李雯鏡,李志彤,梁雪芳
內(nèi)蒙古大學(xué)生態(tài)與環(huán)境學(xué)院,呼和浩特 010021
苯并三唑及其衍生物(benzotriazole and its derivatives, BTRs)是一類具有優(yōu)良的金屬防腐蝕功能和光穩(wěn)定功能的化學(xué)品,廣泛應(yīng)用于工業(yè)和生活產(chǎn)品中。BTRs生產(chǎn)量大,分布廣泛,近年來在環(huán)境中不斷被檢出,成為一類新型污染物[1]。苯并三唑類紫外穩(wěn)定劑(benzotriazole ultraviolet stabilizers, BUVSs)是苯并三唑的一類具有良好紫外吸收能力的衍生物(可吸收280~400 nm光譜范圍內(nèi)的紫外線)[2],常作為添加劑用于各種工業(yè)產(chǎn)品中,如塑料、建筑材料、汽車配件、粘合劑、涂料等,以防止紫外輻射造成的黃化和降解[2]。此外,BUVSs也用于個(gè)人護(hù)理品中,如防曬霜、沐浴乳、洗發(fā)露、香水等[3]。BUVSs由于其應(yīng)用范圍廣、產(chǎn)量高、分布廣泛,以及其潛在的環(huán)境持久性和生物累積性,近年來得到了廣泛的關(guān)注。BUVSs已在多種環(huán)境介質(zhì)中檢出,例如地表水[4-5]、污水[6-7]、沉積物[8-9]、污泥[10-11]、填埋浸出液[8]、土壤[12],以及貝類[13]、魚類[3,14]和海鳥[2]等生物體。不僅如此,還有研究表明,在服裝紡織品[15]、室內(nèi)灰塵[16]、人類母乳[17]、尿液[18-19]和脂肪組織[20]中也有BUVSs檢出。同時(shí),研究表明BUVSs具有潛在的內(nèi)分泌干擾效應(yīng),可影響魚類和人的芳烴受體通路[21-23]。盡管BUVSs的急性毒性較低,但長(zhǎng)期暴露仍然會(huì)給人類健康和生態(tài)環(huán)境帶來潛在風(fēng)險(xiǎn)。因此,本文在總結(jié)BUVSs的環(huán)境分布和污染水平的基礎(chǔ)上,重點(diǎn)介紹了BUVSs的毒理學(xué)研究進(jìn)展并對(duì)典型BUVSs的生物活性進(jìn)行了預(yù)測(cè),以期為BUVSs的毒性研究和風(fēng)險(xiǎn)管理提供理論依據(jù)和科學(xué)基礎(chǔ)。
在環(huán)境樣品中,由于基質(zhì)復(fù)雜等原因污染物難以直接檢測(cè),因此通常需要在測(cè)定前進(jìn)行適當(dāng)?shù)念A(yù)處理,以盡可能消除基質(zhì)影響,提高分析精度。當(dāng)前,建立和優(yōu)化BUVSs的儀器分析技術(shù),有助于研究獲得更準(zhǔn)確的數(shù)據(jù)信息,更好地對(duì)BUVSs在環(huán)境中的污染水平、分布規(guī)律、生態(tài)風(fēng)險(xiǎn)等方面進(jìn)行更好地評(píng)估(表1)。
1.1.1預(yù)處理方法
1.1.1.1固相萃取
固相萃取(solid-phase extraction, SPE)是最常用于處理水樣中目標(biāo)化合物的預(yù)處理方法,包括液相和固相的物理萃取過程,樣品通過吸附劑時(shí)被選擇保留分離物和一些干擾物,用適當(dāng)?shù)娜軇┝芟次絼?,保留的干擾物被洗掉,可以得到純化、濃縮的分離物[33]。SPE的性能受到大量變量的影響,因此經(jīng)常根據(jù)不同的目標(biāo)化合物和樣品基質(zhì)從萃取柱、洗脫溶劑、洗脫體積、pH、萃取周期等方面進(jìn)行優(yōu)化,以獲得高回收率,提高分析的靈敏度。Liu等[24]在測(cè)定4種苯并三唑(benzotriazole, BT)和6種紫外吸收劑時(shí),將SPE作為地下水和污水的預(yù)處理方法,調(diào)節(jié)水樣pH至2,使用HLB柱提取水樣,并用甲醇/二氯甲烷(V∶V=50∶50)洗脫獲得目標(biāo)化合物,分別獲得了70%~150%和82%~127%的回收率。王金成等[34]測(cè)定地表水中苯并三唑類和苯并噻唑類衍生物時(shí),選用OASIS HLB為固相萃取柱,10%的甲醇水溶液為淋洗溶劑,20%的丙酮的甲醇溶液為洗脫溶劑,溶液上樣體積為200 mL,調(diào)節(jié)pH至3.0,獲得了59.8%~98.7%的回收率。
SPE技術(shù)在廣泛用于環(huán)境分析領(lǐng)域的同時(shí),還存在著一些缺點(diǎn),例如在樣品處理期間可能加大損失量以及需要大體積樣本,而在線SPE技術(shù)將常規(guī)的程序自動(dòng)化,縮小了預(yù)處理過程中的樣本損失,同時(shí)將污染最小化,提高了分析的可重復(fù)性[27]。
1.1.1.2液液萃取
液液萃取(liquid-liquid extraction, LLE)是利用液體混合物中各組分在某種溶劑中的溶解度不同而實(shí)現(xiàn)樣品分離提純目的的技術(shù)。簡(jiǎn)單來講,就是將萃取劑加入到樣品溶液中,充分混合,不同組分進(jìn)入不同的相中,進(jìn)而達(dá)到分離目標(biāo)物的目的。Nakata等[28]基于LLE技術(shù)提取污水處理廠進(jìn)出水中的BUVSs,使用己烷進(jìn)行萃取,獲得了98%~115%的回收率。
1.1.1.3微萃取技術(shù)
近些年,微萃取技術(shù)在不斷發(fā)展,因其操作簡(jiǎn)單、用量小等優(yōu)點(diǎn)越來越多地應(yīng)用于提取分析化合物當(dāng)中。固相微萃取(solid-phase microextraction, SPME)是以SPE技術(shù)為基礎(chǔ)發(fā)展的微萃取技術(shù),也常被用于在水樣中測(cè)定BUVSs。SPME通常在纖維涂層、pH、樣品溫度以及采樣模式上進(jìn)行優(yōu)化,以提高監(jiān)測(cè)效率。SPE和SPME在提取有效樣本的同時(shí),僅存在中等甚至沒有有機(jī)溶劑的消耗[29]。與SPE相比,SPME技術(shù)程序更為簡(jiǎn)單,且消耗的溶液少,靈敏度更高。
1.1.1.4攪拌棒吸附萃取
攪拌棒吸附萃取(stir bar sorption extraction, SBSE)是Baltussen等[35]開發(fā)的相對(duì)新型的預(yù)處理技術(shù),SBSE基于與SPME相同的原理,但相比SPME具有更高的聚二甲基硅氧烷(polydimethylsiloxane, PDMS)相體積,因此有更好的樣本容量和萃取效率[36]。SBSE是成本相對(duì)較低的提取技術(shù),適用于現(xiàn)場(chǎng)取樣,可以在不具有復(fù)雜設(shè)備的實(shí)驗(yàn)室實(shí)施,Montesdeoca-Esponda等[26]從水樣品中提取BUVSs,對(duì)于極性強(qiáng)的BUVSs回收率高(68.4%~92.2%),而對(duì)極性弱的回收率較低(18.3%~47.0%)。
表1 不同基質(zhì)中苯并三唑類紫外穩(wěn)定劑(BUVSs)的分析方法Table 1 Methods of the determination of benzotriazole ultraviolet stabilizers (BUVSs) in different matrix
注:#液體濃度單位為ng·L-1,固體和生物體濃度單位為ng·g-1,* LOQ為定量限。SPE為固相萃取,SBSE-LD為攪拌棒吸附萃取-液體解吸,SPME-HS為固相微萃取-頂空,LLE為液液萃取,PLE為加壓溶劑萃取,ASE為加速溶劑萃取,HSSE為快速溶劑萃?。籊C-MS/MS為氣相色譜-串聯(lián)質(zhì)譜法,LC-MS/MS為液相色譜-串聯(lián)質(zhì)譜法,HPLC-MS/MS為高效液相色譜-串聯(lián)質(zhì)譜法,UHPLC-MS/MS為超高效液相色譜-串聯(lián)質(zhì)譜法,GC-HRMS為氣相色譜-高分辨質(zhì)譜法,LC-HRMS為液相色譜-高分辨質(zhì)譜法,GC-QTOF-MS為氣相-四極桿飛行時(shí)間串聯(lián)質(zhì)譜,UFLC-MS/MS為超高速液相色譜-串聯(lián)質(zhì)譜法;MSPD為基質(zhì)固相分散;UV-P,2-(2'-羥基-5'-甲基苯基)苯并三唑;UV-234,2-(2'-羥基-3',5'雙(a,a-二甲基芐基)苯基)苯并三唑;UV-320,2-(2'-羥基-3',5'-二叔丁基苯基)-苯并三唑;UV-326,2'-(2'-羥基-3'-叔丁基-5'-甲基苯基)-5-氯苯并三唑;UV-327,2-(2'-羥基-3',5'-二特丁基苯基)-5-氯苯并三唑;UV-328,2-[2-羥基-3,5-二(1,1-二甲基丙基苯基)]-2H-苯并三唑;UV-329,2-(2'-羥基-5'-特辛基苯基)苯并三唑;UV-350,2-(2'-羥基-3'-異丁基-5'-叔丁基苯基)苯并三唑;UV-360,2,2'-亞甲基雙(4-叔辛基-6-苯并三唑苯酚);UV-571,2-(2H-苯并三唑-2-基)-6-十二烷基-4-甲酚;UV-PS,2-(2H-苯并三唑-2-基)-4-(1,1-二甲基乙基)-苯酚;UV-120,3,5-二叔丁基-4-羥基苯甲酸-2,4-二叔丁基苯酯;UV-9,2-羥基-4-甲氧基二苯甲酮;UV-928,2-(2H-苯并三唑-2-基)-6-(1-甲基-1-苯乙基)-4-(1,1,3,3-四甲基丁基)苯酚;TBHPBT,2-(2H-苯并三唑-2-基)-4-(1,1-二甲基乙基)-苯酚。
Note: # concentration unit for liquid is ng·L-1, while for solid and biotas is ng·g-1; * LOQ, limits of quantification. SPE, solid-phase extraction; SBSE-LD, stir bar sorption extraction-liquid desorption; SPME-HS, solid-phase microextraction-headspace; LLE, liquid-liquid extraction; PLE, pressurized liquid extraction; ASE, accelerated solvent extraction; HSSE, high-speed solvent extraction; GC-MS/MS, gas chromatography-tandem mass spectrometry; LC-MS/MS, liquid chromatography-tandem mass spectrometry; HPLC-MS/MS, high-performance liquid chromatography-tandem mass spectrometry; UHPLC-MS/MS, ultra-high performance liquid chromatography-tandem mass spectrometry; GC-HRMS, gas chromatography-high resolution mass spectrometry; LC-HRMS, liquid chromatography-high resolution mass spectrometry; GC-QTOF-MS, gas chromatography-quadrupole time-of-flight mass spectrometry; UFLC-MS/MS, ultra-fast liquid chromatography-tandem mass spectrometry; MSPD, matrix solid-phase dispersion; UV-P, 2-(benzotriazol-2-yl)-4-methylphenol; UV-234, 2-(benzotriazol-2-yl)-4,6-bis (2-phenylpropan-2-yl)phenol; UV-320, 2-(benzotriazol-2-yl)-4,6-ditert-butylphenol; UV-326, 2-tert-butyl-6-(5-chlorobenzotriazol-2-yl)-4-methylphenol; UV-327, 2,4-ditert-butyl-6-(5-chlorobenzotriazol-2-yl)phenol; UV-328, 2-(benzotriazol-2-yl)-4,6-bis(2-methylbutan-2-yl)phenol; UV-329, 2-(benzotriazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)phenol; UV-350, 2-(benzotriazol-2-yl)-6-butan-2-yl-4-tert-butylphenol; UV-360, 2-(benzotriazol-2-yl)-6-[[3-(benzotriazol-2-yl)-2-hydroxy-5-(2,4,4-trimethylpentan-2-yl) phenyl]methyl]-4-(2,4,4-trimethylpentan-2-yl) phenol; UV-571, 2-(benzothiazol-2-yl)-6-dodecyl-4-methyl phenol; UV-PS, 2-(5-tert-butyl-2-hydroxyphenyl) benzotriazole; UV-120, 2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate; UV- 9, 2-hydroxy-4-methoxybenzophenone; UV-928, 2-(2H-benzotriazol-2-yl)-6-(1-methyl-1-phenylethyl)-4-(1,1,3,3-tetramethylbutyl)phenol; TBHPBT, 2-(5-t-butyl-2-hydroxyphenyl)benzotriazole.
1.1.2分析方法
現(xiàn)階段,對(duì)于不同的環(huán)境介質(zhì),測(cè)定BUVSs所采用的方法主要有氣相色譜-質(zhì)譜法(gas chromatography mass spectrometry, GC-MS),氣相色譜-串聯(lián)質(zhì)譜法(gas chromatography-tandem mass spectrometry, GC-MS/MS),液相色譜-串聯(lián)質(zhì)譜法(liquid chromatography-tandem mass spectrometry, LC-MS/MS)以及高效液相色譜法(high-performance liquid chromatography, HPLC)等。色譜和質(zhì)譜的結(jié)合可以使其分別發(fā)揮高效的分離能力和特異的鑒別能力,在分析監(jiān)測(cè)領(lǐng)域起著越來越重要的作用。
1.1.2.1氣相色譜-質(zhì)譜
GC-MS將氣相色譜與質(zhì)譜結(jié)合,可以同時(shí)進(jìn)行有機(jī)物定量和定性的分析,已被廣泛用于在不同環(huán)境基質(zhì)(水、空氣、土壤等)中污染物的監(jiān)測(cè)。Zhang等[9]在研究沉積物和污泥中的BUVSs時(shí)采用GC-MS技術(shù)進(jìn)行監(jiān)測(cè),檢出限為0.1~0.5 ng·g-1,回收率范圍在82%~106%。薛建平[37]用GC-MS測(cè)定紡織品中UV-320的含量,檢出限可達(dá)0.05 ng·g-1,平均回收率為90.3%~103.0%。Carpinteiro等[6]進(jìn)行SBSE和液體解吸后,將樣品大量注入GC-MS進(jìn)行分析,在離子監(jiān)測(cè)(SIM)模式下測(cè)定污水基質(zhì)中的6種BUVSs,定量限在4~15 ng·L-1,在原污水和處理后污水分別得到29.3%~90.7%、24.6%~83.7%的回收率。
1.1.2.2高效液相色譜
HPLC是20世紀(jì)60年代末以經(jīng)典液相色譜法為基礎(chǔ),引入氣相色譜的理論與試驗(yàn)方法,以液體作為流動(dòng)相的色譜技術(shù)。與氣相色譜法相比,HPLC具有使用范圍廣,分離效率高,流動(dòng)相選擇范圍廣,分析速度快等優(yōu)點(diǎn),現(xiàn)階段已廣泛應(yīng)用于環(huán)境樣品中有機(jī)污染物的分析。
表2 典型苯并三唑類紫外穩(wěn)定劑的物理化學(xué)特性Table 2 Physicochemical characteristics of the most frequently detected benzotriazole UV stabilizers
Liu等[5]使用自動(dòng)在線固相萃取和高效液相色譜-串聯(lián)質(zhì)譜(HPLC-MS/MS)技術(shù)連用,對(duì)不同污水處理廠和河流采集的水樣進(jìn)行分析,監(jiān)測(cè)到了UV-P, UV-329, UV-350, UV-234和UV-328這5種BUVSs,濃度高達(dá)37.1 ng·L-1,提高了UV-328和UV-327的回收率。還有Ruan等[11]用HPLC-MS/MS技術(shù)對(duì)城市污水處理廠污泥樣品中的BUVSs進(jìn)行檢測(cè),達(dá)到了平均93%的回收率,檢出限為0.15~0.77 ng·g-1。該方法簡(jiǎn)便,實(shí)用,適用于水樣中BUVSs的同時(shí)分析與監(jiān)測(cè)。
超高效液相色譜(ultra-high performance liquid chromatography, UHPLC)是借助HPLC的原理,在色譜柱裝填固定相、超高壓輸液泵等方面進(jìn)行改進(jìn),實(shí)現(xiàn)了更快速、高分離度和高靈敏度的色譜技術(shù)。有研究使用UHPLC與串聯(lián)質(zhì)譜分析結(jié)合,監(jiān)測(cè)魚類[14]、污水處理廠污水以及沿海水域海水、海洋沉積物[26, 38-39]中的BUVSs。
隨著分析方法的優(yōu)化和檢測(cè)限的降低,近年來,BUVSs在環(huán)境中不斷被檢出,在污水[6-7]、地表水[4-5]、污泥[10-11]、沉積物[8-9]和水生生物[2-3,13]中均發(fā)現(xiàn)了BUVSs的存在。環(huán)境中常檢出的BUVSs主要包括UV-P, UV-234, UV-320, UV-326, UV-327, UV-328和UV-329(表2),檢出濃度為ng·L-1(或ng·g-1dw)水平。根據(jù)文獻(xiàn)報(bào)道,環(huán)境中較高濃度的BUVSs主要來源于污水、污泥和沉積物中。BUVSs在污泥和沉積物中的檢出率明顯高于地表水,有些BUVSs在污泥和沉積物中的濃度高達(dá)數(shù)十μg·g-1dw(表3)。相比之下,地表水中的BUVSs檢出率較低,濃度在2.3~307.7 ng·L-1。盡管BUVSs的水溶性極低,但是通過污水排放、沉積物釋放等,仍不斷有BUVSs在地表水中檢出(表3)。
表3 沉積物、污泥、水和生物體樣本中常測(cè)苯并三唑類紫外穩(wěn)定劑(BUVSs)的濃度Table 3 Concentrations of most frequently detected benzotriazole ultraviolet stabilizers (BUVs) in sediment, sludge, water and biota samples
注:ND,未量化(低于定量檢測(cè)限);lw,脂重;ww,濕重;dw,干重。
Note: ND, not quantified (below the limits of quantification, LOQ); lw, lipid weight; ww, wet weight; dw, dry weight.
由于BUVSs的疏水性較高(logKow>4.31,表2),在水環(huán)境中更容易吸附到污泥和沉積物中(表3)。Kameda等[4]在調(diào)查日本埼玉縣水體中BUVSs的濃度時(shí)發(fā)現(xiàn)沉積物中UV-234的平均檢出濃度為362.75 ng·g-1dw,而在水中的濃度則低于檢測(cè)限。另外,許多水域的沉積物中都發(fā)現(xiàn)有高濃度的UV-328,這可能與UV-328的高使用量及其高的logKow(7.22)有關(guān)。在美國(guó)羅德島納拉干塞特灣的沉積物中,UV-328的濃度高達(dá)74 000 ng·g-1dw[40]。同時(shí),在污泥和沉積物中,UV-P, UV-326, UV-327和UV-328是檢出率最高且濃度較高的幾種BUVSs。在污染嚴(yán)重的水體中,其平均濃度均能達(dá)到數(shù)千ng·g-1dw以上(表3)。研究顯示,在沉積物中UV-326, UV-327和UV-328的濃度之間有著顯著的相關(guān)性[2,4,11],說明其來源可能相似或者具有相似的環(huán)境歸趨。
在污水中,UV-P, UV-326, UV-327和UV-328也是檢出率最高的幾種化合物,濃度為2~85 ng·L-1(表3)。而UV-234和UV-329是近幾年水環(huán)境,尤其是我國(guó)污水樣品中檢出率較高的化合物。在污水處理廠,污水中的BUVSs濃度往往較低,而在污泥中BUVSs的濃度較高。Ruan等[11]收集了我國(guó)33個(gè)城市的污水處理廠的60個(gè)污泥樣本,幾乎所有樣本中均檢測(cè)到了UV-234和UV-329(59/60),中值濃度分別為116 ng·g-1dw和66.8 ng·g-1dw。Zhao等[41]報(bào)道,在哈爾濱某污水處理廠的污水樣品中UV-234和UV-329的檢測(cè)率分別為98%和100%,進(jìn)水平均濃度為37.8和38.9 ng·L-1;而在污泥樣品中UV-234和UV-329的檢測(cè)率均為100%,且經(jīng)不同工藝處理后污泥中的濃度分別為297~303.4和130.6~166.8 ng·g-1dw。
由于具有高度親脂性,BUVSs容易在生物體內(nèi)富集,近年來BUVSs在海洋無脊椎動(dòng)物、魚類以及鳥類等多種生物體內(nèi)檢出(表3)。
UV-320和UV-327的生物富集系數(shù)(bioconcentration factor, BCF)相對(duì)較高,鯉魚在UV-320暴露下,BCF值為1 380~10 000,與UV-320相似,UV-327的BCF值為3 400~9 000[2]。對(duì)于日本有明海的江豚(finless porpoises, Neophocaena phocaenoides),UV-327的BCF值高達(dá)為33 300,比相同區(qū)域內(nèi)的小魚(3 250)高約一個(gè)數(shù)量級(jí)[32]。基于不同的暴露,UV-326和UV-328的BCF值相對(duì)較低,為54~2 700[2]。Nakata等[2]報(bào)道了在日本有明海的無脊椎動(dòng)物如平蛤、牡蠣和腹足類體內(nèi)檢測(cè)到0.30~80 ng·g-1ww的BUVSs。在菲律賓馬尼拉灣周圍市場(chǎng),魚體中UV-328, UV-P, UV-320, UV-234的檢出率分別為88%、86%、79%和55%,其中UV-328的平均濃度為34.2 ng·g-1lw[3]。在亞太地區(qū)和美國(guó)沿海海域貽貝樣品中的UV-326, UV-327和UV-328,根據(jù)采樣點(diǎn)的不同,化合物濃度呈現(xiàn)出較大的差異,反映了BUVSs的使用率、來源及釋放途徑的差異[13]。UV-326, UV-327和UV-328高度親脂,在高營(yíng)養(yǎng)級(jí)物種生物中累積模式類似,這表明它們?cè)诤Q笫澄镦溨芯哂休^強(qiáng)的持久性和生物累積性[2, 8]。
最近,有報(bào)道表明在人類母乳中也有BUVSs(UV-P, UV-9, UV-320, UV-326, UV-327, UV-328, UV-329)的存在,總濃度范圍在 隨著BUVSs在環(huán)境和生物體中不斷被檢出,其潛在的健康效應(yīng)和生態(tài)毒理效應(yīng)引起了廣泛的關(guān)注(表4)。目前已有多個(gè)研究報(bào)道了關(guān)于苯并三唑及其衍生物對(duì)水生生物的急性毒性,研究表明其急性毒性較低,為mg·L-1水平。Pillard等[43]報(bào)道了BT對(duì)于網(wǎng)紋溞(Ceriodaphnia dubia)的48 h半數(shù)致死濃度LC50為102 mg·L-1,而黑頭呆魚(Pimephales promelas)對(duì)BT更為敏感,其96 h-LC50為65 mg·L-1。另外,還有研究顯示5-甲基-1H-苯并三唑(5-methyl-1H-benzotriazole, 5-MeBt)對(duì)黑頭呆魚的96 h-LC50為22.0 mg·L-1,對(duì)網(wǎng)紋溞的48 h-LC50為81.3 mg·L-1[44]。Seeland等[45]的研究顯示,在48 h BT暴露下大型溞(Daphnia magna)和盔形溞(Daphnia galeata)的半數(shù)有效濃度EC50分別為107 mg·L-1和15.8 mg·L-1,而暴露在5-MeBt下EC50分別為51.6和8.58 mg·L-1,表明盔形溞對(duì)這2種化合物更為敏感,尤其是5-MeBt。 相對(duì)于BT和其他衍生物,BUVSs在毒理學(xué)方面的信息還很少,已有報(bào)道表明其急性毒性較低(mg·L-1水平)。在淡水甲殼類動(dòng)物的急性毒性實(shí)驗(yàn)中,UV-571對(duì)蚤狀溞(Daphnia pulex)暴露24 h和48 h的LC50分別為6.35和2.59 mg·L-1,而其他BUVSs(UV-9, UV-234, UV-320, UV-326, UV-327, UV-328, UV-329, UV-360)的24 h和48 h-LC50均>10 mg·L-1[46]。同時(shí),有報(bào)道證明UV-329對(duì)大型溞的24 h-EC50為15 mg·L-1(U.S. Environmental Protection Agency)[47]。另外,研究表明直接接觸UV-P可能會(huì)引起皮炎等皮膚刺激問題[48]。 盡管BUVSs的急性毒性較低,但研究表明BUVSs具有潛在的慢性毒性,長(zhǎng)期暴露仍可能對(duì)人類健康以及生態(tài)環(huán)境造成不利影響。BT具有植物毒性并且對(duì)沙門氏菌和大腸桿菌具有誘變性(Health Council of the Netherlands, 2000)[49]。在長(zhǎng)期暴露下,BT和5-MeBt可對(duì)水生植物和水生無脊椎動(dòng)物產(chǎn)生繁殖毒性和生長(zhǎng)抑制[45]。此外,BT可干擾稀有鮈鯽(rare minnow, Gobiocypris rarus)腦組織的細(xì)胞呼吸、信號(hào)傳導(dǎo)和細(xì)胞凋亡通路,具有潛在的神經(jīng)毒性效應(yīng)[50]。同時(shí),經(jīng)長(zhǎng)期暴露,BT可影響稀有鮈鯽肝臟蛋白組的表達(dá),干擾氧化應(yīng)激、凋亡和翻譯等生物學(xué)過程,并造成組織損傷,產(chǎn)生肝臟毒性[51]。 相比BT (logKow=1.44),BUVSs的親脂性更強(qiáng)(logKow>4.31),更易在生物體內(nèi)積累。例如,盡管UV-320對(duì)蚤狀溞的急性毒性不高(LC50>10 mg·L-1)[46],但大鼠經(jīng)UV-320 28天和52周的長(zhǎng)期暴露,肝臟、腎臟、甲狀腺和脾臟的血液指標(biāo)和組織病理學(xué)均發(fā)生顯著變化,且其毒性效應(yīng)與性別相關(guān)[52-53]。Hirata-Koizumi等[54-55]證明這種性別差異是由于UV-320具有肝臟過氧物酶體增殖物活性,通過影響過氧化物酶體增殖物激活受體(peroxisome proliferator-activated receptor, PPARα)的表達(dá),對(duì)雌雄個(gè)體產(chǎn)生不同的效應(yīng)。UV-320因其生物累積性和毒性,在日本已被列為I類指定化學(xué)物質(zhì),2007年被日本政府禁止[32]。另外,雄性大鼠在25 mg·kg-1UV-327重復(fù)劑量暴露下,血清白蛋白以及白血球比值會(huì)顯著升高,同時(shí)肝臟比重也會(huì)顯著增加[56],還有報(bào)道顯示UV-327的毒性差異與性別相關(guān),可導(dǎo)致大鼠的肝細(xì)胞肥大[57],這些可能與BUVSs影響體內(nèi)酶的活性增殖相關(guān)。 最近,研究表明,BT和BUVSs具有潛在的內(nèi)分泌干擾效應(yīng),且不同結(jié)構(gòu)的BUVSs其毒性作用機(jī)制存在差異。在體外實(shí)驗(yàn)(in vitro)中,Harris等[58]報(bào)道BT有明顯的抗雌激素作用,而在活體實(shí)驗(yàn)(in vivo)中,BT對(duì)海洋青鳉(marine medaka, Oryzias melastigma)[59]和稀有鮈鯽(rare minnow, Gobiocypris rarus)[60]都顯示出雌激素干擾效應(yīng);BT引起海洋青鳉VTG和CYP19A基因的表達(dá)顯著上調(diào),同時(shí)抑制CYP1A1的表達(dá)[59]。而在對(duì)稀有鮈鯽的暴露中,BT通過干擾稀有鮈鯽的HPG軸受體通路,影響血液中雌激素水平,對(duì)其產(chǎn)生內(nèi)分泌干擾效應(yīng),造成肝臟和性腺的損傷[60]。另外,BUVSs可激活人和斑馬魚的芳香烴受體(aryl hydrocarbon receptor, AHR)通路,產(chǎn)生顯著的抗雄激素活性[21-23]。然而,不同結(jié)構(gòu)的BUVSs,其生物學(xué)活性也有差異。例如,Liang等[61]的研究顯示BUVSs對(duì)斑馬魚胚胎甲狀腺通路相關(guān)基因的表達(dá)產(chǎn)生顯著影響,且不同結(jié)構(gòu)的BUVSs的作用模式不同。Zhuang等[23]報(bào)道了8種BUVSs (UV-P, BT, UV-234, UV-326, UV-327, UV-328, UV-329, UV-350)在CYP3A4酶的存在下具有抗雄激素活性,UV-328經(jīng)CYP3A4酶代謝后抗雄激素活性顯著提高,而UV-P經(jīng)代謝后抗雄激素活性降低,其他BUVSs則沒有顯示抗雄激素活性。這些研究表明,BUVSs的毒性效應(yīng)、毒性作用方式和作用機(jī)制可能與其結(jié)構(gòu)相關(guān),因此研究不同結(jié)構(gòu)的BUVSs的生物活性對(duì)于正確評(píng)估其對(duì)生物體的毒性作用具有重要的意義。 為考察不同結(jié)構(gòu)的BUVSs的毒性效應(yīng),利用PASS (Prediction of Activity Spectra for Substances, http://www.way2drug.com/PASSOnline/index.php)對(duì)環(huán)境中典型BUVSs (UV-P, UV-234, UV-320, UV-326, UV-327, UV-328和UV-329)的生物活性進(jìn)行了預(yù)測(cè)。將各化合物的Canonical SMILES輸入PASS預(yù)測(cè)程序,即可得到相應(yīng)的生物活性的預(yù)測(cè)結(jié)果[62-63]。在輸出的結(jié)果中,Pa (probability "to be active")表示預(yù)測(cè)化合物具有該活性的可能性,Pi (probability "to be inactive")表示預(yù)測(cè)化合物不具有該活性的可能性,通過Pa值和Pi值進(jìn)行篩選得到相應(yīng)化合物具有的可能性較高的生物活性,以預(yù)測(cè)結(jié)果顯示,UV-P和UV-329的生物活性種類較多,Pa >0.7的預(yù)測(cè)生物學(xué)活性分別為13和23個(gè),而其他BUVSs Pa >0.7的預(yù)測(cè)生物學(xué)活性只有1~4個(gè)(表5)。比較各化合物預(yù)測(cè)生物學(xué)活性,UV-P具有較強(qiáng)的芳烴基轉(zhuǎn)移酶抑制(aspulvinone dimethylallyltransferase inhibitor),烷基單加氧酶抑制(alkane 1-monooxygenase inhibitor)和脫羧酶抑制(dehydro-L-gulonate decarboxylase inhibitor)的活性(delta >0.8,表5);而UV-329具有強(qiáng)烈的甘油醚單加氧酶抑制(glyceryl-ether monooxygenase inhibitor),糖轉(zhuǎn)移酶(undecaprenyl-phosphate mannosyltransferase inhibitor)和泛醌細(xì)胞色素c還原酶抑制(ubiquinol-cytochrome-c reductase inhibitor)活性(delta >0.9,表5)。相比于UV-P和UV-329,其他BUVSs的預(yù)測(cè)生物活性稍弱(delta <0.8,表5)。 表4 BUVSs對(duì)于不同生物體的毒性效應(yīng)Table 4 Toxicity effects of BUVSs on different organisms 注: BT,苯并三唑;UV-090,2-[3-(2H-苯并三唑-2-基)-4-羥基苯基]乙基-2-甲基丙烯酸酯。 Note: BT, benzotriazole; UV-090, 2-[3-(2H-benzotriazol-2-yl)-4- hydroxyphenyl]ethyl methacrylate. 表5 PASS(Prediction of Activity Spectra of Substances)預(yù)測(cè)的BUVSs的生物學(xué)活性Table 5 The theoretical bioactivities of BUVSs estimated using Prediction of Activity Spectra of Substances (PASS) 注:a. 如果生物學(xué)活性種類>5,只顯示Pa值最高的10項(xiàng)(UV-P和UV-329,Pa >0.7的預(yù)測(cè)生物學(xué)活性分別為13、23個(gè));b. Pa (probability "to be active")表示預(yù)測(cè)化合物具有該活性的可能性;c. Pi (probability "to be inactive")表示預(yù)測(cè)化合物不具有該活性的可能性;delta = Pa - Pi。 Note: a. If the biological activity type is>5, only show the top 10 of the Pa value (UV-P and UV-329, the predicted biological activity of Pa >0.7 was 13, 23 respectively); b. Pa (probability "to be active") indicates that the predicted compound has the possibility of this activity; c. Pi (probability "to be inactive") indicates that the predicted compound doesn’t have the possibility of this activity; delta = Pa - Pi. 該化合物的毒性作用方式。各BUVSs的Canonical SMILES如下:UV-P,CC1=CC(=C(C=C1)O)N2N=C3C=CC=CC3=N2;UV-234,CC(C)(C1=CC=CC=C1)C2=CC(=C(C(=C2)N3N=C4C=CC=CC4=N3)O)C(C)(C)C5=CC=CC=C5;UV-320,CC(C)(C)C1=CC(=C(C(=C1)N2N=C3C=CC=CC3=N2)O)C(C)(C)C;UV-326,CC1=CC(=C(C(=C1)N2N=C3C=CC(=CC3=N2)Cl)O)C(C)(C)C;UV-327,CC(C)(C)C1=CC(=C(C(=C1)N2N=C3C=CC(=CC3=N2)Cl)O)C(C)(C)C;UV-328,CCC(C)(C)C1=CC(=C(C(=C1)N2N=C3C=CC=CC3=N2)O)C(C)(C)CC;UV-329,CC(C)(C)CC(C)(C)C1=CC(=C(C=C1)O)N2N=C3C=CC=CC3=N2。 值得注意的是,UV-P, UV-234, UV-320和UV-329 (Pa =0.742,表5未顯示)都具有芳烴基轉(zhuǎn)移酶抑制(aspulvinone dimethylallyltransferase inhibitor)活性,該酶催化二甲基烯丙基焦磷酸酯(dimethylallyl pyrophosphate)芳香基團(tuán)的轉(zhuǎn)移[64],而該化合物參與固醇類的生物合成[65-66]。同時(shí),已有研究證明UV-P和UV-326可以激活人和斑馬魚的AHR活性[21],這些結(jié)果表明這4種BUVSs可能通過干擾固醇合成,產(chǎn)生內(nèi)分泌干擾作用;另外,PASS預(yù)測(cè)結(jié)果顯示除UV-234外,所有BUVSs都具有泛醌細(xì)胞色素c還原酶抑制(ubiquinol-cytochrome-c reductase inhibitor)活性(表5),該酶是線粒體呼吸電子傳遞鏈中的重要組分[67],這表明BUVSs很可能作用于線粒體,抑制線粒體呼吸,產(chǎn)生毒性作用。 (1) BUVSs的毒性數(shù)據(jù)仍然十分有限,毒性作用機(jī)制尚不清晰,尤其是對(duì)于不同結(jié)構(gòu)的BUVSs,其毒性作用方式可能存在差異,因此進(jìn)一步開展對(duì)BUVSs毒性效應(yīng)和毒性通路的研究,有利于闡明其對(duì)人和其他生物的毒性作用機(jī)制。 (2) 根據(jù)PASS預(yù)測(cè)的結(jié)果,BUVSs可能作用于線粒體并產(chǎn)生毒性作用,而目前還未見相關(guān)報(bào)道,因此進(jìn)一步開展BUVSs對(duì)線粒體作用的研究可為探明此類化合物的毒性作用模式提供新的視角。 (3) 盡管現(xiàn)有毒性數(shù)據(jù)與PASS預(yù)測(cè)均表明BUVSs可能對(duì)人和其他生物產(chǎn)生毒性效應(yīng),但是當(dāng)前關(guān)于BUVSs的潛在生態(tài)風(fēng)險(xiǎn)和健康風(fēng)險(xiǎn)的研究仍相對(duì)較少。最近Molins-Delgado等[68]應(yīng)用風(fēng)險(xiǎn)商(hazard quotient, HQs)對(duì)西班牙巴塞羅那附近水域的BT和MeBT (methylbenzotriazole)進(jìn)行風(fēng)險(xiǎn)評(píng)估,結(jié)果表明污水出水中BT和MeBT的HQs >1,對(duì)水生態(tài)環(huán)境具有一定的風(fēng)險(xiǎn),而BUVSs的生態(tài)風(fēng)險(xiǎn)研究還未見報(bào)道,亟待開展。 參考文獻(xiàn)(References): [1]Montesdeoca-Esponda S, Vega-Morales T, Sosa-Ferrera Z, et al. Extraction and determination methodologies for benzotriazole UV stabilizers in personal-care products in environmental and biological samples [J]. Trac-Trends in Analytical Chemistry, 2013, 51: 23-32 [2]Nakata H, Murata S, Filatreau J. Occurrence and concentrations of benzotriazole UV stabilizers in marine organisms and sediments from the Ariake Sea, Japan [J]. Environmental Science & Technology, 2009, 43(18): 6920-6926 [3]Kim J W, Isobe T, Ramaswamy B R, et al. Contamination and bioaccumulation of benzotriazole ultraviolet stabilizers in fish from Manila Bay, the Philippines using an ultra-fast liquid chromatography-tandem mass spectrometry [J]. Chemosphere, 2011, 85(5): 751-758 [4]Kameda Y, Kimura K, Miyazaki M. Occurrence and profiles of organic sun-blocking agents in surface waters and sediments in Japanese rivers and lakes [J]. Environmental Pollution, 2011, 159(6): 1570-1576 [5]Liu R Z, Ruan T, Wang T, et al. Determination of nine benzotriazole UV stabilizers in environmental water samples by automated on-line solid phase extraction coupled with high-performance liquid chromatography-tandem mass spectrometry [J]. Talanta, 2014, 120: 158-166 [6]Carpinteiro I, Ramil M, Rodriguez I, et al. Combining stir-bar sorptive extraction and large volume injection-gas chromatography-mass spectrometry for the determination of benzotriazole UV stabilizers in wastewater matrices [J]. Journal of Separation Science, 2012, 35(3): 459-467 [7]Song S J, Ruan T, Wang T, et al. Occurrence and removal of benzotriazole ultraviolet stabilizers in a wastewater treatment plant in China [J]. Environmental Science-Processes & Impacts, 2014, 16(5): 1076-1082 [8]Langford K H, Reid M J, Fjeld E, et al. Environmental occurrence and risk of organic UV filters and stabilizers in multiple matrices in Norway [J]. Environment International, 2015, 80: 1-7 [9]Zhang Z F, Ren N Q, Li Y F, et al. Determination of benzotriazole and benzophenone UV filters in sediment and sewage sludge [J]. Environmental Science & Technology, 2011, 45(9): 3909-3916 [10]Casado J, Rodriguez I, Carpinteiro I, et al. Gas chromatography quadrupole time-of-flight mass spectrometry determination of benzotriazole ultraviolet stabilizers in sludge samples [J]. Journal of Chromatography A, 2013, 1293: 126-132 [11]Ruan T, Liu R Z, Fu Q, et al. Concentrations and composition profiles of benzotriazole UV stabilizers in municipal sewage sludge in China [J]. Environmental Science & Technology, 2012, 46(4): 2071-2079 [12]Lai H J, Ying G G, Ma Y B, et al. Occurrence and dissipation of benzotriazoles and benzotriazole ultraviolet stabilizers in biosolid-amended soils [J]. Environmental Toxicology and Chemistry, 2014, 33(4): 761-767 [13]Nakata H, Shinohara R I, Nakazawa Y, et al. Asia-Pacific mussel watch for emerging pollutants: Distribution of synthetic musks and benzotriazole UV stabilizers in Asian and US coastal waters [J]. Marine Pollution Bulletin, 2012, 64(10): 2211-2218 [14]Kim J W, Ramaswamy B R, Chang K H, et al. Multiresidue analytical method for the determination of antimicrobials, preservatives, benzotriazole UV stabilizers, flame retardants and plasticizers in fish using ultra high performance liquid chromatography coupled with tandem mass spectrometry [J]. Journal of Chromatography A, 2011, 1218(22): 3511-3520 [15]Avagyan R, Luongo G, Thorsen G, et al. Benzothiazole, benzotriazole, and their derivates in clothing textiles—A potential source of environmental pollutants and human exposure [J]. Environmental Science and Pollution Research, 2015, 22(8): 5842-5849 [16]Kim J W, Isobe T, Malarvannan G, et al. Contamination of benzotriazole ultraviolet stabilizers in house dust from the Philippines: Implications on human exposure [J]. Science of the Total Environment, 2012, 424: 174-181 [17]Lee S, Kim S, Park J, et al. Synthetic musk compounds and benzotriazole ultraviolet stabilizers in breast milk: Occurrence, time-course variation and infant health risk [J]. Environmental Research, 2015, 140: 466-473 [18]Asimakopoulos A G, Bletsou A A, Wu Q, et al. Determination of benzotriazoles and benzothiazoles in human urine by liquid chromatography-tandem mass spectrometry [J]. Analytical Chemistry, 2013, 85(1): 441-448 [19]Asimakopoulos A G, Wang L, Thomaidis N S, et al. Benzotriazoles and benzothiazoles in human urine from several countries: A perspective on occurrence, biotransformation, and human exposure [J]. Environment International, 2013, 59: 274-281 [20]Wang L, Asimakopoulos A G , Kannan K. Accumulation of 19 environmental phenolic and xenobiotic heterocyclic aromatic compounds in human adipose tissue [J]. Environment International, 2015, 78: 45-50 [21]Fent K, Chew G, Li J, et al. Benzotriazole UV-stabilizers and benzotriazole: Antiandrogenic activity in vitro and activation of aryl hydrocarbon receptor pathway in zebrafish eleuthero-embryos [J]. Science of the Total Environment, 2014, 482: 125-136 [22]Nagayoshi H, Kakimoto K, Takagi S, et al. Benzotriazole ultraviolet stabilizers show potent activities as human aryl hydrocarbon receptor ligands [J]. Environmental Science & Technology, 2015, 49(1): 578-587 [23]Zhuang S L, Lv X, Pan L M, et al. Benzotriazole UV 328 and UV-P showed distinct antiandrogenic activity upon human CYP3A4-mediated biotransformation [J]. Environmental Pollution, 2017, 220(0269-7491): 616-624 [24]Liu Y S, Ying G G, Shareef A, et al. Simultaneous determination of benzotriazoles and ultraviolet filters in ground water, effluent and biosolid samples using gas chromatography-tandem mass spectrometry [J]. Journal of Chromatography A, 2011, 1218(31): 5328-5335 [25]Liu Y S, Ying G G, Shareef A, et al. Occurrence and removal of benzotriazoles and ultraviolet filters in a municipal wastewater treatment plant [J]. Environmental Pollution, 2012, 165: 225-232 [26]Montesdeoca-Esponda S, del Toro-Moreno A, Sosa-Ferrera Z, et al. Development of a sensitive determination method for benzotriazole UV stabilizers in enviromental water samples with stir bar sorption extraction and liquid desorption prior to ultra-high performance liquid chromatography with tandem mass spectrometry [J]. Journal of Separation Science, 2013, 36(13): 2168-2175 [27]Montesdeoca-Esponda S, Sosa-Ferrera Z, Santana-Rodriguez J J. On-line solid-phase extraction coupled to ultra-performance liquid chromatography with tandem mass spectrometry detection for the determination of benzotriazole UV stabilizers in coastal marine and wastewater samples [J]. Analytical and Bioanalytical Chemistry, 2012, 403(3): 867-876 [28]Nakata H, Shinohara R. Concentrations of benzotriazole UV stabilizers and polycyclic musks in wastewater treatment plant samples in Japan [J]. Interdisciplinary Studies on Environmental Chemistry, 2010, 4: 51-59 [29]Carpinteiro I, Abuin B, Rodriguez I, et al. Headspace solid-phase microextraction followed by gas chromatography tandem mass spectrometry for the sensitive determination of benzotriazole UV stabilizers in water samples [J]. Analytical and Bioanalytical Chemistry, 2010, 397(2): 829-839 [30]Reddy C M, Quinn J G, King J W. Free and bound benzotriazoles in marine and freshwater sediments [J]. Environmental Science & Technology, 2000, 34(6): 973-979 [31]Wick A, Jacobs B, Kunkel U, et al. Benzotriazole UV stabilizers in sediments, suspended particulate matter and fish of German rivers: New insights into occurrence, time trends and persistency [J]. Environmental Pollution, 2016, 212: 401-412 [32]Nakata H, Shinohara R, Murata S, et al. Detection of benzotriazole UV stabilizers in the blubber of marine mammals by gas chromatography-high resolution mass spectrometry (GC-HRMS) [J]. Journal of Environmental Monitoring, 2010, 12(11): 2088-2092 [33]劉長(zhǎng)武, 翟廣書, 買光熙, 等. 固相萃取技術(shù)的原理及進(jìn)展[J]. 農(nóng)業(yè)環(huán)境與發(fā)展, 2003(1): 42-44 [34]王金成, 張海軍, 陳吉平. 固相萃取高效液相色譜-串聯(lián)質(zhì)譜法測(cè)定地表水中苯并三唑類及苯并噻唑類衍生物[J]. 分析測(cè)試學(xué)報(bào), 2013, 32(9): 1056-1061 Wang J C, Zhang H J, Chen J P. Simultaneous determination of benzotriazoles and benzothiazoles in surface water by solid phase extraction and high performance liquid chromatography-tandem mass spectrometry [J]. Journal of Instrumental Analysis, 2013, 32(9): 1056-1061 (in Chinese) [35]Baltussen E, Sandra P, David F, et al. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles [J]. Journal of Microcolumn Separations, 1999, 11(10): 737-747 [36]Fries E. Determination of benzothiazole in untreated wastewater using polar-phase stir bar sorptive extraction and gas chromatography-mass spectrometry [J]. Analytica Chimica Acta, 2011, 689(1): 65-68 [37]薛建平. GC-MS測(cè)定苯并三唑類紫外線吸收劑[J]. 印染, 2013, 39(6): 42-44 Xue J P. Determination of benzotriazole ultraviolet absorber in textiles by GC-MS [J]. Dyeing & Finishing, 2013, 39(6): 42-44 (in Chinese) [38]Montesdeoca-Esponda S, Sosa-Ferrera Z, Kabir A, et al. Fabric phase sorptive extraction followed by UHPLC-MS/MS for the analysis of benzotriazole UV stabilizers in sewage samples [J]. Analytical and Bioanalytical Chemistry, 2015, 407(26): 8137-8150 [39]Montesdeoca-Esponda S, Sosa-Ferrera Z, Santana-Rodriguez J J. Microwave-assisted extraction combined with on-line solid phase extraction followed by ultra-high-performance liquid chromatography with tandem mass spectrometric determination of benzotriazole UV stabilizers in marine sediments and sewage sludges [J]. Journal of Separation Science, 2013, 36(4): 781-788 [40]Cantwell M G, Sullivan J C, Katz D R, et al. Source determination of benzotriazoles in sediment cores from two urban estuaries on the Atlantic Coast of the United States [J]. Marine Pollution Bulletin, 2015, 101(1): 208-218 [41]Zhao X, Zhang Z F, Xu L, et al. Occurrence and fate of benzotriazoles UV filters in a typical residential wastewater treatment plant in Harbin, China [J]. Environmental Pollution, 2017, 227: 215-222 [42]Lu Z, Peart T E, Cook C J, et al. Simultaneous determination of substituted diphenylamine antioxidants and benzotriazole ultra violet stabilizers in blood plasma and fish homogenates by ultra high performance liquid chromatography-electrospray tandem mass spectrometry [J]. Journal of Chromatography A, 2016, 1461: 51-58 [43]Pillard D A, Cornell J S, Dufresne D L, et al. Toxicity of benzotriazole and benzotriazole derivatives to three aquatic species [J]. Water Research, 2001, 35(2): 557-560 [44]Cancilla D A, Baird J C, Geis S W, et al. Studies of the environmental fate and effect of aircraft deicing fluids: Detection of 5-methyl-1H-benzotriazole in the fathead minnow (Pimephales promelas) [J]. Environmental Toxicology and Chemistry, 2003, 22(1): 134-140 [45]Seeland A, Oetken M, Kiss A, et al. Acute and chronic toxicity of benzotriazoles to aquatic organisms [J]. Environmental Science and Pollution Research, 2012, 19(5): 1781-1790 [46]Kim J W, Chang K H, Isobe T, et al. Acute toxicity of benzotriazole ultraviolet stabilizers on freshwater crustacean (Daphnia pulex) [J]. Journal of Toxicological Sciences, 2011, 36(2): 247-251 [47]U.S Environmental Protection Agency. Detailed chemical results. (2011-07-26) [2017-08-17]. https://iaspub.epa.gov/oppthpv/quicksearch.display?pChem=100707 [48]Niklasson B, Bjorkner B. Contact allergy to the UV-absorber Tinuvin P in plastics [J]. Contact Dermatitis, 1989, 21(5): 330-334 [49]Health Council of The Netherlands: Dutch Expert Committee on Occupational Standards (DECOS). 1,2,3-Benzotriazole. Publication no. 2000/14OSH [R]. The Hague: Health Council of The Netherlands, 2000 [50]Liang X F, Martyniuk C J, Zha J M, et al. Brain quantitative proteomic responses reveal new insight of benzotriazole neurotoxicity in female Chinese rare minnow (Gobiocypris rarus) [J]. Aquatic Toxicology, 2016, 181: 67-75 [51]Liang X, Zha J, Martyniuk C J, et al. Histopathological and proteomic responses in male Chinese rare minnow (Gobiocypris rarus) indicate hepatotoxicity following benzotriazole exposure [J]. Environmental Pollution, 2017, 229: 459-469 [52]Hirata-Koizumi M, Watari N, Mukai D, et al. A 28-day repeated dose toxicity study of ultraviolet absorber 2-(2'-hydroxy-3',5'-di-tert-butylphenyl) benzotriazole in rats [J]. Drug and Chemical Toxicology, 2007, 30(4): 327-341 [53]Hirata-Koizumi M, Ogata H, Imai T, et al. A 52-week repeated dose toxicity study of ultraviolet absorber 2-(2'-hydroxy-3',5'-di-tert-butylphenyl)benzotriazole in rats [J]. Drug and Chemical Toxicology, 2008, 31(1): 81-96 [54]Hirata-Koizumi M, Matsuno K, Kawabata M, et al. Gender-related difference in the toxicity of 2-(2'-hydroxy-3',5'-di-tert-butylphenyl)benzotriazole in rats: Relationship to the plasma concentration, in vitro hepatic metabolism, and effects on hepatic metabolizing enzyme activity [J]. Drug and Chemical Toxicology, 2009, 32(3): 204-214 [55]Hirata-Koizumi M, Ise R, Kato H, et al. Transcriptome analyses demonstrate that peroxisome proliferator-activated receptor α (PPARα) activity of an ultraviolet absorber, 2-(2'-hydroxy-3',5'-di-tert-butylphenyl) benzotriazole, as possible mechanism of their toxicity and the gender differences [J]. Journal of Toxicological Sciences, 2016, 41(5): 693-700 [56]Ema M, Fukunishi K, Hirose A, et al. Repeated-dose and reproductive toxicity of the ultraviolet absorber 2-(3',5'-di-tert-butyl-2'-hydroxyphenyl)-5-chlorobenzotriazole in rats [J]. Drug and Chemical Toxicology, 2008, 31(3): 399-412 [57]Hirata-Koizumi M, Matsuyama T, Imai T, et al. Gender-related difference in the toxicity of ultraviolet absorber 2-(3',5'-di-tert-butyl-2'-hydroxyphenyl)-5-chlorobenzotriazole in rats [J]. Drug and Chemical Toxicology, 2008, 31(3): 383-398 [58]Harris C A, Routledge E J, Schaffner C, et al. Benzotriazole is antiestrogenic in vitro but not in vivo [J]. Environmental Toxicology and Chemistry, 2007, 26(11): 2367-2372 [59]He T T, Liang B, Liu W H, et al. Estrogenic potential of benzotriazole on marine medaka (Oryzias melastigma) [J]. Ecotoxicology and Environmental Safety, 2012, 80: 327-332 [60]Liang X F, Wang M, Chen X, et al. Endocrine disrupting effects of benzotriazole in rare minnow (Gobiocypris rarus) in a sex-dependent manner [J]. Chemosphere, 2014, 112: 154-162 [61]Liang X, Li J, Martyniuk C J, et al. Benzotriazole ultraviolet stabilizers alter the expression of the thyroid hormone pathway in zebrafish (Danio rerio) embryos [J]. Chemosphere, 2017, 182: 22-30 [62]Filimonov D A, Lagunin A A, Gloriozova T A, et al. Prediction of the biological activity spectra of organic compounds using the PASS online web resource [J]. Chemistry of Heterocyclic Compounds, 2014, 50(3): 444-457 [63]Lagunin A, Stepanchikova A, Filimonov D, et al. PASS: Prediction of activity spectra for biologically active substances [J]. Bioinformatics, 2000, 16(8): 747-748 [64]Takahashi I, Ojima N, Ogura K, et al. Purification and characterization of dimethylallyl pyrophosphate-aspulvinone dimethylallyltransferase from aspergillus-terreus [J]. Biochemistry, 1978, 17(13): 2696-2702 [65]Clayton R B. Biosynthesis of sterols, steroids, and terpenoids. Part I. Biogenesis of cholesterol and the fundamental steps in terpenoid biosynthesis [J]. Quarterly Reviews Chemical Society, 1965, 19(2): 168-200 [66]Jeong J W, Kwak I, Lee K Y, et al. The genomic analysis of the impact of steroid receptor coactivators ablation on hepatic metabolism [J]. Molecular Endocrinology, 2006, 20(5): 1138-1152 [67]Palsdottir H, Lojero C G, Trumpower B L, et al. Structure of the yeast cytochrome bc(1) complex with a hydroxyquinone anion Q(o) site inhibitor bound [J]. Journal of Biological Chemistry, 2003, 278(33): 31303-31311 [68]Molins-Delgado D, Tavora J, Diaz-Cruz M, et al. UV filters and benzotriazoles in urban aquatic ecosystems: The footprint of daily use products [J]. Science of the Total Environment, 2017, 601: 975-9862 BUVSs的毒性效應(yīng)(Toxicological effects of BUVSs)
2.1 急性毒性
2.2 慢性毒性
3 BUVSs的生物活性預(yù)測(cè)(Bioactivity prediction of BUVSs)
4 展望(Future prospects)