• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      2-一致凸Banach空間的特征不等式*

      2018-04-23 07:27:38李婷婷蘇雅拉圖
      關(guān)鍵詞:雅拉李婷婷凸性

      李婷婷,蘇雅拉圖

      (1. 內(nèi)蒙古師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院,內(nèi)蒙古 呼和浩特010022;2. 準(zhǔn)格爾民族小學(xué),內(nèi)蒙古 鄂爾多斯010300)

      In 1936, the concept of a uniformly rotund Banach space was first introduced by Clarkson[1], and this class of Banach spaces is very interesting and has numerous applications. Consequently, some methods were found to investigate the geometry of Banach space (see [1]~[11] ). In 1977, Sullivan[2]introduced the 2-uniformly rotund spaces as a generalization of uniformly rotund Banach spaces.

      In this paper,Xwill denotes a real Banach space andX*will denotes its dual space, symbols

      U(X)={x:x∈X,‖x‖≤1},

      S(X)={x:x∈X,‖x‖=1}

      denote the unit ball and the unit sphere inXrespectively. For arbitrarily real numbersλ1,λ2,λ3,we always letλ1∨λ2∨λ3=max(λ1,λ2,λ3),λ∧λ2∧λ3=min(λ1,λ2,λ3),and for allλ1,λ2,λ3∈[0,1]are always assumed to be such thatλ1+λ2+λ3=1.

      For an arbitrary spaceX,one of the measuring the “2-uniformly ”of the set of three dimensional subspaces is in terms of the real valued modulus of rotundity, i.e. forε>0,

      Where

      A(x1,x2,x3)=

      Banach spaceXis said to be 2-uniformly rotund[2]if for anyε>0,there exists aδ>0, such that forx1,x2,x3∈S(X),if ‖x1+x2+x3‖>3-δ,thenA(x1,x2,x3)<ε.

      In 1989, Zongben Xu and G. F. Roach [3] gave the characteristic inequality in the uniformly rotund Banach spaces as follows:Xis uniformly rotund Banach space if and only if for ?p∈(0,1),there exists a strictly increasing functionδp(λ,μ,·):R+→R+,δp(λ,μ,0)=0, such that

      ‖λx+μy‖p+(‖x‖∨‖y‖)p·

      λ‖x‖p+μ‖y‖p,?x,y∈X

      Where the symbol ‖x‖∨‖y‖means maximum of ‖x‖and ‖y‖, and ?λ,μ∈[0,1] are satisfy thatλ+μ=1.

      The generalization of above characteristic inequality to the 2-uniformly rotund Banach spaces which we shall consider can be motivated by the following restatement of the characteristic inequality in the uniformly rotund Banach spaces:Xis uniformly rotund Banach space if and only if for ?p∈(0,1),there exists a strictly increasing functionδp(λ,μ,·):R+→R+,δp(λ,μ,0)=0, such that

      ‖λx+μy‖p+(‖x‖∨‖y‖)p·

      λ‖x‖p+μ‖y‖p,?x,y∈X

      Where

      Now we give the characteristic inequality in the 2-uniformly rotund Banach spaces as follows:Xis 2-uniformly rotund if and only if for each ?p∈(0,1), there exists a strictly increasing functionδp(λ1,λ2,λ3,·):R+→R+,δp(λ1,λ2,λ3,0)=0,such that

      The characteristic inequality of 2-uniformly rotund Banach spaces.

      Theorem1Xis 2-uniformly rotund if and only if for each ?p∈(0,1), there exists a strictly increasing functionδp(λ1,λ2,λ3,·):R+→R+,δp(λ1,λ2,λ3,0)=0,such that

      (1)

      In order to prove theorem 1,we give two lemmas.

      Lemma1[4]Xis 2-uniformly rotund Banach space if and only ifδX(ε)>0.

      Lemma2 Forx1,x2,x3∈S(X),t1,t2∈(0,1],letε=A(x1,x2,x3)≠0,then

      ‖λ1x1+λ2t1x2+λ3t2x3‖≤

      λ1+λ2t1+λ3t2-3(λ1∧λ2∧λ3)t1t2δX(ε)

      Proof(I) Suppose thatx1,x2,x3are linearly independent and denote byEthe subspace spanned by the elementsx1,x2,x3and the zero element, then the elementλ1x1+λ2t1x2+λ3t2x3belongs toE. Letzbe the intersection point of the vectorλ1x1+λ2t1x2-x3and the rayτ·(λ1x1+λ2t1x2+λ3t2x3) in the subspaceE,whereτ≥0. Then there exist real numbersα,βsuch that

      z=α(λ1x1+λ2t1x2+λ3t2x3),α≥0,

      z=β(λ1x1+λ2t1x2)+(1-β)(λ1x1+

      λ2t1x2+λ3x3), 0≤β≤1

      Sincex1,x2,x3are linearly independent,it follows thatα=1,β=1-t2, and

      ‖λ1x1+λ2t1x2+λ3t2x3‖=

      ‖β(λ1x1+λ2t1x2)+(1-β)·

      (λ1x1+λ2t1x2+λ3x3)‖≤

      (1-t2)λ1+(1-t2)λ2t1+

      t2‖λ1x1+λ2t1x2+λ3x3‖

      Letwbe the intersection point of the rayτ·(λ1x1+λ3x3+λ2t1x2), (whereτ≥0) and the vectorλ1x1+λ3x3-x2.Then there exist real numbersμ,νsuch that

      w=μ(λ1x1+λ3x3+λ2t1x2),μ≥0,

      Sincex1,x2,x3are linearly independent, it follows thatμ=1,ν=1-t1,and

      ‖λ1x1+λ2t1x2+λ3x3‖=

      Therefore

      ‖λ1x1+λ2t1x2+λ3t2x3‖≤(1-t2)λ1+

      (1-t2)λ2t1+t2‖λ1x1+λ2t1x2+λ3x3‖≤

      (1-t2)λ1+(1-t2)λ2t1+(1-t1)t2λ1+

      (1-t1)t2λ3+t1t2‖λ1x1+λ2t1x2+λ3x3‖=

      λ1+λ2t1+λ3t2-t1t2+

      t1t2‖λ1x1+λ2t1x2+λ3x3‖

      We define a function

      where the symbolλ∧μmeans minimum ofλandμwithλ,μ∈[0,1],λ2+μ2≠0,andx,x1,x2∈X. Without loss of generality , we may assume thatλ3=min(λ1,λ2,λ3), then

      f(λ2,λ3,x1,x2-x1,x3-x1)-

      ‖x1+x2+x3‖+3‖x1‖≤

      Moreover, we have

      1-3λ3δX(ε)

      Consequently,

      ‖λ1x1+λ2t1x2+λ3t2x3‖≤

      λ1+λ2t1+λ3t2-3(λ1∧λ2∧λ3)t1t2δX(ε)

      (2)

      (II) Suppose thatx1,x2,x3are linearly dependent. BecauseA(x1,x2,x3)≠0,sox1,x2,x3are not all linearly dependent in pairs.

      Ifλ1x1+λ2t1x2+λ3t2x3=0, then the conclusion is obviously.

      Ifλ1x1+λ2t1x2+λ3t2x3≠0, it is impossible thatλ1x1+λ2t1x2andx3are collinear is simultaneous withλ1x1+λ3t2x3andx2are collinear. Otherwise, there exist real numbers,λ,μsuch that

      λ1x1+λ2t1x2+λx3=0

      (3)

      λ1x1+μx2+λ3t2x3=0

      (4)

      From (3) and (4), we know thatx2andx3are non-collinear, it follows thatλ=λ3t2,μ=λ2t1.This is incompatible withλ1x1+λ2t1x2+λ3t2x3≠0.

      ① Whenλ1x1+λ2t1x2andx3are non-collinear,λ1x1+λ3t2x3andx2are collinear, denote byEthe subspace spanned by the elementsx1,x2,x3and the zero element, then the elementλ1x1+λ2t1x2+λ3t2x3belongs toE. Letzbe the intersection point of the vectorλ1x1+λ2t1x2-x3and the rayτ·(λ1x1+λ2t1x2+λ3t2x3) in the subspaceE, whereτ≥0. Then there exist real numbersα,βsuch that

      z=α(λ1x1+λ2t1x2+λ3t2x3),α≥0

      (5)

      z=β(λ1x1+λ2t1x2)+(1-β)·

      (λ1x1+λ2t1x2+λ3x3),0≤β≤1

      (6)

      (6)×α-(5), we have

      αz-z=α(λ1x1+λ2t1x2+(1-β)λ3x3)-

      α(λ1x1+λ2t1x2+λ3t2x3)=α(1-β-t2)λ3x3

      Sincezandx3are linearly independent , it follows thatα=1,β=1-t2, and

      ‖λ1x1+λ2t1x2+λ3t2x3‖=

      ‖β(λ1x1+λ2t1x2)+

      (1-β)(λ1x1+λ2t1x2+λ3x3)‖≤

      (1-t2)λ1+(1-t2)λ2t1+

      t2‖λ1x1+λ2t1x2+λ3x3‖

      Fromλ1x1+λ3t2x3andx2are collinear, we know thatλ1x1+λ3x3andx2are non-collinear.

      Letwbe the intersection point of the rayτ·(λ1x1+λ3x3+λ2t1x2), (whereτ≥0) and the vectorλ1x1+λ3x3-x2.Then there exist real numbersμ,νsuch that

      w=μ(λ1x1+λ3x3+λ2t1x2),μ≥0

      (7)

      w=ν(λ1x1+λ3x3)+

      (8)

      (8)×μ-(7), we have

      μw-w=μ(λ1x1+λ3x3+(1-ν)λ2x2)-

      μ(λ1x1+λ3x3+λ2t1x2)=μ(1-ν-t1)λ2x2

      Sincex2andware linearly independent, it follows thatμ=1,ν=1-t1,and

      ‖λ1x1+λ2t1x2+λ3x3‖=

      Therefore

      (1-t2)(λ1+λ2t1)+

      (9)

      By (2) we know that

      (10)

      Combining (9)and(10), we have

      λ1+λ2t1+λ3t2-3(λ1∧λ2∧λ3)δX(ε)

      ② Whenλ1x1+λ2t1x2andx3are collinear,λ1x1+λ3t2x3andx2are collinear, we can prove it greatly similar to ①.

      ③ Whenλ1x1+λ2t1x2andx3are non-collinear,λ1x1+λ3t2x3andx2are non-collinear,from the process of proving (I) ,it follows that

      ‖λ1x1+λ2t1x2+λ3t2x3‖≤(1-t2)λ1+

      (1-t2)λ2t1+t2‖λ1x1+λ2t1x2+λ3x3‖

      Now we divide two possible cases:

      ‖λ1x1+λ2t1x2+λ3t2x3‖≤(1-t2)λ1+

      (1-t2)λ2t1+t2‖λ1x1+λ2t1x2+λ3x3‖=

      (1-t2)λ1+(1-t2)λ2t1+t2(λ2-λ2t1)=

      λ1+λ2t1+λ3t2-2λ2t1t2-(λ1+λ3-λ2)t2≤

      λ1+λ2t1+λ3t2-2λ2t1t2-(λ1+λ3-λ2)t1t2=

      λ1+λ2t1+λ3t2-t1t2≤

      λ1+λ2t1+λ3t2-t1t2δX(ε)≤

      λ1+λ2t1+λ3t2-3(λ1∧λ2∧λ3)t1t2δX(ε)

      Which implies that

      Thus, applying Lemma 1, we know thatXis 2-uniformly rotund Banach space.

      Conversely, suppose thatXis a 2-uniformly rotund Banach space. We shall construct a functionδp(λ1,λ2,λ3,ε), so that the inequality (1) is fulfilled. For this purpose, we first define a function

      where

      Now we show the following inequality:

      ‖λ1x1+λ2x2+λ3x3‖p+φp(λ1,λ2,λ3,ε)≤

      λ1‖x1‖p+λ2‖x2‖p+λ3‖x3‖p

      with the functionδp(λ1,λ2,λ3,ε)holds for every ?x1∈S(X),x2,x3∈U(X).

      Let

      ‖x1‖=1,‖x2‖=t1,

      and consider the functiongdefined by

      g(t,t′)=

      λ1+λ2tp+λ3t′p-(λ1+λ2t+λ3t′-

      0≤t,t′≤1

      From Lemma 2, we have

      λ1‖x1‖p+λ2‖x2‖p+

      λ3‖x3‖p-‖λ1x1+λ2x2+λ3x3‖

      (11)

      In what follows, we will divide four possible cases which complete the steps of proving theorem 1.

      Let

      then

      (λ1+λ2t1+λ3t2)p≥

      and

      Because

      (λ1+λ2t1+λ3t2)p≥

      Indeed,

      It follows that

      Because the functionδX(ε) is strictly increasing inε,so we have

      (λ1+λ2t1+λ3t2-

      From

      Hence

      Hence

      (λ1+λ2t1+λ3t2)p≥

      and

      From

      Hence

      (λ1+λ2t1+λ3t2)p≥

      Hence

      Combining these inequalities with (11), we have that

      ‖λ1x1+λ2x2+λ3x3‖p+φp(λ1,λ2,λ3,ε)≤

      λ1‖x1‖p+λ2‖x2‖p+λ3‖x3‖p

      for

      ?x1∈S(X) andx2,x3∈U(X)

      Let

      δp(λ1,λ2,λ3,ε)=

      min{φp(λ1,λ2,λ3,ε),

      φp(λ2,λ1,λ3,ε),φp(λ3,λ2,λ1,ε)}

      then ,for eachp∈(0,1),there exists a strictly increasing functionδp(λ1,λ2,λ3,·):R+→R+,

      δp(λ1,λ2,λ3,0)=0,such that

      參考文獻(xiàn):

      [1] CLARKSON J A. Uniformly convex spaces [J]. Trans Amer Math Soc, 1936, 40: 396-414.

      [2] SULLIVAN F. A generalization of uniformly rotund Banach spaces [J]. Canad J Math, 1979,31: 628-636.

      [3] XU Z B, ROACH G F. Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces [J]. J Math Anal Appl, 1991, 157: 189-210.

      [4] YU X T. Geometric theory of Banach space [D]. Shanghai: East China Normal University, 1984.

      [5] GEREMA R, SULLIVAN F. Multi-dimensional volumes and moduli of convexity in Banach spaces [J]. Ann Math Pure Appl, 1981,127: 231-251.

      [6] KIRK W A, SIMS B. Handbook of metric fixed point theory [M]. Dordrecht:Kluwer Acad Publ, 2001.

      [7] MITRINOVIC D S, PEUCARIC J E, FINK A M. Classical and new inequalities in analysis [M]. Dordrecht: Kluwer Acad Publ, 1993.

      [8] 黎永錦,林潔珠. 連續(xù)線性泛函與Banach 空間的凸性[J]. 中山大學(xué)學(xué)報(bào)(自然科學(xué)版),2006, 45(1): 17-19.

      LI Y J, LIN J Z. Bilinear continuous functional and convexity of Banach spaces [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2006, 45(1): 17-19.

      [9] 華柳斌,黎永錦. 2-賦范空間和擬Banach 空間中的華羅庚不等式[J]. 中山大學(xué)學(xué)報(bào)(自然科學(xué)版),2009, 48(3): 13-15.

      HUA L B, LI Y J. Hua Lo-Keng inequality in 2-normed spaces and quasi-Banach spaces [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2009, 48(3): 13-15.

      [10] 黎永錦,舒小保.k-弱凸性與k-弱光滑性[J]. 中山大學(xué)學(xué)報(bào)(自然科學(xué)版),2002, 41(5): 8-10.

      LI Y J, SHU X B.k-weakly convex andk-weakly smooth [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2002, 41(5): 8-10.

      [11] 冼軍,黎永錦,趙志紅. 中點(diǎn)局部k-一致凸性和φ-直和[J]. 中山大學(xué)學(xué)報(bào)(自然科學(xué)版), 2005, 44(6):1-4.

      XIAN J, LI Y J, ZHAO Z H. Midpoint locallyk-uniform convexity andφ-direct sum [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2005, 44(6):1-4.

      猜你喜歡
      雅拉李婷婷凸性
      李婷婷油畫作品
      大眾文藝(2023年12期)2023-07-25 14:17:32
      SOLO理論下的高中數(shù)學(xué)教學(xué)分析
      A Class of Rumor Spreading Models with Population Dynamics?
      長江藝苑 李婷婷《玉女潭寫生》國畫
      論納·賽西雅拉圖教授的史詩研究
      網(wǎng)祭
      新方向“雅拉”復(fù)合肥效果出眾
      临西县| 密云县| 清流县| 高台县| 无为县| 大宁县| 东阿县| 襄垣县| 安化县| 巴楚县| 海宁市| 兴文县| 泸溪县| 读书| 黑山县| 夏津县| 井研县| 阳东县| 文山县| 华蓥市| 桦甸市| 威海市| 兴山县| 西充县| 大足县| 卢氏县| 汉中市| 张家界市| 页游| 阳高县| 迁西县| 城步| 家居| 横峰县| 太仓市| 高碑店市| 菏泽市| 田阳县| 新丰县| 威海市| 吉林省|