徑與前緣邊界的交點(diǎn),是衡量彎曲構(gòu)造界線的參考點(diǎn),也是彎曲變形構(gòu)造中變形的最前沿部分。端點(diǎn)位于山彎構(gòu)造的兩端,參考線為一水平線。堅(jiān)硬的印度板塊碰撞到相對(duì)柔軟的亞洲大陸南緣,導(dǎo)致喜馬拉雅山脈和青藏高原的形成和隆升(Macedo and Marshak,1999)。隨著碰撞俯沖的持續(xù)進(jìn)行,在印度板塊的東西兩端出現(xiàn)了典型的山彎構(gòu)造,即東、西構(gòu)造 結(jié)(Macedo and Marshak,1999; Marshak,2004)(圖5b)。

      山彎構(gòu)造的外部形態(tài)可由多種因素控制,諸如推進(jìn)體的輪廓,推進(jìn)體的移動(dòng)方向、俯沖深度、角度等(Macedo and Marshak,1999)。前陸盆地中典型山彎構(gòu)造形成機(jī)制可分為以下幾類(圖6):(a)俯沖推進(jìn)體的形狀為矩形,垂直匯聚孕育前緣逆沖斷裂,兩側(cè)發(fā)育走滑斷裂;(b)俯沖體外部輪廓不對(duì)稱,垂直匯聚下形成不對(duì)稱的山彎構(gòu)造;(c)斜向俯沖下,對(duì)稱的俯沖推進(jìn)體形成不對(duì)稱山彎構(gòu)造;(d)徑直俯沖下,規(guī)則的俯沖體形成對(duì)稱的山彎構(gòu)造,匯聚的構(gòu)造線指向頂點(diǎn),匯聚的方向朝向兩側(cè)的端點(diǎn)。

      2.1 帕米爾構(gòu)造結(jié)形成機(jī)制

      帕米爾構(gòu)造的形成機(jī)制問題,很早就引起地學(xué)學(xué)者的注意。Bazhenov and Burtman(1986)將帕米爾構(gòu)造結(jié)的形成歸結(jié)為印度板塊西北端向歐亞大陸之下俯沖推進(jìn),帕米爾地塊受此影響向北移動(dòng)時(shí)遇到塔吉克-塔里木盆地基底的硬性阻擋,并受西南天山的夾持發(fā)生彎轉(zhuǎn),構(gòu)造結(jié)從而形成。

      圖 4 帕米爾地塊中生代演化過程示意圖(修改自Robinson et al(2012))Fig.4 Model for the Mesozoic tectonic evolution of the Pamir (modif i ed from Robinson et al (2012))

      圖5 a:山彎構(gòu)造組成示意圖,主要由頂點(diǎn)、前緣邊界、端點(diǎn)、參考線以及彎曲幅度等要素組成(Macedo and Marshak,1999);b:印度板塊向歐亞大陸俯沖引起碰撞邊界兩側(cè)山彎構(gòu)造形成示意圖(Marshak,2004)Fig.5 a: Geometric elements (endpoints, apex, amplitude, leading edge, trend lines) of a single curve(Macedo and Marshak, 1999); b: Sketch of a model for the formation of the structural knots from east and west around the collision boundary (Marshak, 2004)

      進(jìn)入20世紀(jì)90年代以來,很多研究者對(duì)帕米爾高原東北緣擴(kuò)展體系進(jìn)行研究,在此基礎(chǔ)上有關(guān)構(gòu)造結(jié)的演化模型被紛紛提出。例如:Brunel et al(1994)提出的同構(gòu)造伸展模型,認(rèn)為主帕米爾逆沖斷裂不斷向前陸盆地方向移動(dòng),公格爾山擴(kuò)展體系的形成與慕士塔格峰和公格爾山的隆升同步形成。但這兩座山峰的形成時(shí)間并不一致,而且比主帕米爾逆沖斷裂的活動(dòng)時(shí)間滯后的多(Cowgill,2010)。Strecker et al(1995)提出的輻射逆沖模型與Brunel et al(1994)的模型類似,不過前者認(rèn)為擴(kuò)展首先是從北段最靠近主逆沖斷裂開始的,并逐漸向南延伸。Yin and Harrison(2000)提出的同時(shí)彎轉(zhuǎn)模型,指出整個(gè)帕米爾和喜馬拉雅山的西段發(fā)生彎轉(zhuǎn),公格爾山擴(kuò)展體系從南北兩端開始發(fā)育。這些模型的提出,主要用于解釋帕米爾高原東北緣擴(kuò)展體系出現(xiàn)的原因。但是無論喀拉湖還是公格爾山擴(kuò)展體系,其形成的時(shí)間要比帕米爾構(gòu)造結(jié)發(fā)育的時(shí)間滯后的多(Robinson et al,2007,2010;Cowgill,2010),而構(gòu)造結(jié)早期自身的演化機(jī)制是怎樣的,這些模型并不能提供很好的解釋。所以需要從構(gòu)造結(jié)自身入手去研究構(gòu)造結(jié)的形成機(jī)制問題。

      圖6 典型山彎構(gòu)造形成機(jī)制示意圖(修改自Macedo and Marshak(1999))Fig.6 The formation mechanism of main types of salient structure (modif i ed from Macedo and Marshak (1999))

      基于前人的研究基礎(chǔ),Cowgill(2010)結(jié)合自己在帕米爾高原東北緣葉爾羌河谷的構(gòu)造填圖的研究結(jié)果,提出帕米爾構(gòu)造結(jié)的演化模式。他認(rèn)為構(gòu)造結(jié)西側(cè)主要通過輻射逆沖斷裂帶吸收地殼變形,東側(cè)由山體彎轉(zhuǎn)、公格爾山擴(kuò)展體系以及喀什-葉城轉(zhuǎn)換體系共同吸收和調(diào)節(jié)地殼變形(圖8)。該模型與現(xiàn)今在帕米爾構(gòu)造結(jié)周圍觀察到的地質(zhì)現(xiàn)象是吻合的。

      Bosboom et al(2014)對(duì)帕米爾構(gòu)造結(jié)東北緣新生代地層進(jìn)行構(gòu)造磁學(xué)分析,結(jié)合構(gòu)造結(jié)西側(cè)已發(fā)表的巖石磁學(xué)結(jié)果(Thomas et al,1994),認(rèn)為早始新世時(shí),盡管帕米爾和西昆侖山脈在同一水平線上,但隨著印度板塊的持續(xù)俯沖,帕米爾構(gòu)造結(jié)開始發(fā)育,在其兩側(cè)發(fā)育對(duì)稱的輻射逆沖斷裂并向盆地方向發(fā)散,導(dǎo)致塔吉克盆地和塔里木盆地西南緣分別出現(xiàn)逆時(shí)針和順時(shí)針旋轉(zhuǎn),受此影響新特提斯洋在晚始新世徹底退出塔西南盆地(圖9)。晚漸新世 — 早中新世,帕米爾構(gòu)造結(jié)西部的構(gòu)造旋轉(zhuǎn)依然存在,而東部逐漸停止,這說明喀什-葉城轉(zhuǎn)換體系在這個(gè)階段開始活動(dòng)吸收和調(diào)節(jié)構(gòu)造變形。因而,Bosboom et al(2014)的結(jié)果從構(gòu)造磁學(xué)的角度驗(yàn)證了Cowgill(2010)提出的帕米爾構(gòu)造結(jié)模型的合理性,但是,他們并沒有在構(gòu)造結(jié)的西部開展相關(guān)工作,缺乏系統(tǒng)的研究結(jié)果與東部的進(jìn)行對(duì)比。

      圖 7 帕米爾向北移動(dòng)過程中所受構(gòu)造應(yīng)力方向示意圖(修改自Bazhenov and Burtman(1986))Fig.7 Sketches illustrating the moving direction of tectonic terranes around the Pamir salient(modif i ed from Bazhenov and Burtman (1986))

      由于印度板塊斜向俯沖到歐亞大陸之下,在西北端其運(yùn)動(dòng)方向并不是正北向而是北西向,因此在帕米爾構(gòu)造結(jié)兩側(cè)產(chǎn)生的擠壓應(yīng)力不同,西側(cè)以輻射狀逆沖斷裂為主,同時(shí)伴隨左行走滑斷裂的活動(dòng);而東側(cè)以大型走滑-轉(zhuǎn)換體系的活動(dòng)為主,輔以逆沖作用(Thomas et al,1994;Cowgill,2010;Bosboom et al,2014)。 所 以帕米爾構(gòu)造結(jié)的形成機(jī)制應(yīng)該和前文敘述中典型山彎構(gòu)造形成類型中的圖6c相類似,只是方向相反。

      2.2 帕米爾構(gòu)造結(jié)演化時(shí)序

      Tapponnier et al(1981)對(duì)帕米爾西側(cè)的塔吉克盆地和阿富汗地塊中 — 新生代沉積地層進(jìn)行詳細(xì)的沉積相和構(gòu)造應(yīng)力分析,結(jié)合地層的沉積時(shí)代,發(fā)現(xiàn)~50 Ma以來,印度板塊西北端與歐亞大陸發(fā)生碰撞,阿富汗地塊向西擠出,該地區(qū)中生代古老縫合帶再次活化,發(fā)育大型走滑斷裂(圖10)。帕米爾構(gòu)造結(jié)在30 Ma初具規(guī)模,它的形成過程指示了印度板塊向北俯沖對(duì)中亞地區(qū)的構(gòu)造改造的過程。中中新世(15 Ma),帕米爾構(gòu)造結(jié)在南北兩側(cè)印度板塊和塔里木板塊的相向移動(dòng)下,其地殼開始增厚,地表發(fā)生強(qiáng)烈抬升,是構(gòu)造結(jié)基本定型的時(shí)期。

      圖 8 帕米爾構(gòu)造結(jié)形成示意圖(修改自Cowgill(2010))Fig.8 Preferred kinematic model of asymmetric deformation within the Pamir salient (modif i ed from Cowgill (2010))

      根據(jù)帕米爾北、中部詳細(xì)的野外調(diào)查結(jié)果和豐富的地球化學(xué)分析指標(biāo),Robinson et al(2010)認(rèn)為晚漸新世帕米爾構(gòu)造結(jié)逐步開始形成。晚中新世,帕米爾構(gòu)造結(jié)不斷彎曲,東西向擴(kuò)展體系開始出現(xiàn)在構(gòu)造結(jié)北部。這與劉棟梁等(2011)認(rèn)為漸新世時(shí)隨著印度板塊繼續(xù)向北推擠,帕米爾弧形構(gòu)造結(jié)開始出現(xiàn)的結(jié)論是一致的。隨后Sobel et al(2013)、Cao et al(2013)和Burtman(2013)通過綜合地震剖面資料、巖漿巖地球化學(xué)分析和低溫?zé)崮甏鷮W(xué)數(shù)據(jù),發(fā)現(xiàn)帕米爾構(gòu)造結(jié)在早始新世就開始發(fā)育,逆沖斷裂近似東西方向分布于帕米爾-西昆侖地塊前緣,東側(cè)的喀什-葉城轉(zhuǎn)換體系也隨之活動(dòng)。晚漸新世 — 早中新世(25 — 18 Ma),帕米爾構(gòu)造結(jié)的輪廓進(jìn)一步奠定,伴隨著主帕米爾逆沖斷裂和喀什-葉城轉(zhuǎn)換體系的活動(dòng)。晚中新世(13 — 7 Ma)是帕米爾構(gòu)造結(jié)形成的重要時(shí)期。

      圖 9 帕米爾構(gòu)造結(jié)形成演化過程示意圖(修改自 Bosboom et al,2014),a:始新世:帕米爾構(gòu)造結(jié)開始發(fā)育,新特提斯洋在晚始新世徹底退出塔西南盆地;(b — c)漸新世 — 早中新世,帕米爾構(gòu)造結(jié)西部的構(gòu)造旋轉(zhuǎn)依然存在,東部已經(jīng)逐漸停止,喀什-葉城轉(zhuǎn)換體系開始出現(xiàn)Fig.9 a: Eocene: The Pamir salient had been formed that leading to the Neo-Thethys retreated from the southwest Tarim basin;b — c: Oligocene — early Miocene, deformation became asymmetric with ceased clockwise rotation in the Tarim Basin and continued anticlockwise rotation on the western side in the Tajik Basin

      圖 10 帕米爾構(gòu)造結(jié)形成過程示意圖(修改自Tapponnier et al(1981)),50 Ma:印度板塊與歐亞大陸發(fā)生碰撞,導(dǎo)致阿富汗地塊向西擠出;30 Ma:帕米爾構(gòu)造結(jié)初具規(guī)模;15 Ma:帕米爾構(gòu)造結(jié)發(fā)生強(qiáng)烈抬升,是構(gòu)造結(jié)基本定型的時(shí)期Fig.10 Eocene: The penetration of the northwestern tip of India into Eurasia since the Eocene cause the extrusion of central Afghanistan to the west; 30 Ma: The Pamir syntax begun to take shape; 15 Ma: The Pamir syntax experienced the strong surface uplift, and it is the period of basic formation

      最近,Sun et al(2016)對(duì)塔西南盆地奧依塔格剖面進(jìn)行了碎屑鋯石U-Pb年齡、磁面理、全巖氧和釹同位素分析,結(jié)合地層的古地磁年齡(Sun and Jiang,2013),發(fā)現(xiàn)65 — 47 Ma時(shí),印度板塊西北端與歐亞大陸未發(fā)生碰撞,帕米爾和西昆侖構(gòu)造帶保持線性分布,塔吉克海與塔里木海相連;47 Ma時(shí),印度板塊西北端與歐亞大陸發(fā)生碰撞,帕米爾地塊向北移動(dòng)并發(fā)生彎轉(zhuǎn),引起奧依塔格剖面的物源發(fā)生變化,開始以近緣帕米爾高原的物質(zhì)為主,同時(shí)引起塔里木海的向西退卻(圖11),這進(jìn)一步說明帕米爾構(gòu)造結(jié)在早始新世就已經(jīng)出現(xiàn)。

      綜合來看,始新世時(shí)印度板塊與歐亞大陸發(fā)生碰撞,在這一地質(zhì)背景下,帕米爾構(gòu)造結(jié)開始初步發(fā)育(Tapponnier et al,1981;Burtman and Molnar,1993;Cao et al,2013;Sun et al,2016),古老的縫合帶再次活化,大型走滑斷裂出現(xiàn)在構(gòu)造結(jié)的兩側(cè)。但是恰曼左行走滑斷裂并沒有完全延伸到帕米爾構(gòu)造結(jié)的西北端,同樣喀喇昆侖走滑斷裂帶也沒有一直延伸到北帕米爾,考慮到恰曼左行走滑斷裂北端的逆沖斷裂在~27 — 17 Ma強(qiáng)烈活動(dòng)(Abdulhameed et al,2013;G?ga?a et al,2014)和喀喇昆侖走滑斷裂北端的喀什-葉城轉(zhuǎn)換體系在25 — 18 Ma快速走滑(Sobel and Dumitru,1997;Cowgill,2010),此外,由于塔吉克-塔里木盆地基底在~20 Ma加速向南俯沖,引起主帕米爾逆沖斷裂的強(qiáng)烈活動(dòng),這說明帕米爾地塊后期向北移動(dòng)過程中引起的構(gòu)造變形,東部和西部、北部分別依靠大型轉(zhuǎn)換體系和逆沖斷裂的活動(dòng)而吸收和調(diào)節(jié)。因而晚漸新世 — 早中新世,是帕米爾構(gòu)造結(jié)形成的重要時(shí)期(Tapponnier et al,1981;Thomas et al,1994;Sobel and Dumitru,1997;Yin et al,2002;Robinson et al,2007;Cowgill,2010;Bosboom et al,2014)。

      圖 11 帕米爾突刺演化過程示意圖(修改自Sun et al(2016)),a:65 — 47 Ma,印度板塊西北端與歐亞大陸未發(fā)生碰撞,帕米爾和西昆侖構(gòu)造帶保持線性分布,塔吉克海與塔里木海相連;b:47 Ma,印度板塊西北端與歐亞大陸發(fā)生碰撞,帕米爾地塊向北移動(dòng),并發(fā)生彎轉(zhuǎn),引起塔里木海的向西退卻Fig.11 a: Before collision of the Indian Plate with the Kohistan-Ladakh arc, the Tajik and Tarim Basins were connected by Neo-Tethys seawater; b: Collision of the Indian Plate with the Kohistan-Ladakh arc began at 47 Ma, caused northward indentation of the Pamir, the diachronous seawater retreat from the Tarim Basin between 47 Ma and 40 Ma

      晚中新世 — 上新世帕米爾構(gòu)造結(jié)不斷彎曲,北帕米爾下地殼不斷增厚引起帕米爾高原東北緣發(fā)生重力垮塌,促使公格爾山和喀拉湖擴(kuò)展體系出現(xiàn)(Brunel et al,1994;Strecker et al,1995;Murphy et al,2000;Amidon and Hynek,2010)。于此同時(shí),片麻質(zhì)的穹窿開始出現(xiàn)在公格爾山和慕士塔格峰(Robinson et al,2007;Cao et al,2013;Thiede et al,2013)。此時(shí),帕米爾構(gòu)造結(jié)與南天山碰撞,平行于山脈走向的褶皺帶分布在南天山和帕米爾前緣(Hamburger et al,1992;Pavlis et al,1997;Fu et al,2010;Sun et al,2015)。

      所以,在帕米爾構(gòu)造結(jié)早期發(fā)育過程中,兩側(cè)的大型走滑斷裂的活動(dòng)有助于其向北移動(dòng);輪廓開始趨向穩(wěn)定的過程中,構(gòu)造結(jié)東西兩側(cè)的轉(zhuǎn)換體系和逆沖斷裂開始起主導(dǎo)作用,從水平方向上兩階段式的對(duì)構(gòu)造結(jié)進(jìn)行塑造。后期出現(xiàn)的地殼增厚過程導(dǎo)致地表抬升,是從垂直方向上對(duì)帕米爾構(gòu)造結(jié)進(jìn)行塑造。

      3 結(jié)論與展望

      帕米爾構(gòu)造結(jié)的形成、演化、定型與新生代以來印度板塊向北俯沖密切相關(guān),在構(gòu)造結(jié)周緣的走滑和逆沖斷裂從水平和垂直兩個(gè)方向?qū)ζ漭喞M(jìn)行塑造。始新世時(shí)印度板塊與歐亞大陸發(fā)生碰撞,帕米爾構(gòu)造結(jié)開始初步發(fā)育。晚漸新世 — 早中新世,帕米爾構(gòu)造結(jié)在主帕米爾逆沖斷裂帶、喀什-葉城轉(zhuǎn)換帶的活動(dòng)下持續(xù)向北移動(dòng),出現(xiàn)顯著的地殼縮短增厚過程,引起構(gòu)造結(jié)內(nèi)部隆升、大型變質(zhì)穹窿的出露,也是構(gòu)造結(jié)基本輪廓形成的重要時(shí)期。晚中新世,帕米爾構(gòu)造結(jié)持續(xù)彎轉(zhuǎn),北帕米爾開始出現(xiàn)擴(kuò)展體系。上新世時(shí)期,帕米爾構(gòu)造結(jié)與西南天山發(fā)生碰撞,外部輪廓基本確定。

      雖然有關(guān)帕米爾構(gòu)造結(jié)的研究受到廣泛關(guān)注,但是由于其演化過程復(fù)雜,這些研究結(jié)果彼此之間也并不統(tǒng)一。因此,通過盆山耦合的研究思想,對(duì)帕米爾高原及其周圍的沉積盆地,結(jié)合地球物理觀測數(shù)據(jù),進(jìn)行系統(tǒng)的研究有望進(jìn)一步精細(xì)地刻畫帕米爾構(gòu)造結(jié)自新生代以來的演化過程。

      陳漢林, 陳沈強(qiáng), 林秀斌. 2014. 帕米爾弧形構(gòu)造帶新生代構(gòu)造演化研究進(jìn)展[J]. 地球科學(xué)進(jìn)展, 29(8): 890 – 902.[Chen H L, Chen S Q, Lin X B. 2014. A review of the Cenozoic Tectonic evolution of Pamir syntax [J]. Advances in Earth Science, 29(8): 890 – 902.]

      陳 杰, 李 濤, 李文巧, 等. 2011. 帕米爾構(gòu)造結(jié)及鄰區(qū)的晚新生代構(gòu)造與現(xiàn)今變形[J]. 地震地質(zhì), 33(2):241 – 259. [Chen J, Li T, Li W Q, et al. 2011. Late Cenozoic and present tectonic deformation in the Pamir salient, northwestern China [J]. Seismology and Geology,33(2): 241 – 259.]

      丁道桂. 1996. 西昆侖造山帶與盆地[M].北京: 地質(zhì)出版社.[Ding D G. 1996. The Western Kunlun orogenic belt and basin [M]. Beijing: Geological Publishing House.]

      賈承造, 魏國齊, 王良書. 1997. 中國塔里木盆地構(gòu)造特征與油氣[M]. 北京: 石油工業(yè)出版社. [Jia C Z, Wei G Q,Wang L S. 1997. Tectonic characteristics and petroleum Tarim Basin, China [M]. Beijing: Petroleum Industry Press.]

      李海兵, 劉敦一, 許志琴, 等. 2007. 喀喇昆侖斷裂的形成時(shí)代:鋯石SHRIMP U-Pb年齡的制約[J]. 科學(xué)通報(bào),52(4): 438 – 447. [Li H B, Liu D Y, Xu Z Q, et al. 2007.Deformation and tectonic evolution of the Karakorum fault, western Tibet [J]. Chinese Science Bulletin, 52(4):438 – 447.]

      李海兵, Franck Valli, 許志琴, 等. 2006. 喀喇昆侖斷裂的變形特征及構(gòu)造演化[J]. 中國地質(zhì), 33(2): 239 – 255.[Li H B, Franck V, Xu Z Q, et al. 2006. Deformation and tectonic evolution of the Karakorum fault, western Tibet [J].Geolgoy in China, 33(2): 239 – 255.]

      劉棟梁, 李海兵, 潘家偉, 等. 2011. 帕米爾東北緣—西昆侖的構(gòu)造地貌及其構(gòu)造意義[J]. 巖石學(xué)報(bào), 27(11):3499 – 3512. [Liu D L, Li H B, Pan J W, et al. 2011.Morphotectonic study from the northeastern margin of the Pamir to the West Kunlun range and its tectonic implications [J]. Acta Petrologica Sinica, 27(11):3499 – 3512.]

      許志琴, 李海兵, 唐哲民, 等. 2012. 大型走滑斷裂對(duì)青藏高原地體構(gòu)架的改造[J]. 巖石學(xué)報(bào), 27(11):3157 – 3170. [Xu Z Q, Li H B, Tang Z M, et al. 2012. The transformation of the terrain structures of the Tibet Plateau through large-scale strike-slip faults [J]. Acta Petrologica Sinica, 27(11): 3157 – 3170.]

      Abdulhameed S, Gagala L, Enkelmann E, et al. 2013. The exhumation of the westernmost Tien Shan (Tajikistan,Uzbekistan) [J]. Physical Review Letters, 50(2):1953 – 1956.

      Amidon W H, Hynek S A. 2010. Exhumational history of the north central Pamir [J]. Tectonics, 29(5): 5966 – 5983.

      Arnaud N O, Brunel M, Cantagrel J M, et al. 1993. High cooling and denudation rates at Kongur Shan, Eastern Pamir (Xinjiang, China) revealed by40Ar /39Ar alkali feldspar thermochronology [J]. Tectonics, 12(6):1335 – 1346.

      Arrowsmith J R, Strecker M R. 1999. Seismotectonic rangefront segmentation and mountain-belt growth in the Pamir-Alai region, Kyrgyzstan (India-Eurasia collision zone) [J]. Geological Society of America Bulletin, 111(11):1665 – 1683.

      Bazhenov M L, Burtman V S. 1986. Tectonics and paleomagnetism of structural arcs of the Pamir-Punjab syntaxis [J]. Journal of Geodynamics, 5(3/4): 383 – 396.

      Bershaw J G, Carmala N S, Lindsay G G, et al. 2012. Cenozoic evolution of the Pamir plateau based on stratigraphy,zircon provenance, and stable isotopes of foreland basin sediments at Oytag (Wuyitake) in the Tarim Basin (west China) [J]. Journal of Asian Earth Sciences, 44(1):136 – 148.

      Bosboom R, Dupont-Nivet G, Huang W, et al. 2014. Oligocene clockwise rotations along the eastern Pamir: tectonic and paleogeographic implications [J]. Tectonics, 33(2): 53 – 66.

      Bosboom R, Dupont-Nivet G, Mandic O. 2015. Late Eocene paleogeography of the Proto-Paratethys Sea in Central Asia (NW China, S Kyrgyzstan and SW Tajikistan) [J].Geological Society London Special Publications, 34:743 – 746.

      Bouilhol P, Jagoutz O, Hanchar J M, et al. 2013. Dating the India-Eurasia collision through arc magmatic records [J].Earth and Planetary Science Letters, 366(2): 163 – 175.

      Brunel M, Arnaud N, Tapponnier P, et al. 1994. Kongur Shan normal fault: Type example of mountain building assisted by extension (Karakoram fault, eastern Pamir) [J].Geology, 22(8): 707 – 710.

      Burg J P. 2011. The Asia-Kohistan-India collision: review and discussion [M]. Berlin Heidelberg: Springer: 279 – 309.

      Burtman V S, Molnar P. 1993. Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir [J]. Geological Society of America Bulletin,281(2): 248 – 251.

      Burtman V S. 2013. The geodynamics of the Pamir-Punjab syntaxis [J]. Geotecton, 47(1): 31 – 51.

      Cao K, Wang G C, Bernet M, et al. 2015. Exhumation history of the West Kunlun Mountains, northwestern Tibet:Evidence for a long-lived, rejuvenated orogen [J]. Earth Planetary Science Letters, 432: 391 – 403.

      Cao K, Wang G C, van der Beek P, et al. 2013. Cenozoic thermo-tectonic evolution of the northeastern Pamir revealed by zircon and apatite fission-track thermochronology [J]. Tectonophysics, 589(2): 17 – 32.

      Carrapa B, DeCelles P G, Wang X, et al. 2015. Tectono-climatic implications of Eocene Paratethys regression in the Tajik basin of central Asia [J]. Earth and Planetary Science Letters, 424: 168 – 178.

      Carrapa B, Mustapha F S, Cosca M, et al. 2014. Multisystem dating of modern river detritus from Tajikistan and China:Implications for crustal evolution and exhumation of the Pamir [J]. Lithosphere, 6(6): 443 – 455.

      Chang H, An Z, Wu F, et al. 2013. A Rb/Sr record of the weathering response to environmental changes in westerly winds across the Tarim Basin in the late Miocene to the early Pleistocene [J]. Palaeogeography Palaeoclimatology Palaeoecology, 386(6): 364 – 373.

      Chang H, An Z, Wu F, et al. 2017. Late Miocene—early Pleistocene climate change in the mid-latitude westerlies and their influence on Asian monsoon as constrained by the K/Al ratio record from drill core Ls2 in the Tarim Basin [J]. CATENA, 153: 75 – 82.

      Cowgill E. 2010. Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China [J].Geological Society of America Bulletin, 122(1): 145 – 161.

      Critelli S, De R R, Platt J P. 1990. Sandstone detrital modes in the Makran accretionary wedge, southwest Pakistan:implications for tectonic setting and long-distance turbidite transportation [J]. Sedimentary Geology, 68(4): 241 – 260.

      Dewey J F, Shackleton R M, Chengfa C, et al. 1988. The tectonic evolution of the Tibetan Plateau [J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 327(1594):379 – 413.

      Ding L, Qasim M, Jadoon I A K, et al. 2016. The India-Asia collision in north Pakistan: Insight from the U-Pb detrital zircon provenance of Cenozoic foreland basin [J]. Earth and Planetary Science Letters, 45: 49 – 61.

      Ducea M N, Lutkov V, Minaev V T, et al. 2003. Building the Pamirs: The view from the underside [J]. Geology, 31(10):849 – 852.

      Fan G, Ni J F, Wallace T C, 1994. Active tectonics of the Pamirs and Karakorum [J]. Journal of Geophysical Research: Solid Earth (1978—2012), 99(99): 7131 – 7160.

      Fraser J E, Searle M P, Parrish R R, et al. 2001. Chronology of deformation, metamorphism, and magmatism in the southern Karakoram Mountains [J]. Geological Society of America Bulletin, 113(11): 1443 – 1455.

      Fu B, Ninomiya Y, Guo J. 2010. Slip partitioning in the northeast Pamir-Tian Shan convergence zone [J].Tectonophysics, 483(3/4): 344 – 364.

      G?ga?a ?, K?ssner A, Abdulhameed S, et al. 2014. Structure and exhumation of the Tajik Depression (western foreland of the Pamir): towards an integrated kinematic mode [C].The 14th International Conference on Thermochronology,September 2014, Chamonix, France. l5: 1 – 3.

      Hacker B, Luffi P, Lutkov V. 2005. Near-ultrahigh pressure processing of continental crust: Miocene crustal xenoliths from the Pamir [J]. Journal of Petrology, 46(8):1661 – 1687.

      Hamburger M W, Sarewitz D R, Pavlis T L, et al. 1992.Structural and seismic evidence for intracontinental subduction in the Peter the First Range, central Asia [J].Geological Society of America Bulletin, 104(4): 397 – 408.

      Hu X M, Wang J G, Wei A, et al. 2017. Constraining the timing of the India-Asia continental collision by the sedimentary record [J]. Science China Earth Sciences, 60(4): 603 – 625.

      Jiang Y H, Liu Z J, Liao S Y, et al. 2012. Miocene potassic granite-syenite association in western Tibetan Plateau:Implications for shoshonitic and high Ba-Sr granite genesis [J]. Lithos, 134(3): 146 – 162.

      Kufner S K, Schurr B, Sippl C, et al. 2015. Deep India meets deep Asia: Lithospheric indentation,delamination and break-off under Pamir and Hindu Kush (Central Asia) [J]. Earth and Planetary Science Letters, 30: 379 – 393.

      Lacassin R, Valli F, Arnaud N, et al. 2004. Large-scale geometry, offset and kinematic evolution of the Karakorum fault, Tibet [J]. Earth and Planetary Science Letters, 219(3/4): 255 – 270.

      Lacombe O, Lavé J, Roure F, et al. 2007. Thrust belts and foreland basins [M]. Berlin Heidelberg: Springer Verlag:209.

      Lawrence R, Yeats R, Khan S, et al. 1981. Thrust and strike slip fault interaction along the Chaman transform zone,Pakistan [J]. Geological Society, London, Special Publications, 9(1): 363 – 370.

      Leith W. 1985. A mid-Mesozoic extension across Central Asia [J].Nature, 313(6003): 567 – 570.

      Macedo J, Marshak S. 1999. Controls on the geometry of foldthrust belt salients [J]. Geological Society of America Bulletin, 111(12): 1808 – 1822.

      Marshak S. 2004. Salients, recesses, arcs, oroclines, and syntaxes: A review of ideas concerning the formation of map-view curves in fold-thrust belts [J]. AAPG Memoir,15(3): 410 – 427.

      Murphy M, Yin A, Kapp P, et al. 2000. Southward propagation of the Karakoram fault system, southwest Tibet: Timing and magnitude of slip [J]. Geology, 28(5): 451 – 454.

      Negredo A M, Replumaz A, Villase?or A, et al. 2007. Modeling the evolution of continental subduction processes in the Pamir-Hindu Kush region [J]. Earth and Planetary Science Letters, 259(1): 212 – 225.

      Pavlis T L, Hamburger M W, Pavlis G L. 1997. Erosional processes as a control on the structural evolution of an actively deforming fold and thrust belt: An example from the Pamir-Tien Shan region, central Asia [J]. Tectonics,16(16): 810 – 822.

      Peltzer G, Tapponnier P. 1988. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision: An experimental approach [J]. Journal of Geophysical Research: Solid Earth (1978—2012), 93:15085 – 15117.

      Robinson A C, Ducea M, Lapen T J. 2012. Detrital zircon and isotopic constraints on the crustal architecture and tectonic evolution of the northeastern Pamir [J]. Tectonics, 31(2):531 – 535.

      Robinson A C, Yin A, Lovera O M. 2010. The role of footwall deformation and denudation in controlling cooling age patterns of detachment systems: An application to the Kongur Shan extensional system in the Eastern Pamir,China [J]. Tectonophysics, 496: 28 – 43.

      Robinson A C, Yin A, Manning C E, et al. 2004. Tectonic evolution of the northeastern Pamir: Constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China [J]. Geological Society of America Bulletin, 116(7/8): 953 – 973.

      Robinson A C, Yin A, Manning C E, et al. 2007. Cenozoic evolution of the eastern Pamir: Implications for strainaccommodation mechanisms at the western end of the Himalayan-Tibetan orogen [J]. Geological Society of America Bulletin, 119(7): 882 – 896.

      Schwab M, Ratschbacher L, Siebel W, et al. 2004. Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet [J]. Tectonics, 23. DOI:10.1029/2003TC001583.

      Schmalholz M. 2004. The amalgamation of the Pamirs and their subsequent evolution in the far fi eld of the India-Asia collision [D]. Tübingen: Universit?t Tübingen: 1 – 103.

      Searle M, Khan M A, Fraser J, et al. 1999. The tectonic evolution of the Kohistan-Karakoram collision belt along the Karakoram Highway transect, north Pakistan [J].Tectonics, 18(6): 929 – 949.

      Sippl C, Schurr B, Yuan X, et al. 2013. Geometry of the Pamir-Hindu Kush intermediate-depth earthquake zone from local seismic data [J]. Journal of Geophysical Research:Solid Earth, 118(4): 1438 – 1457.

      Smit M A, Ratschbacher L, Kooijman E, et al. 2014. Early evolution of the Pamir deep crust from Lu-Hf and U-Pb geochronology and garnet thermometry [J]. Geology,42(12): 1047 – 1050.

      Sobel E R, Chen J, Schoenbohm L M, et al. 2013. Oceanicstyle subduction controls late Cenozoic deformation of the Northern Pamir orogen [J]. Earth and Planetary Science Letters, 363(2): 204 – 218.

      Sobel E R, Dumitru T A. 1997. Thrusting and exhumation around the margins of the western Tarim basin during the India-Asia collision [J]. Journal of Geophysical Research:Solid Earth, 102(B3): 5043 – 5063.

      Sobel E R, Schoenbohm L M, Chen J, et al. 2011. Late Miocene—Pliocene deceleration of dextral slip between Pamir and Tarim: Implications for Pamir orogenesis [J].Earth and Planetary Science Letters, 304(3/4): 369 – 378.

      Sobel E R. 1999. Basin analysis of the Jurassic-Lower Cretaceous southwest Tarim basin, northwest China [J].Geological Society of America Bulletin, 111(5): 709 – 724.Strecker M, Frisch W, Hamburger M, et al. 1995. Quaternary deformation in the eastern Pamirs, Tadzhikistan and Kyrgyzstan [J]. Tectonics, 14(5): 1061 – 1079.

      Sun J, Gong Z, Tian Z, et al. 2015. Late Miocene stepwise aridification in the Asian interior and the interplay between tectonics and climate [J]. Palaeogeography,Palaeoclimatology, Palaeoecology, 421: 48 – 59.

      Sun J, Jiang M. 2013. Eocene seawater retreat from the southwest Tarim Basin and implications for early Cenozoic tectonic evolution in the Pamir Plateau [J].Tectonophysics, 588(2): 27 – 38.

      Sun J, Liu T. 2006. The age of the Taklimakan Desert [J].Science, 312(5780): 1621 – 1621.

      Sun J, Xiao W, Windley B F, et al. 2016. Provenance change of sediment input in the northeastern foreland of Pamir related to collision of the Indian Plate with the Kohistan-Ladakh arc at around 47 Ma [J]. Tectonics, 35(2): 315 – 338.

      Tapponnier P, Mattauer M, Proust F, et al. 1981. Mesozoic ophiolites, sutures, and arge-scale tectonic movements in Afghanistan [J]. Earth and Planetary Science Letters,52(2): 355 – 371.

      Thiede R C, Sobel E R, Chen J, et al. 2013. Late Cenozoic extension and crustal doming in the India-Eurasia collision zone: New thermochronologic constraints from the NE Chinese Pamir [J]. Tectonics, 32(3): 763 – 779.

      Thomas J C, Chauvin A, Gapais D, et al. 1994. Paleomagnetic evidence for Cenozoic block rotations in the Tadjik depression (Central Asia) [J]. Journal of Geophysical Research: Solid Earth, 99(B8): 15141 – 15160.

      Thompson J A, Burbank D W, Li T, et al. 2015. Late Miocene northward propagation of the northeast Pamir thrust system, northwest China [J]. Tectonics, 34(3):510 – 534.

      Valli F, Leloup P H, Paquette J L, et al. 2008. New U-Th/Pb constraints on timing of shearing and long term sliprate on the Karakorum fault [J]. Tectonics, 27(5):97 – 112.

      Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen [J]. Annual Review of Earth and Planetary Sciences, 28(1): 211 – 280.

      Yin A, Rumelhart P E, Butler R, et al. 2002. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation [J]. Geological Society of America Bulletin, 114(10): 1257 – 1295.

      Zheng H, Tada R, Jia J, et al. 2009. Cenozoic sediments in the southern Tarim Basin: implications for the uplift of northern Tibet and evolution of the Taklimakan Desert [J].Earth Science Frontiers, 22: 321 – 331.

      Zubovich A V, Wang X Q, Scherba Y G, et al. 2010. GPS velocity fi eld for the Tien Shan and surrounding regions [J].Tectonics, 29(6). DOI: 10.1029/2010TC002772.

      猜你喜歡
      葉城喀喇昆侖帕米爾
      葉城羊肉
      帕米爾的哨兵
      帕米爾風(fēng)情
      國畫家(2023年2期)2023-05-06 01:55:22
      帕米爾之夢
      致喀喇昆侖戍邊衛(wèi)士
      英雄雖已離去,精神永駐邊關(guān)!
      帕米爾女郎
      喀喇昆侖中生代鉛鋅礦控礦因素 及成礦演化模式分析
      為敵
      百家講壇(2019年20期)2019-04-30 06:48:24
      為敵
      绥棱县| 梨树县| 黑河市| 阳西县| 潞城市| 灵璧县| 天峨县| 肇州县| 林州市| 河北区| 集安市| 芷江| 思茅市| 怀集县| 西贡区| 图片| 西乌| 望都县| 石林| 简阳市| 广宁县| 永修县| 嵊州市| 石景山区| 福海县| 马龙县| 大悟县| 沂南县| 荆门市| 威海市| 桓台县| 鄂托克旗| 昌吉市| 沈丘县| 建宁县| 东宁县| 墨竹工卡县| 江北区| 高邮市| 甘孜县| 黑山县|