李 霞,徐 展,張 志,胡 芳,劉 二,徐 鋒
(南京理工大學(xué) 材料科學(xué)與工程學(xué)院,江蘇 南京 210094)
最近,有關(guān)在微波器件上應(yīng)用軟磁薄膜的研究逐漸增多.研究目的之一是期望得到大的可調(diào)控零場(chǎng)鐵磁共振頻率(fr)[1].為滿(mǎn)足微波器件工作頻率不斷提高的要求,需要制備高磁各向異性[2]的薄膜.目前調(diào)節(jié)薄膜磁各向異性的手段已經(jīng)有了實(shí)質(zhì)性進(jìn)展,主要包括非磁元素?fù)诫s[3-5],利用多層薄膜之間的交換偏置[6-9]或交換耦合[10-11]等.
由于過(guò)渡金屬3d電子與稀土元素的4f電子之間存在增強(qiáng)的L-S耦合作用,近年來(lái),在軟磁薄膜中摻雜重稀土元素得到了一定的關(guān)注[12-14].Xi等人預(yù)測(cè)FeCoSm薄膜中的磁各向異性可達(dá)1200 Oe[15].我們之前的研究也表明,摻雜Dy會(huì)增強(qiáng)FeCo薄膜的Gilbert阻尼,提高其共振頻率[16].
根據(jù)Kittel關(guān)系[1-2],軟磁薄膜的共振頻率取決于單軸面內(nèi)磁各向異性,而后者可通過(guò)不同方向磁反轉(zhuǎn)特性的差異反映出來(lái).然而,與對(duì)微波特性的研究相比,人們對(duì)稀土元素?fù)诫s如何影響磁反轉(zhuǎn)的認(rèn)識(shí)仍不足,需要進(jìn)一步探討[17-18].這將有助于該類(lèi)材料在高頻領(lǐng)域的應(yīng)用.
本文研究了摻雜Dy的FeCo薄膜的靜磁特性和磁反轉(zhuǎn)機(jī)制.該薄膜通過(guò)傾斜磁控濺射制備而成,薄膜的面內(nèi)單軸磁各向異性可通過(guò)改變傾斜濺射角度來(lái)有效調(diào)節(jié).在濺射角為39°時(shí),得到最大磁各向異性場(chǎng)達(dá)898.1 Oe,其共振頻率可達(dá)10.9 GHz.并通過(guò)分析薄膜的矯頑力和剩磁比率對(duì)其磁反轉(zhuǎn)機(jī)制進(jìn)行了討論.
采用磁控濺射的方法制備了不同傾斜濺射角度的(Fe65Co35)92.2Dy7.8(FeCoDy)薄膜.薄膜厚度均控制為100 nm. 真空腔體的本底真空度優(yōu)于2×10-5Pa,濺射氬氣氣壓保持在0.2 Pa. 通過(guò)在Fe65Co35靶表面上呈圓環(huán)狀對(duì)稱(chēng)放置Dy薄片實(shí)現(xiàn)復(fù)合濺射. 通過(guò)調(diào)控Dy薄片數(shù)目來(lái)改變薄膜成分. 傾斜濺射角度范圍為27°~45°. 樣品成分通過(guò)電子能譜(EDS)進(jìn)行確定. 薄膜晶體結(jié)構(gòu)通過(guò)X射線(xiàn)衍射(XRD)進(jìn)行測(cè)量.靜磁性能采用Lakeshore 7304振動(dòng)樣品磁強(qiáng)計(jì)(VSM)進(jìn)行表征.
圖1為Fe65Co35與39°傾斜濺射的(Fe65Co35)92.2Dy7.8薄膜的XRD譜圖. 對(duì)于FeCo薄膜,在44.6°位置可以觀察到一個(gè)明顯的衍射峰,來(lái)自bcc結(jié)構(gòu)的FeCo薄膜的(110)晶相.而FeCoDy薄膜中該衍射峰消失,表明Dy元素的摻雜導(dǎo)致薄膜結(jié)構(gòu)非晶化[3].
圖1 Fe65Co35薄膜樣品與傾斜濺射角度為39°的(Fe65Co35)92.2Dy7.8薄膜的XRD
通過(guò)施加平行或垂直于薄膜易磁化方向的磁場(chǎng),可獲得FeCoDy薄膜易軸與難軸方向的面內(nèi)磁滯回線(xiàn). 圖2(a) ~圖2(f)為27°到 45°濺射角度樣品的難軸與易軸的磁滯回線(xiàn). 易軸方向的磁滯回線(xiàn)均表現(xiàn)出良好的方形度,而難軸方向的磁滯回線(xiàn)表現(xiàn)出高飽和場(chǎng). 最高的飽和場(chǎng)出現(xiàn)在39°沉積的薄膜中,顯示出了大的磁各向異性.
圖2?。╝)27°;(b)31°;(c)35°;(d)39°;(e) 42°;(f)45°) 濺射角樣品的難軸(藍(lán)圓)與易軸(橘方形)的磁滯回線(xiàn)
圖3(a)與圖3(b)分別為矯頑力(Hc)與剩磁比(Mr/Ms)隨濺射角度的變化關(guān)系圖. 沿難軸方向上的矯頑力保持在20 Oe左右,而沿易軸方向的矯頑力大體隨濺射角度增加而增加——這是在傾斜濺射的薄膜中經(jīng)常可以觀察到的現(xiàn)象[1,19]. 由于薄膜樣品易軸磁滯回線(xiàn)的高方形度,易軸方向的剩磁比保持接近1.0;而沿著難軸方向的剩磁比隨著濺射角度的增加逐漸接近0. 這是由于薄膜良好的面內(nèi)單軸各向異性使得退磁態(tài)中幾乎全部磁矩都沿著易軸方向排列.
圖3?。╝)(b)(c)分別為矯頑力(Hc);剩磁比(Mr/Ms);(Fe65Co35)92.2Dy7.8面內(nèi)各向異性Hk隨濺射角度變化關(guān)系
圖3(c)為各向異性場(chǎng)與傾斜濺射角度的關(guān)系.各向異性場(chǎng)的大小通過(guò)難軸方向磁滯回線(xiàn)中線(xiàn)的延長(zhǎng)線(xiàn)與飽和磁滯回線(xiàn)反向延長(zhǎng)線(xiàn)的交點(diǎn)來(lái)確定.隨著濺射角度從27°升高到39°,F(xiàn)eCoDy薄膜的Hk從224.3 Oe升高到898.1 Oe. 隨著濺射角度進(jìn)一步升高到45°,各向異性場(chǎng)減小至593.3 Oe. 在傾斜濺射的Co90Zr10薄膜中也觀察到相似的現(xiàn)象[1,19]. 在低傾斜角度時(shí),由于自陰影效應(yīng),柱狀晶垂直于傾斜濺射平面生長(zhǎng),隨著濺射角度增加,自陰影效應(yīng)更顯著[1]. 在高角度時(shí),由于陰影極限,柱狀晶開(kāi)始消失.因此柱狀晶結(jié)構(gòu)的變化帶來(lái)了各向異性場(chǎng)隨濺射角度的增加而先增加后減?。?/p>
為了進(jìn)一步研究磁化反轉(zhuǎn)機(jī)制,我們測(cè)量了FeCoDy薄膜樣品角度依賴(lài)的矯頑力與剩磁比.
在單軸各向異性系統(tǒng)中磁化反轉(zhuǎn)存在兩種機(jī)制.第一種為一致旋轉(zhuǎn)模型,可以通過(guò)Stoner-Wohlfarth的矯頑力的角度依賴(lài)關(guān)系描述[20-21].
第二種為疇壁移動(dòng)(成核與反釘扎)模型[22-23],可以采用Kondorsky的矯頑力變化關(guān)系描述.通常情況下,一致旋轉(zhuǎn)模型用于解釋一致旋轉(zhuǎn)的孤立單疇[24],而疇壁移動(dòng)模型用于描述高交換耦合作用的連續(xù)薄膜中的疇壁移動(dòng)或非一致切換.
如圖4(a)所示,矯頑力的角度依賴(lài)關(guān)系曲線(xiàn)在0到180°范圍內(nèi)呈M型,表明體系存在著兩種磁化反轉(zhuǎn)機(jī)制.當(dāng)外場(chǎng)取向靠近難軸時(shí)曲線(xiàn)與一致旋轉(zhuǎn)模型相吻合,表明此時(shí)一致旋轉(zhuǎn)占磁化反轉(zhuǎn)機(jī)制主導(dǎo).而當(dāng)外場(chǎng)取向,此時(shí)疇壁的反釘扎過(guò)程主導(dǎo)磁化反轉(zhuǎn).圖4(b)為FeCoDy薄膜樣品的面內(nèi)不同方向的剩磁比.采用余弦函數(shù)可以很好地對(duì)數(shù)據(jù)進(jìn)行擬合,擬合結(jié)果進(jìn)一步確認(rèn)了傾斜濺射的FeCoDy薄膜樣品中存在強(qiáng)的單軸各向異性.
圖4?。╝) (b)分別為濺射角度為39°時(shí)(Fe65Co35)92.2Dy7.8薄膜矯頑力與剩磁比依賴(lài)于角度的關(guān)系曲線(xiàn)
零場(chǎng)鐵磁共振頻率對(duì)于高頻應(yīng)用是一項(xiàng)關(guān)鍵參數(shù),決定了軟磁材料的最高工作頻率.基于LLG方程,面內(nèi)單軸各向異性薄膜的磁導(dǎo)率譜如下[25]:
圖5 濺射角度27°和39°的(Fe65Co35)92.2Dy7.8薄膜計(jì)算磁導(dǎo)率譜
我們研究了傾斜濺射(Fe65Co35)92.2Dy7.8薄膜的磁特性和磁反轉(zhuǎn)機(jī)制,該類(lèi)薄膜展現(xiàn)出良好軟磁性能和明顯的面內(nèi)單軸各向異性.易軸方向的矯頑力隨濺射角度增加而增加.一致旋轉(zhuǎn)模型與疇壁移動(dòng)模型可分別有效解釋作用場(chǎng)難軸與易軸的磁反轉(zhuǎn)機(jī)制.隨著濺射角度從27°增加至45°,磁各向異性場(chǎng)從224.3 Oe增加至898.1 Oe,在39°時(shí)得到最大磁各向異性.相應(yīng)地,fr從5.3 GHz增加至10.9 GHz,有望滿(mǎn)足不同頻率微波應(yīng)用的需求.
參考文獻(xiàn):
[1]LI C, CHAI G, YANG C, et al. Tunable zero-field ferromagnetic resonance frequency from S to X band in oblique deposited CoFeB thin films[J]. Scientific reports, 2015, 5:17023.
[2]WANG S X, SUN N X, YAMAGUCHI M, et al. Sandwich films: Properties of a new soft magnetic material[J]. Nature, 2000,407(6801):150-151.
[3]XU Z, YIN Y, XU F, et al. Tuning of the microwave magnetization dynamics in CoZr-based thin films by Nd-doping[J].Journal of Applied Physics, 2015, 117(17):17A335.
[4]REIDY S G, CHENG L, BAILEY W E. Dopants for independent control of precessional frequency and damping in Ni81Fe19(50 nm) thin films[J]. Applied physics letters, 2003, 82(8):1254-1256.
[5]CHAI G, PHUOC N N, ONG C K. Angular tunable zero-field ferromagnetic resonance frequency in oblique sputtered CoFeBSm thin films[J]. Applied Physics Express, 2014, 7(6):063001.
[6]MCCORD J, KALTOFEN R, SCHMIDT O G, et al. Tuning of magnetization dynamics by ultrathin antiferromagnetic layers[J]. Applied Physics Letters, 2008, 92(16):162506.
[7]JIN L, ZHANG H, TANG X, et al. Tuning the permeability spectra with a half-free ferromagnetic underlayer in (NiFe/IrMn) n exchange-biased multilayers[J]. Thin Solid Films, 2012, 520(17):5756-5760.
[8]PHUOC N N, ONG C K. Non-linear interplay between exchange-bias-induced unidirectional anisotropy and oblique-deposition-induced uniaxial anisotropy[J]. Journal of Applied Physics, 2013, 114(4):043911.
[9]PENG B, PHUOC N N, ONG C K. High-frequency magnetic properties and their thermal stability in diluted IrMn-Al2O3/FeCo exchange-biased multilayers[J]. Journal of Alloys and Compounds, 2014, 602:87-93.
[10]CHAI G, CHAI Z C, YANG Y, et al. Adjust the resonance frequency of (Co90Nb10/Ta) n multilayers from 1.4 to 6.5 GHz by controlling the thickness of Ta interlayers[J]. Applied Physics Letters, 2010, 96(1):012505.
[11]WANG X, CHAI G, XUE D. Magnetic properties of (Co92Zr8/SiO2) 15 multilayer thin films for GHz applications[J]. Journal of Alloys and Compounds, 2014, 584: 171-174.
[12]REIDY S G, CHENG L, BAILEY W E. Dopants for independent control of precessional frequency and damping in Ni81Fe19(50 nm) thin films[J]. Applied physics letters, 2003, 82(8):1254-1256.
[13]FU Y, SUN L, WANG J S, et al. Magnetic Properties of (Ni83Fe17) 1-x-GdxThin Films with Diluted GdDoping[J]. IEEE Transactions on Magnetics, 2009, 45(10):4004-4007.
[14]LUO C, ZHANG D, WANG Y, et al. Angular dependence of ferromagnetic resonance in Tb-doped Ni80Fe20thin films[J].Journal of Alloys and Compounds, 2014, 598:57-60.
[15]XI L, ZHOU J J, SUN Q J, et al. Tunable cut-off frequency by in-plane uniaxial anisotropy in (Fe66.9Co33.1)86.8Sm13.2films[J].Journal of Physics D: Applied Physics, 2011, 44(29):295002.
[16]XU Z H, WANG S C, ZHANG Z W, et al. Optimization of magnetizing parameters for multipole magnetic scales usingguchimethod[J]. IEEE Transactions on Magnetics, 2015, 51(11):1-4.
[17]XI L, DU J H, ZHOU J J, et al. Soft magnetic property and magnetization reversal mechanism of Sm doped FeCo thin film for high-frequency application[J]. Thin Solid Films, 2012, 520(16):5421-5425.
[18]XI L, SUN Q J, LI X Y, et al. Recovery of soft magnetic properties of FeNiSm films by Ta interlayer[J]. Journal of Magnetism and Magnetic Materials, 2011, 323(16):2219-2223.
[19]WANG Z, FAN X, ZHAO X, et al. Fabrication of Co90Zr10thin films with adjustable resonance frequency from 1.8 to 7.1 GHz[J]. Journal of Alloys and Compounds, 2015, 628:236-239.
[20]STONER E C, WOHLFARTH E P. A mechanism of magnetic hysteresis in heterogeneous alloys [J]. Philos Trans R Soc(London, Ser A), 1948, 240:599-642.
[21]SUN L, HAO Y, CHIEN C L, et al. Tuning the properties of magnetic nanowires[J]. IBM Journal of Research and Development, 2005, 49(1):79-102.
[22]KONDORSKY E. On hysteresis in ferromagnetics[J]. J Phys(USSR), 1940, 2(2): 161-81.
[23]LIU Z Y, ADENWALLA S. Angular dependence of magnetization reversal process in patterned Co thin films[J]. IEEE transactions on magnetics, 2003, 39(4): 2074-2077.
[24]YANG F Y, CHIEN C L, FERRARI E F, et al. Uniaxial anisotropy and switching behavior in epitaxial CrO2films[J].Applied Physics Letters, 2000, 77(2): 286-288.
[25]YOUSSEF J B, VUKADINOVIC N, BILLET D, et al. Thickness-dependent magnetic excitations in Permalloy films with nonuniformmagnetization[J]. Physical Review B, 2004, 69(17):174402.