• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    TiO2納米紡錘體負載Pt 在氧還原反應(yīng)中的應(yīng)用*

    2018-05-09 10:30:05彭桂明巫素琴彭全明BURKERTSeth杜瑞安余長林STARAlexander
    新能源進展 2018年2期
    關(guān)鍵詞:紡錘體匹茲堡理工大學(xué)

    彭桂明,巫素琴,彭全明,BURKERT Seth C.,杜瑞安,余長林,STAR Alexander?

    (1. 江西理工大學(xué)冶金與化學(xué)工程學(xué)院,江西 贛州 341000;2. 中國科學(xué)院可再生能源重點實驗室,廣州 510640;3. 廣東工業(yè)大學(xué)材料與能源學(xué)院,廣州 510006;4. 匹茲堡大學(xué)化學(xué)系,美國賓夕法尼亞州匹茲堡,15260)

    0 Introduction

    Catalysts play a critical role in fuel cells by accelerating oxidation of “fuels” at the anode and promoting oxygen reduction at the cathode to the levels required for practical application. So far, Pt has been the most efficient catalyst in fuel cells, although its high cost and limited reserve hampers its widespread application in industry. Alloying Pt with other abundant metals[1-3]and loading noble metal nanostructures on support materials[4-6]have been reported to lower catalyst cost while maintaining high catalytic activity. Among the widely investigated carbonaceous nanomaterials-supported catalysts, carbon nanomaterials suffer from severe corrosion and oxidation in practical application[7-9], which subsequently causes Pt migration and aggregation, resulting in decreases in both electrochemical surface area and catalytic activity[7]. Exploring efficient and low cost catalysts or corrosion-resistant catalyst support alternatives is of particular significance to reduce catalyst price and improve catalyst durability and activity.

    To address the catalyst support corrosion issue,transition metal oxides have been used as alternatives to carbon nanomaterials as supports due to their low cost,abundance, and long-term stability[5-7]. Among these metal oxides, titanium dioxide (TiO2) has shown catalytic activity in oxygen reduction reaction (ORR) in both acidic and alkaline solutions[10-12]. In addition, the tremendous advances in TiO2nano-engineering in the past two decades enable the feasibility to afford TiO2with large specific area for active metals to anchor. However,one drawback of TiO2is its limited catalytic activity due to its poor electric conductivity. It is expected that the growth of noble metal nanoparticles onto TiO2not only overcomes the support corrosion, but also benefits the ORR activity of TiO2by affording efficient electron transport pathways.

    Herein, anatase TiO2nanospindles were synthesized through a simple sol-gel method. And the corresponding anatase TiO2nanospindles were used as support for Pt growth to obtain TiO2-Pt catalyst for ORR. The catalyst stability and photocatalytic electrochemistry were discussed in this study subsequently.

    1 Experimental

    1.1 Synthesis of TiO2 nanospindles

    TiO2nanospindles were synthesized through a facile environmentally friendly sol-gel method as following. 10 μL titanium isopropoxide (TTIP) was firstly injected into a 0.375 mol/L HCl aqueous solution. The mixture was then incubated at 90°C for 1 hour to synthesize nanospindles.TiO2nanospindles were collected by centrifugation, and were washed with water to remove the HCl residue. To avoid aggregation, the precipitate was collected via lyophylization. Calcination of the TiO2nanospindles was performed at 400°C in air for 0.5 hour. Control samples with different synthesis durations or different TTIP amounts were obtained following the same process.

    1.2 Synthesis of TiO2 nanospindle supported Pt nanodots

    Pt nanodots were deposited onto the obtained TiO2nanospindles via a similar method developed by Xia et al[13].Firstly, 2.5 mg TiO2nanospindles were dispersed into 2 mL ethylene glycol (EG), followed by heating at 110°C for 0.5 hour to remove the trace water. Then 0.5 mL PVP solution (40 mM in EG) and 0.5 mL H2PtCl6solution(80 mM in EG) were added into the above system. The obtained reaction mixture was kept at 110°C for 8 hours to allow for Pt deposition. The precipitate was collected through centrifugation and subsequently washed with ethanol and deionized water. Then the TiO2supported Pt catalyst was obtained.

    1.3 Material characterization

    X-ray diffraction (XRD) patterns were collected on a Bruker D8-Advance X-ray diffractometer. Low-resolution transmission electron microscopy (TEM) images were obtained with a Philips/FEI Morgagni at an accelerating voltage of 80 kV. High-resolution TEM (HRTEM) images were taken using JEOL 2100F microscope with an accelerating voltage of 200 kV. TEM samples were prepared by drop-casting an aqueous solution of the nanomaterial on a lacey carbon TEM grid (Pacific Grid-Tech)for low-resolution TEM imaging or on C-FLAT holey TEM grid (Electron Microscopy Sciences) for HRTEM imaging. Raman spectra were collected on a Reinshaw inVia Raman microscope at an excitation wavelength of 633 nm at 10% laser power (maximum 17 mW) with 15 s exposure time. Samples were dropcasted on a quartz slide and dried before characterization.

    1.4 Electrochemical testing

    Electrochemical experiments were performed using a CHI 7042 Bipotentiostat (CH Instruments, Austin, TX). A Pt wire electrode (CHI 115) and an Ag/AgCl (CHI 111,1 M KCl) electrode were used as the counter and reference electrode, respectively. The electrodes including the glassy carbon working electrode with its area of 0.09 cm2were purchased from CH Instruments, Austin, TX. For cyclic voltammogram (CV) tests, a catalyst ink composed of 1 mg/mL TiO2-Pt and 10 μL 25% Nafion was prepared.10 μL catalyst ink was drop-cast onto a glassy carbon electrode and was allowed to dry over before usage. ORR measurement was evaluated in O2saturated 0.1 mol/L KOH. To test the influence of UV light illumination on the ORR performance, UV light with its wavelength of 254 nm illuminated the working electrode during ORR performance test.

    2 Results and discussion

    Via the mehod in this report, ~40 nm long and ~15 nm wide TiO2nanospindles were obtained (Fig. 1a). To improve the crystallinity, the TiO2nanospindles underwent calcination in air at 400°C for 0.5 hour with their TEM images presented in Fig. 1b. Comparing with the nanospindles before calcination, 0.5 hour calcination at 400°C led to some deformation while the spindle morphology remained intact. In addition, several ~5 nm-sized voids and rough surfaces were observed on each nanospindle, which might be caused by the water loss and material crystallization during calcination process. The slightly size expansion could also be observed after calcination, which should be a result of the void formation in TiO2nanospinles and the different specific volumes for material before and after crystallization.

    Fig. 1 TEM images of TiO2 nanospindles (a) before and (b)after calcination

    Fig. 2 (a) HRTEM image of a TiO2 nanospindle; (b) XRD pattern of the TiO2 nanospindles; (c) Raman spectra of the TiO2 nanospindles

    Fig. 3 (a) TEM and (b) HRTEM images of TiO2 nanospindles supported Pt nanodots; inset in panel (a) is the size distribution of the Pt nanodots; (c) TEM and (d) HRTEM images of free Pt nanoparticles synthesized in absence of TiO2 nanospindles

    HRTEM, XRD, and Raman were adopted to characterize the obtained TiO2nanospindles. Lattice interspacing of 3.4 ? in HRTEM is well indexed to the (101) lattice plane of anatase TiO2(Fig. 2a). XRD measurement shows that the TiO2nanospindles are well indexed to the anatase phase of TiO2(Fig. 2b). Raman characteristic peaks at 145, 198, 400, 516, and 640 cm-1in Fig. 1c are assigned to main Egvibration peak, Eg, B1g, A1g, and Egmodes of anatase phase, respectively[14]. In addition to these anatase peaks, minor rutile characteristics at 244, 326, and 448 cm-1appear (Fig. 2c), in consistence with that observed in XRD pattern, which confirms the existence of small amounts of rutile TiO2in the powder.

    TEM image of TiO2nanospindles supported Pt nanodots was shown in Fig. 3a. Apparently, uniform Pt dots with the sized narrowly centered at ~4.8 nm (inset in Fig. 3a) were evenly anchored onto the surface of TiO2nanospindles (Fig. 3(a, b)). The interspacing of 2.36 ? is assigned to (111) surface (Fig. 3b)[13]. Additionally, partial overlap of the Pt nanodots is observed, which is good for electrochemical catalytic activity by overcoming the inferior electrical conductivity of TiO2.

    Furthermore, Pt nanodot morphology was found to be dependent on the presence of TiO2nanospindles. With the absence of TiO2nanospindles, while other conditions remained constant, polyhedral Pt nanoparticles around 10 nm were synthesized instead of round nanodots(Fig. 3(c, d)). The lattice interspacing of 2.36 ? and 2.04 ? are indexed to (111) and (200) of Pt, respectively[13]. The well-constructed Pt nanostructures may find wide applications due to their small size and large specific surface area; however, their potential applications are not included in this study. The Pt morphology difference with and without support material most likely originates from surface affinity of TiO2nanospindles for Pt and the precursor H2PtCl6, which affects the nucleus formation modes.

    ORR performance of the TiO2-Pt catalyst and commercial catalyst C-Pt (10wt%) in O2saturated 0.1 mol/L KOH is presented in Fig. 4. The TiO2-Pt composite showed two prominent reduction peaks at -0.23 V and-0.42 V (versus Ag/AgCl) (Fig. 4a), which are contributed by both the Pt and TiO2, respectively. It is observed that the peak current at -0.23 V increased as more cycles are run, and is finally stabilized at 50 cycles. On the contrary,the reduction current from TiO2at -0.42 V decreased somewhat (inset in Fig. 4a). This might be because smaller Pt nanoclusters which initially sit on the surface of TiO2migrate towards the relative larger Pt nanodots during testing, leading to the enhanced ORR on the Pt surface. Meanwhile, the Pt nanocluster migration may deteriorate the electron transfer from TiO2, thus diminish the O2reduction taking place on the TiO2surface. It is also noted that ORR peak for Pt in TiO2-Pt is more negative than that of C-Pt catalyst (-0.23 V vs -0.19 V)(Fig. 4d), while TiO2peak remains almost unshifted at-0.42 V compared to the individual TiO2nanospindles[10].In addition, the peak current at -0.42 V in Fig. 4a(4 × 10-5A) is higher than that obtained on TiO2nanospindles from our previous report (2.6 × 10-5A)[10].Electrochemical impedance spectroscopy (EIS) was used to reveal the influence of the Pt growth on surface charge transport behavior. The EIS results show that the TiO2-Pt exhibits a much reduced charge transport resistance with respect to that of TiO2(Fig. 4b). The enhanced charge transport should be attributed to the partial overlap of the Pt nanodots on the TiO2nanospindle surface, which explains the ORR enhancement on TiO2nanospindles.

    Fig. 4 (a) Cyclic voltammograms of the TiO2-Pt in O2 saturated 0.1 M KOH aqueous solution, inset is the zoom-up of the reduction peak at -0.42 V, the gray curve is obtained in N2 saturated 0.1 M KOH aqueous solution; (b) EIS of the TiO2-Pt and TiO2 electrodes at a bias of -0.42 V vs Ag/AgCl in O2 saturated 0.1 M KOH aqueous solution; (c, d) influence of UV light illumination on ORR, (c)TiO2-Pt, (d) commercial C-Pt

    Influence of UV light on ORR performance of the TiO2-Pt was investigated. The irradiation of 365 nm UV light mainly increases the ORR reduction on Pt nanodots,while UV light of shorter wavelength, 254 nm, enhances both ORR performances on TiO2and Pt components(Fig. 4c). The ORR enhancement on the commercial C-Pt catalyst was also observed by shinning with 254 nm UV light (Fig. 4c). The results suggest that the Pt nanodots could absorb UV light by interband excitation[15], thus affording photogenerated electrons for ORR. The unparalleled ORR enhancement caused by 365 nm UV light might be arised from the possibly impure spectrum of the lamp (The spectrum is not determined. i. e. It is likely the lamp is not an absolute monochromatic source but with a range of wavelengths. This may lead to that part of the spectrum is beyond the absorption of TiO2, but within the response of Pt nanodots). In addition, the asymmetric enhancement by 365 nm UV light but almost equal increase when applying 254 nm UV light on both components implies the photo-generated electrons on TiO2can be hopped to the surface of Pt, but the electrons on Pt cannot jump back to TiO2. The negative shift of the ORR peaks upon UV light illumination in Fig. 4c is likely to arise from electron charging due to the humble electron transport of the TiO2, since no shift is found for C-Pt in Fig. 4d.

    Fig. 5 Chronocurrent at the potential of -0.42 V vs Ag/AgCl of TiO2-Pt in O2 saturated 0.1 M KOH aqueous solution, and Chronocurrent of the commercial C-Pt (10wt%) catalyst at the potential of -0.19 V vs Ag/AgCl in O2 saturated 0.1 M KOH

    Catalyst stability of the TiO2-Pt was evaluated by monitoring the ORR current at the potential of -0.42 V vs Ag/AgCl (Fig. 5). The results show that the current slightly fluctuates during the first 15 minutes and remains stable afterwards. No prominent ORR current decay is observed during 50 minutes-test. Unlike the TiO2-Pt catalyst, the chronocurrent of commercial C-Pt at -0.19 V showed 20% decay over 50 minutes (Fig. 5). The superior durability can be explained by the outstanding physical and chemical stability of the TiO2nanospindles which overcomes the catalyst support corrosion issue. It is worthwhile to note that, although the catalytic activity of the TiO2-Pt catalyst is still humble compared to that of the commercial C-Pt, it is envisioned that TiO2supported active metals for ORR can be a kind of promising long-term stable catalyst once the electric conductivity of the TiO2is further rationally designed and improved.

    3 Conclusions

    In conclusion, ~40 nm-long, ~15 nm-wide anatase TiO2nanospindles were used as support for Pt nanodots growth to afford a catalyst for ORR. The growth of round Pt nanodots was discussed and found to be relevant to the support material. Electrochemical evaluations showed the as-prepared TiO2-Pt exhibited two ORR peaks corresponding to the two different components, with the ORR on TiO2is enhanced after Pt deposition. EIS results suggest that the enhancement in ORR on TiO2is attributed to the accelerated charge transport afforded by the partial overlapped Pt nanodots. Moreover, UV light is found to be able to promote the ORR on both TiO2and Pt in a one-way photo-generated electron transport fashion (from TiO2to Pt) within the two components. The stability test proved that the TiO2-Pt exhibited superior stability over the commercial C-Pt catalyst.

    Reference:

    [1]DING L X, WANG A L, LI G R, et al. Porous Pt-Ni-P composite nanotube arrays: Highly electroactive and durable catalysts for methanol electrooxidation[J].Journal of the American chemical society, 2012, 134(13):5730-5733. DOI: 10.1021/ja212206m.

    [2]CHEN C, KANG Y, HUO Z, et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J]. Science, 2014, 343(6177):1339-1343. DOI: 10.1126/science.1249061.

    [3]CUI Z M, CHEN H, ZHAO M T, et al. Synthesis of structurally ordered Pt3Ti and Pt3V nanoparticles as methanol oxidation catalysts[J]. Journal of the American chemical society, 2014, 136(29): 10206-10209. DOI:10.1021/ja504573a.

    [4]LIN C, SONG Y, GAO L, et al. Oxygen reduction Catalyzed by Au-TiO2nanocomposites in alkaline media[J]. ACS applied materials & interfaces, 2013,5(24): 13305-13311. DOI: 10.1021/am404253b.

    [5]HUANG S Y, GANESAN P, POPOV B N.Electrocatalytic activity and stability of titania-supported platinum-palladium electrocatalysts for polymer electrolyte membrane fuel cell[J]. ACS catalysis, 2012,2(5): 825-831. DOI: 10.1021/cs300088n.

    [6]CHAUHAN S, MORI T, MASUDA T, et al. Design of low Pt concentration electrocatalyst surfaces with high oxygen reduction reaction activity promoted by formation of a heterogeneous interface between Pt and CeOxnanowire[J]. ACS applied materials & interfaces,2016, 8(14): 9059-9070. DOI: 10.1021/acsami.5b12469.

    [7]HUANG S Y, GANESAN P, PARK S, et al.Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications[J]. Journal of the American chemical society, 2009, 131(39): 13898-13899. DOI:10.1021/ja904810h.

    [8]SHAO Y Y, YIN G P, GAO Y Z. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell[J]. Journal of power sources, 2007,171(2): 558-566. DOI: 10.1016/j.jpowsour.2007.07.004.

    [9]SCHMITTINGER W, VAHIDI A. A review of the main parameters influencing long-term performance and durability of PEM fuel cells[J]. Journal of power sources,2008, 180(1): 1-14. DOI: 10.1016/j.jpowsour.2008.01.070.

    [10]PENG G M, ELLIS J E, XU G, et al. In situ grown TiO2nanospindles facilitate the formation of holey reduced graphene oxide by photodegradation[J]. ACS applied materials & interfaces, 2016, 8(11): 7403-7410. DOI:10.1021/acsami.6b01188.

    [11]TSUJIKO A, ITOH H, KISUMI T, et al. Observation of cathodic photocurrents at nanocrystalline TiO2film electrodes, caused by enhanced oxygen reduction in alkaline solutions[J]. The journal of physical chemistry B, 2002, 106(23): 5878-5885. DOI: 10.1021/jp012144l.

    [12]MENTUS S V. Oxygen reduction on anodically formed titanium dioxide[J]. Electrochimica acta, 2004, 50(1):27-32. DOI: 10.1016/j.electacta.2004.07.009.

    [13]FORMO E, LEE E, CAMPBELL D, et al.Functionalization of electrospun TiO2nanofibers with Pt nanoparticles and nanowires for catalytic applications[J].Nano letters, 2008, 8(2): 668-672. DOI: 10.1021/nl073163v.

    [14]WANG H F, CHEN L Y, SU W N, et al. Effect of the compact TiO2layer on charge transfer between N3 dyes and TiO2investigated by raman spectroscopy[J]. The journal of physical chemistry C, 2010, 114(7):3185-3196.DOI: 10.1021/jp908233h.

    [15]SHIRAISHI Y, SAKAMOTO H, SUGANO Y, et al.Pt-Cu bimetallic alloy nanoparticles supported on anatase TiO2: highly active catalysts for aerobic oxidation driven by visible light[J]. ACS nano, 2013, 7(10): 9287-9297.DOI: 10.1021/nn403954p.

    猜你喜歡
    紡錘體匹茲堡理工大學(xué)
    Aurora激酶A調(diào)控卵母細胞減數(shù)分裂的分子機制
    昆明理工大學(xué)
    微刺激方案中成熟卵母細胞紡錘體參數(shù)與卵細胞質(zhì)內(nèi)單精子注射結(jié)局間的關(guān)系
    昆明理工大學(xué)
    昆明理工大學(xué)
    浙江理工大學(xué)
    醫(yī)療產(chǎn)業(yè)與城市復(fù)興:美國工業(yè)城市匹茲堡的轉(zhuǎn)型之路
    淺談動物細胞有絲分裂中的有星紡錘體
    19世紀(jì)末至20世紀(jì)初匹茲堡的空氣污染與治理
    抑癌蛋白CYLD調(diào)控紡錘體定向
    遺傳(2014年3期)2014-02-28 20:59:25
    亚洲 欧美一区二区三区| 美国免费a级毛片| 丝袜人妻中文字幕| 亚洲少妇的诱惑av| 欧美色欧美亚洲另类二区 | 久久精品国产清高在天天线| 丁香六月欧美| av超薄肉色丝袜交足视频| 国产一区二区三区视频了| 日本在线视频免费播放| 午夜福利,免费看| 又紧又爽又黄一区二区| 波多野结衣一区麻豆| 国产一区在线观看成人免费| 精品第一国产精品| 自线自在国产av| 香蕉久久夜色| 欧美激情高清一区二区三区| www.自偷自拍.com| 成年人黄色毛片网站| 久久国产乱子伦精品免费另类| 国产成人欧美在线观看| 美女免费视频网站| 老司机福利观看| 成在线人永久免费视频| 婷婷精品国产亚洲av在线| 精品久久久精品久久久| 精品久久蜜臀av无| 久久中文字幕人妻熟女| 波多野结衣高清无吗| 人人澡人人妻人| 黄频高清免费视频| 日韩精品青青久久久久久| 可以在线观看毛片的网站| x7x7x7水蜜桃| 叶爱在线成人免费视频播放| 成人国产一区最新在线观看| 免费一级毛片在线播放高清视频 | 日韩有码中文字幕| 国产精品一区二区三区四区久久 | 一二三四社区在线视频社区8| 精品国产国语对白av| 久久久精品国产亚洲av高清涩受| 久久久国产精品麻豆| 日本免费一区二区三区高清不卡 | 咕卡用的链子| 麻豆国产av国片精品| 90打野战视频偷拍视频| 欧美+亚洲+日韩+国产| 日本三级黄在线观看| 午夜福利免费观看在线| 国产成人欧美| 亚洲色图综合在线观看| 国产精品久久视频播放| 两个人免费观看高清视频| 9热在线视频观看99| 老司机午夜福利在线观看视频| 国内精品久久久久久久电影| 女人精品久久久久毛片| 俄罗斯特黄特色一大片| av中文乱码字幕在线| 757午夜福利合集在线观看| 黄片播放在线免费| 麻豆国产av国片精品| 亚洲欧美一区二区三区黑人| 精品国产一区二区三区四区第35| 国产亚洲av高清不卡| 我的亚洲天堂| 国产色视频综合| 国产黄a三级三级三级人| 日韩精品中文字幕看吧| 精品欧美一区二区三区在线| 中文字幕人妻熟女乱码| www.www免费av| 亚洲男人天堂网一区| 老司机午夜福利在线观看视频| 9热在线视频观看99| 丁香六月欧美| 国产97色在线日韩免费| www.www免费av| 变态另类丝袜制服| 日本五十路高清| 色老头精品视频在线观看| 国产精品久久电影中文字幕| 1024视频免费在线观看| 变态另类丝袜制服| 国产三级在线视频| 亚洲午夜精品一区,二区,三区| 最新美女视频免费是黄的| 久99久视频精品免费| 黑丝袜美女国产一区| 一区福利在线观看| 精品一区二区三区视频在线观看免费| 看黄色毛片网站| 久久草成人影院| 亚洲aⅴ乱码一区二区在线播放 | 在线视频色国产色| 欧美精品亚洲一区二区| 久久久久精品国产欧美久久久| 99久久精品国产亚洲精品| av网站免费在线观看视频| 久久中文看片网| 男女午夜视频在线观看| 亚洲色图av天堂| 黄色a级毛片大全视频| 免费在线观看黄色视频的| 啦啦啦 在线观看视频| 国产av在哪里看| 亚洲国产精品合色在线| 一级毛片精品| 国产精品 欧美亚洲| 国产av又大| 精品国产乱码久久久久久男人| 久久天堂一区二区三区四区| 悠悠久久av| 超碰成人久久| 欧美日韩福利视频一区二区| 成人亚洲精品一区在线观看| 精品国产一区二区三区四区第35| 免费无遮挡裸体视频| av天堂久久9| 很黄的视频免费| 国产成人精品久久二区二区91| 亚洲视频免费观看视频| 日韩精品青青久久久久久| 精品福利观看| 看免费av毛片| 成人亚洲精品av一区二区| 国产亚洲av嫩草精品影院| 国产精品av久久久久免费| 国产欧美日韩一区二区三| 一本综合久久免费| 性欧美人与动物交配| 国产成人精品久久二区二区91| 成人av一区二区三区在线看| 最近最新中文字幕大全电影3 | 多毛熟女@视频| 中国美女看黄片| 99在线人妻在线中文字幕| 久久国产乱子伦精品免费另类| 一二三四在线观看免费中文在| 亚洲 欧美一区二区三区| 美女扒开内裤让男人捅视频| 亚洲色图 男人天堂 中文字幕| 久久人妻熟女aⅴ| 欧美老熟妇乱子伦牲交| 欧美日本亚洲视频在线播放| 精品一区二区三区视频在线观看免费| 国产伦一二天堂av在线观看| 久久伊人香网站| 女警被强在线播放| 日韩大码丰满熟妇| 美女高潮到喷水免费观看| 黄色女人牲交| 亚洲专区中文字幕在线| 成人国产综合亚洲| 国内精品久久久久精免费| 午夜久久久久精精品| 欧美av亚洲av综合av国产av| 亚洲国产欧美网| 久久草成人影院| 99香蕉大伊视频| 亚洲人成电影观看| 国产成人精品在线电影| 午夜免费观看网址| 老熟妇仑乱视频hdxx| 亚洲欧美日韩另类电影网站| 一二三四在线观看免费中文在| 国产乱人伦免费视频| 精品卡一卡二卡四卡免费| 欧美乱妇无乱码| 成人免费观看视频高清| 一区二区日韩欧美中文字幕| 一进一出抽搐gif免费好疼| 欧美精品啪啪一区二区三区| 日韩欧美国产在线观看| 欧美成人免费av一区二区三区| 中文字幕人妻熟女乱码| 最近最新中文字幕大全免费视频| 女性生殖器流出的白浆| 午夜福利,免费看| 天天躁狠狠躁夜夜躁狠狠躁| 国产午夜福利久久久久久| 日本黄色视频三级网站网址| av超薄肉色丝袜交足视频| 亚洲五月天丁香| 亚洲精华国产精华精| 欧美成人一区二区免费高清观看 | 国产精品亚洲av一区麻豆| 三级毛片av免费| 亚洲一卡2卡3卡4卡5卡精品中文| 久久人妻熟女aⅴ| 久久香蕉国产精品| 99热只有精品国产| 国产91精品成人一区二区三区| 欧美老熟妇乱子伦牲交| 亚洲第一青青草原| 婷婷精品国产亚洲av在线| 成人永久免费在线观看视频| 日韩欧美国产在线观看| 日本三级黄在线观看| 在线av久久热| 亚洲av第一区精品v没综合| 国产欧美日韩一区二区三| 欧美日本亚洲视频在线播放| 一进一出抽搐gif免费好疼| 欧美日韩瑟瑟在线播放| 国产精品电影一区二区三区| 黄色丝袜av网址大全| 欧美中文日本在线观看视频| 亚洲狠狠婷婷综合久久图片| av视频免费观看在线观看| 无遮挡黄片免费观看| 91字幕亚洲| 女人被躁到高潮嗷嗷叫费观| 精品不卡国产一区二区三区| av电影中文网址| 亚洲中文日韩欧美视频| 国产激情欧美一区二区| 丰满人妻熟妇乱又伦精品不卡| 首页视频小说图片口味搜索| 日韩欧美在线二视频| 久久久久久久久中文| 亚洲最大成人中文| 999久久久国产精品视频| 国产91精品成人一区二区三区| 日韩欧美免费精品| 99香蕉大伊视频| www国产在线视频色| 日本在线视频免费播放| 九色国产91popny在线| 91麻豆av在线| 一级作爱视频免费观看| 午夜精品久久久久久毛片777| 免费人成视频x8x8入口观看| 国产精品自产拍在线观看55亚洲| 国产高清有码在线观看视频 | 可以在线观看毛片的网站| 女人精品久久久久毛片| 国产成人欧美在线观看| 黄色 视频免费看| 夜夜躁狠狠躁天天躁| 欧美久久黑人一区二区| 黑人欧美特级aaaaaa片| 日本三级黄在线观看| 亚洲av片天天在线观看| 搡老熟女国产l中国老女人| 91麻豆av在线| 亚洲成a人片在线一区二区| 欧美日韩乱码在线| av超薄肉色丝袜交足视频| 久久久久九九精品影院| 18禁裸乳无遮挡免费网站照片 | 亚洲一区二区三区色噜噜| 午夜成年电影在线免费观看| 成人18禁在线播放| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产中文字幕在线视频| 精品日产1卡2卡| e午夜精品久久久久久久| 成年女人毛片免费观看观看9| 成人三级做爰电影| 色综合欧美亚洲国产小说| 女人被狂操c到高潮| 国产亚洲欧美精品永久| 欧美中文日本在线观看视频| 美女 人体艺术 gogo| 亚洲欧美精品综合久久99| 亚洲成国产人片在线观看| 可以免费在线观看a视频的电影网站| 夜夜夜夜夜久久久久| 久久精品国产99精品国产亚洲性色 | 精品久久蜜臀av无| 久久这里只有精品19| 少妇的丰满在线观看| 亚洲国产精品久久男人天堂| 欧美一级毛片孕妇| 精品久久蜜臀av无| 人妻久久中文字幕网| 国产单亲对白刺激| 成人手机av| av片东京热男人的天堂| 一卡2卡三卡四卡精品乱码亚洲| 日本三级黄在线观看| 亚洲精品国产色婷婷电影| 黄色毛片三级朝国网站| 一级毛片精品| 国产精品亚洲一级av第二区| 久久久国产欧美日韩av| av欧美777| 国产av一区二区精品久久| 日本精品一区二区三区蜜桃| 成在线人永久免费视频| 国产精品久久久久久人妻精品电影| 午夜福利在线观看吧| 欧美人与性动交α欧美精品济南到| 国产精品美女特级片免费视频播放器 | 女警被强在线播放| 视频在线观看一区二区三区| 女警被强在线播放| 制服诱惑二区| 欧美日韩福利视频一区二区| 亚洲av日韩精品久久久久久密| 日韩成人在线观看一区二区三区| 国产精品,欧美在线| ponron亚洲| 一级a爱片免费观看的视频| 亚洲熟妇熟女久久| 黄频高清免费视频| 69精品国产乱码久久久| 中出人妻视频一区二区| 亚洲精品中文字幕一二三四区| 天堂√8在线中文| 丝袜美腿诱惑在线| 久久久久九九精品影院| 欧美一级毛片孕妇| 两个人看的免费小视频| 久久午夜综合久久蜜桃| 女人精品久久久久毛片| 91麻豆av在线| 级片在线观看| 一区二区三区激情视频| 日本五十路高清| 久热这里只有精品99| 日本精品一区二区三区蜜桃| 91精品三级在线观看| 女性生殖器流出的白浆| 一夜夜www| 欧美乱妇无乱码| 99在线视频只有这里精品首页| svipshipincom国产片| 99久久精品国产亚洲精品| 久久人妻av系列| 亚洲最大成人中文| 日本黄色视频三级网站网址| 97碰自拍视频| 美女午夜性视频免费| 他把我摸到了高潮在线观看| 国产一区二区在线av高清观看| 国产成人精品无人区| 好男人在线观看高清免费视频 | 国产亚洲精品av在线| 亚洲欧美精品综合一区二区三区| 午夜两性在线视频| 一二三四在线观看免费中文在| 一区二区三区高清视频在线| 色在线成人网| 自线自在国产av| 他把我摸到了高潮在线观看| 国产亚洲精品综合一区在线观看 | 在线观看午夜福利视频| 最新美女视频免费是黄的| 日韩免费av在线播放| 90打野战视频偷拍视频| 成人三级做爰电影| 在线观看日韩欧美| 法律面前人人平等表现在哪些方面| 精品国产超薄肉色丝袜足j| 好男人电影高清在线观看| 亚洲av成人不卡在线观看播放网| 亚洲av日韩精品久久久久久密| 黄色片一级片一级黄色片| 别揉我奶头~嗯~啊~动态视频| 亚洲精品国产色婷婷电影| 九色亚洲精品在线播放| 欧美日本亚洲视频在线播放| 啪啪无遮挡十八禁网站| 欧美一级毛片孕妇| 亚洲va日本ⅴa欧美va伊人久久| 少妇熟女aⅴ在线视频| 欧美日韩黄片免| 婷婷精品国产亚洲av在线| 欧美日韩乱码在线| 宅男免费午夜| 久久国产亚洲av麻豆专区| 国产高清视频在线播放一区| 国产野战对白在线观看| 中文字幕人妻丝袜一区二区| 国产一区二区激情短视频| 亚洲人成77777在线视频| 国产aⅴ精品一区二区三区波| 国产私拍福利视频在线观看| 免费久久久久久久精品成人欧美视频| 精品卡一卡二卡四卡免费| 亚洲全国av大片| 久久九九热精品免费| 热re99久久国产66热| 亚洲av电影不卡..在线观看| 欧美日本亚洲视频在线播放| 亚洲成av人片免费观看| 亚洲欧美精品综合一区二区三区| 亚洲性夜色夜夜综合| 中文字幕久久专区| 乱人伦中国视频| e午夜精品久久久久久久| 无限看片的www在线观看| 精品福利观看| 美女大奶头视频| 久久这里只有精品19| 免费在线观看影片大全网站| 亚洲欧美日韩无卡精品| 国产亚洲欧美98| 中文亚洲av片在线观看爽| 1024视频免费在线观看| 不卡一级毛片| 欧美日韩一级在线毛片| 久久 成人 亚洲| 露出奶头的视频| 午夜免费鲁丝| 国产一卡二卡三卡精品| 校园春色视频在线观看| 嫩草影视91久久| 免费看十八禁软件| 国产伦一二天堂av在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品久久国产高清桃花| 老司机在亚洲福利影院| 久久精品影院6| 久久人人爽av亚洲精品天堂| 国产精品影院久久| 国产成人一区二区三区免费视频网站| 精品久久久久久久人妻蜜臀av | 国产一区二区在线av高清观看| 两个人视频免费观看高清| 亚洲av成人一区二区三| av视频免费观看在线观看| 一卡2卡三卡四卡精品乱码亚洲| 97人妻天天添夜夜摸| 叶爱在线成人免费视频播放| 男男h啪啪无遮挡| 男人舔女人的私密视频| 国产麻豆69| 999久久久国产精品视频| 日韩一卡2卡3卡4卡2021年| 大型黄色视频在线免费观看| 国产成人欧美在线观看| 在线视频色国产色| 亚洲国产精品久久男人天堂| avwww免费| 久久午夜综合久久蜜桃| 亚洲,欧美精品.| 国产99久久九九免费精品| 欧美老熟妇乱子伦牲交| 国内毛片毛片毛片毛片毛片| 成人18禁高潮啪啪吃奶动态图| 国产野战对白在线观看| 老司机午夜十八禁免费视频| 欧美+亚洲+日韩+国产| 91成人精品电影| 精品国产乱码久久久久久男人| 国产成人精品久久二区二区免费| 97人妻天天添夜夜摸| 黑丝袜美女国产一区| 久久 成人 亚洲| 99国产精品免费福利视频| e午夜精品久久久久久久| 欧美成人午夜精品| 国产精品99久久99久久久不卡| 丰满人妻熟妇乱又伦精品不卡| 久久久久国产精品人妻aⅴ院| 国产亚洲精品第一综合不卡| 亚洲全国av大片| 久久香蕉国产精品| 91国产中文字幕| 脱女人内裤的视频| 久久精品91蜜桃| 日本精品一区二区三区蜜桃| 在线观看免费午夜福利视频| 久久久久久久久免费视频了| 婷婷精品国产亚洲av在线| 香蕉丝袜av| 99久久99久久久精品蜜桃| 国产蜜桃级精品一区二区三区| 非洲黑人性xxxx精品又粗又长| 成人永久免费在线观看视频| 在线永久观看黄色视频| 一级作爱视频免费观看| 亚洲色图综合在线观看| 久久精品亚洲精品国产色婷小说| 日本精品一区二区三区蜜桃| 久久久久久亚洲精品国产蜜桃av| 亚洲中文字幕日韩| 免费女性裸体啪啪无遮挡网站| 国产av一区在线观看免费| 国产成人精品久久二区二区免费| 国产精品亚洲一级av第二区| 变态另类丝袜制服| 天天添夜夜摸| 老司机福利观看| 国产亚洲av高清不卡| 精品不卡国产一区二区三区| 欧美激情极品国产一区二区三区| 嫁个100分男人电影在线观看| 久久久久久久久中文| 啦啦啦观看免费观看视频高清 | 日韩成人在线观看一区二区三区| 午夜久久久在线观看| 国产精品久久久人人做人人爽| 色尼玛亚洲综合影院| www.999成人在线观看| 成人欧美大片| 久久国产乱子伦精品免费另类| svipshipincom国产片| 1024香蕉在线观看| 日本三级黄在线观看| 国产一区二区在线av高清观看| 久久久久久久久中文| 黑丝袜美女国产一区| 国产乱人伦免费视频| 久久亚洲真实| 国产精品98久久久久久宅男小说| 午夜免费激情av| 国产精品国产高清国产av| 亚洲色图 男人天堂 中文字幕| 在线观看www视频免费| 满18在线观看网站| 亚洲精品在线美女| 香蕉国产在线看| 黄色 视频免费看| 99精品久久久久人妻精品| 精品电影一区二区在线| 国产成人av教育| 精品人妻在线不人妻| 国产成人一区二区三区免费视频网站| 亚洲电影在线观看av| 极品人妻少妇av视频| 成人永久免费在线观看视频| 纯流量卡能插随身wifi吗| 村上凉子中文字幕在线| 国产熟女午夜一区二区三区| netflix在线观看网站| 国产精品香港三级国产av潘金莲| 久久精品91无色码中文字幕| 欧美乱码精品一区二区三区| 巨乳人妻的诱惑在线观看| 久9热在线精品视频| 日本黄色视频三级网站网址| 90打野战视频偷拍视频| 国产97色在线日韩免费| 亚洲欧美精品综合一区二区三区| 久久中文看片网| 桃色一区二区三区在线观看| 亚洲av成人不卡在线观看播放网| 高清毛片免费观看视频网站| 欧美激情久久久久久爽电影 | 18禁国产床啪视频网站| 国产高清激情床上av| 日本一区二区免费在线视频| 精品国产国语对白av| 午夜福利一区二区在线看| www国产在线视频色| 免费少妇av软件| 麻豆国产av国片精品| 曰老女人黄片| 精品国产美女av久久久久小说| 午夜福利成人在线免费观看| 亚洲精品国产精品久久久不卡| 男男h啪啪无遮挡| 成人免费观看视频高清| 午夜激情av网站| 久久久久久久精品吃奶| 老司机深夜福利视频在线观看| 69av精品久久久久久| 欧美激情久久久久久爽电影 | 给我免费播放毛片高清在线观看| 亚洲国产精品999在线| 午夜福利成人在线免费观看| 女同久久另类99精品国产91| 很黄的视频免费| 一级黄色大片毛片| 国产97色在线日韩免费| 久久精品aⅴ一区二区三区四区| 一级毛片精品| 亚洲av第一区精品v没综合| 在线国产一区二区在线| 91精品三级在线观看| 高潮久久久久久久久久久不卡| 51午夜福利影视在线观看| 麻豆成人av在线观看| 久久天躁狠狠躁夜夜2o2o| 女人高潮潮喷娇喘18禁视频| 久久久久国产一级毛片高清牌| 亚洲片人在线观看| 99久久99久久久精品蜜桃| 中文字幕另类日韩欧美亚洲嫩草| 精品久久久久久久人妻蜜臀av | 久久香蕉精品热| 日本五十路高清| 国产成人影院久久av| 此物有八面人人有两片| 老司机午夜十八禁免费视频| 午夜福利,免费看| 国产成人免费无遮挡视频| 日本 欧美在线| 涩涩av久久男人的天堂| 9色porny在线观看| 亚洲av熟女| 欧美日韩精品网址| 亚洲免费av在线视频| 精品国产一区二区三区四区第35| 热re99久久国产66热| 18禁美女被吸乳视频| 一本综合久久免费| 欧美成人性av电影在线观看| 日韩中文字幕欧美一区二区| 俄罗斯特黄特色一大片| 欧美日本视频| 色综合站精品国产| 丰满人妻熟妇乱又伦精品不卡| 免费看美女性在线毛片视频| 国产精品1区2区在线观看.| 久久久久亚洲av毛片大全| 午夜免费鲁丝| 大陆偷拍与自拍| 一级毛片高清免费大全|