張 謝,周 華,張宏宇,肖 健*
(1.寧波市醫(yī)療中心李惠利醫(yī)院 藥劑科, 浙江 寧波 315040; 2.溫州醫(yī)科大學(xué) 藥學(xué)系, 浙江 溫州 325035)
脊髓損傷(spinal cord injury,SCI)是嚴(yán)重危害人類生存和生活質(zhì)量的一類中樞性神經(jīng)創(chuàng)傷。血脊髓屏障(blood spinal cord barrier, BSCB)的破壞將嚴(yán)重?cái)_亂脊髓內(nèi)環(huán)境穩(wěn)態(tài),是脊髓損傷后難愈的重要原因,是后續(xù)其他損傷機(jī)制相互聯(lián)系、互相作用的重要通路和中心環(huán)節(jié)[1]。堿性成纖維細(xì)胞生長(zhǎng)因子(basic fibroblast growth factor, bFGF),是一個(gè)具有神經(jīng)保護(hù)作用的細(xì)胞因子[2- 3]。本研究旨在研究bFGF對(duì)體內(nèi)BSCB的維護(hù)是否具有保護(hù)作用,并探討其相關(guān)機(jī)制。
藥品與試劑 bFGF(中國(guó)格魯斯特公司),p120-catenin、β-catenin、claudin- 5和occludin抗體(Abcam 公司),羊抗兔 IgG-HRP(Bioworld公司),其他所有試劑(Sigma公司)。
SPF 級(jí),SD大鼠,體質(zhì)量為220~250 g [上海斯萊克實(shí)驗(yàn)動(dòng)物有限責(zé)任公司,合格證號(hào):SCXK(滬)2012- 0002]。在溫州醫(yī)科大學(xué)動(dòng)物實(shí)驗(yàn)中心分籠飼養(yǎng)。
1.2.1 動(dòng)物分組及處理:將動(dòng)物隨機(jī)分為3組,假手術(shù)組(sham),模型組(SCI)腹腔內(nèi)注射10%水合氯醛(3.5 mL/kg)麻醉,暴露脊柱 T8-10段,固定于打擊器平臺(tái),撞擊T9節(jié)段,打擊器力度約150 kdyn,bFGF干預(yù)組(SCI+bFGF)術(shù)后30 min,背部給予bFGF(80 μg/kg),之后每隔1 d給藥1次,每組各6只,于術(shù)后14 d處死。
1.2.2 BBB評(píng)分觀察大鼠后肢運(yùn)動(dòng)功能:根據(jù)BBB評(píng)分標(biāo)準(zhǔn)[4],在脊髓損傷后1、3、7和14 d進(jìn)行評(píng)分。評(píng)分采用雙人雙盲法,獨(dú)立觀察各組大鼠雙后肢行動(dòng)能力并記錄。
1.2.3 動(dòng)物組織處理及組織切片:腹腔注射10% 水合氯醛麻醉,先用0.9%氯化鈉溶液快速?zèng)_洗,再用4%多聚甲醛灌注固定。剝?nèi)p傷脊髓T7-T10,然后將其置于15% 蔗糖溶液中4 ℃過(guò)夜,OCT包埋,液氮凝固,存于-80 ℃?zhèn)溆?。組織切片:將包埋好的組織塊在-20 ℃ 冰凍切片機(jī)內(nèi)復(fù)溫30 min,進(jìn)行切片,厚度均為20 μm(用于伊文思藍(lán)直接觀察)或5 μm(用于HE染色,免疫熒光染色),存于-20 ℃?zhèn)溆谩?/p>
1.2.4 HE染色觀察組織:冰凍切片室溫復(fù)溫30 min,85%乙醇45 s,95%乙醇1 min,100% 乙醇Ⅰ 12 min,100%乙醇Ⅱ 2 min梯度脫水,蘇木精-伊紅染色,中性樹膠封片,鏡下觀察。
1.2.5 伊文思藍(lán)檢測(cè)通透性:經(jīng)尾靜脈注射2%伊文思藍(lán)溶液(4 mL/kg),2 h后,用0.9%氯化鈉沖洗至全身血液沖凈。取脊髓組織T7-T10段,按脊髓組織重量(g)與甲酰胺體積(mL)1∶5比例萃取。37 ℃水浴鍋孵育3 d,15 000 r/min離心30 min,取上清,檢測(cè)其熒光強(qiáng)度。
1.2.6 FITC-dextran檢測(cè)通透性:經(jīng)尾靜脈注射 FITC-dextran溶液(4 mL/kg),2 h后,用0.9%氯化鈉溶液沖洗至全身血液沖凈。取1 g脊髓組織,加10 mL0.9%氯化鈉溶液,12 000 r/min離心10 min,取上清。甲醇與乙醇按1∶2的比例混合,取200 μL加入到收集的上清中,測(cè)定析出,3 h后,12 000 r/min離心20 min,吸取上清液200 μL,酶標(biāo)儀檢測(cè)其熒光強(qiáng)度。
1.2.7 Western blot 法檢測(cè)蛋白表達(dá):上樣量100 μg,用10.6% 凝膠恒壓分離,濕轉(zhuǎn)到PVDF 膜上,5%脫脂牛奶室溫封閉。膜用1×TBST洗滌3,一抗?jié)舛葹?∶1 000, 4 ℃孵育過(guò)夜,二抗?jié)舛葹?∶10 000, 室溫孵育2 h,加入顯色液,于凝膠成像儀器曝光。
模型組BBB評(píng)分明顯低于假手術(shù)組(P<0.05),bFGF 干預(yù)組BBB評(píng)分顯著回升(P<0.05)(圖1A)。
脊髓損傷后3 d,模型組可見損傷區(qū)及鄰近區(qū)有出血的現(xiàn)象,并且部分細(xì)胞溶解消失,局部有空泡形成,灰質(zhì)中心明顯壞死、軸索紊亂不規(guī)則(圖1B)。模型組神經(jīng)元明顯丟失,而給予bFGF后,相比較模型組,bFGF干預(yù)組脊髓組織病理結(jié)構(gòu)明顯改善,神經(jīng)元丟失減少(圖1C,D)。
脊髓損傷后,伊文思藍(lán)的滲透迅速增加,術(shù)后1 d達(dá)到頂峰,之后慢慢下降。術(shù)后0.25、1、3和7 d,與模型組相比,bFGF干預(yù)組伊文思藍(lán)的滲透明顯減少(圖2B);術(shù)后1 d,脊髓直觀圖(圖2A)以及縱切的熒光圖(圖2C)結(jié)果顯示,bFGF干預(yù)組大鼠脊髓損傷周圍染料的擴(kuò)散量明顯比模型組少。術(shù)后1 d,bFGF干預(yù)組FITC-dextran的滲透明顯比模型組少(圖2D)。
與假手術(shù)組相比,模型組黏附連接蛋白(p120-catenin,β-catenin)和緊密連接蛋白(occludin,claudin- 5)均顯著下調(diào),且在損傷1 d后表達(dá)最低,其中β-catenin和occludin在第7天發(fā)生上調(diào),而p120-catenin和claudin- 5的表達(dá)在第7天仍處于低水平狀態(tài)(圖3A,B)。與模型組相比,bFGF干預(yù)組以上4個(gè)蛋白表達(dá)均顯著上升(圖3C,D)。
對(duì)于脊髓損傷的治療,之前的研究大多關(guān)注于損傷后后肢感覺(jué)和運(yùn)動(dòng)功能的恢復(fù),主要涉及神經(jīng)元的保護(hù),忽視微血管的反應(yīng)。在創(chuàng)傷性大鼠脊髓損傷模型中發(fā)現(xiàn), 減少BSCB的破壞可以起到顯著
A.BBB scores of SCI model rat at 1, 3, 7 and 14 days after contusion;*P<0.05,**P<0.01 compared with the SCI group; B.HE staining results of SCI rat at 3 days after contusion; C.NeuN staining results of SCI rat at 3 days post injury; D.quantification of the number of neuron index;*P<0.05 compared with the sham group;#P<0.05 compared with the SCI group
A.representative whole spinal cords showing Evans blue dye permeabilized into the spinal cord at 1 day; B.quantification of Evans blue dye extracted from spinal cord at 6 hours-14 days postinjury with or without bFGF; C.representative confocal images of sham, SCI, and bFGFgroups; D.quantification of the FITC-dextran extravasation;*P<0.01 compared with sham group;#P<0.05,##P<0.01 compared with SCI group
A.protein levels of p120-catenin, β-catenin,occludin, and claudin- 5 at 6 hours-7 days after injury; B.densitometric analyses of p120-catenin, β-catenin,occludin, and claudin- 5 of figue A; C.protein levels of p120-catenin, β-catenin,occludin, and claudin- 5 proteins 1 d after bFGF treatment; D.densitometric analyses of p120-catenin, β-catenin,occludin, and claudin- 5 of figue C;*P<0.05 compared with sham group;#P<0.05 compared with the SCI group
[1] Sharma HS. Early microvascular reactions and blood-spinal cord barrier disruption are instrumental in pathophysiology of spinal cord injury and repair: novel therapeutic strategies including nanowired drug delivery to enhance neuroprotection [J]. J Neural Transm (Vienna), 2011,118: 155- 176.
[2] Zhang HY, Zhang X, Wang ZG,etal. Exogenous basic fibroblast growth factor inhibits ER stress-induced apoptosis and improves recovery from spinal cord injury[J]. CNS Neurosi Ther, 2013, 19:20- 29.
[3] Rabchevsky AG, Fugaccia I, Turner AF,etal. Basic fibroblast growth factor (bFGF) enhances functionalbre-covery following severe spinal cord injury to the rat[J]. Exp Neurol, 2000, 164: 280- 291.
[4] Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats[J]. J Neurotrauma, 1995, 12:1- 21.
[5] Zheng B, Ye L, Zhou Y,etal. Epidermal growth factor attenuates blood-spinal cord barrier disruption via PI3K/Akt/Rac1 pathway after acute spinal cord injury[J]. Cell Mol Med, 2016, 20:1062- 1075.
[6] Yu DS, Cao Y, Mei XF,etal. Curcumin improves the integrity of blood-spinal cord barrier after compressive spinal cord injury in rats[J]. J Neurol Sci, 2014, 346:51- 59.
[7] Lee JY, Choi HY, Ahn HJ,etal. Matrix metalloproteinase- 3 promotes early blood-Spinal cord barrier disruption and hemorrhage and impairs long-term neurological recovery after spinal cord injury[J]. Am J Pathol, 2014, 184:2985- 3000.
[8] Cahill LS, Laliberte CL, Liu XJ,etal. Quantifying blood-spinal cord barrier permeability after peripheral nerve injury in the living mouse[J]. Mol Pain, 2014, 10:60.
[9] Zhang HY, Wang ZG, Wu FZ,etal. Regulation of autophagy and ubiquitinated protein accumulation by bFGF promotes functional recovery and neural protection in a rat model of spinal cord injury[J]. Mol Neurobiol, 2013,48:452- 464.
[10] Ebnet K. Organization of multiprotein complexes at cell-cell junctions[J]. Histochem Cell Biol, 2008, 130:1- 20
[11] Cummins PM. Occludin: one protein, many forms[J]. Mol Cell Biol, 2012, 32:242- 250.
[12] Li Y, Fanning AS, Anderson JM,etal. Structure of the conserved cytoplasmic C-terminal domain of occludin: identification of the ZO- 1 binding surface[J]. J Mol Biol, 2005, 352:151- 164.
[13] Furuse M, Fujita K, Hiiragi T,etal. Claudin- 1 and - 2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin[J]. J Cell Biol, 1998, 141:1539- 1550.