• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Some notes on numerical simulation and error analyses of the attached turbulent cavitating flow by LES *

    2018-05-14 01:43:32XinpingLong龍新平YunLong龍云WentingWang王文婷HuaiyuCheng程懷玉BinJi季斌
    關(guān)鍵詞:龍云新平

    Xin-ping Long (龍新平), Yun Long (龍云), Wen-ting Wang (王文婷), Huai-yu Cheng (程懷玉),Bin Ji (季斌)

    1. State Key Laboratory of Water Resources and Hydro power Engineering Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China

    2. Key Laboratory of Jet Theory and New Technology of Hubei Province, Wuhan University, Wuhan 430072,China

    It is a great challenge for both experiment and numerical simulation to investigate the complicated transient cavitating flow. It is noted that numerical simulation of cavitating flow has achieved a remarkable progress in the last two decades. Li et al.[1,2]propose an improved all-speed Roe scheme for LES and obtain satisfactory results. The re-entrant jet[3]and shock wave[4]has attracted much attention. Peng et al.[5]observe the U-type fl ow structures around the hydrofoils in the cavitation tunnel. Ji et al.[6], Wang et al.[7], Long et al.[8]and Cheng et al.[9]study transient cavitating flow structure by high performance numerical methods and three-dimensional Lagrangian technology.

    All these researches enhance the understanding of the transient cavitating flow. However, less attention are paid to assessing the accuracy of these numerical results with systematic methodology and procedures. Verification and validation (V&V) is a basic procedure to evaluate the accuracy and reliability of numerical simulation, but the practical use of LES V&V is a big challenge[10]. Related studies of LES V&V are ongoing[11]. Freitag and Klein[12]have proposed a systematic grid and model variation method to estimate the numerical and modeling error.Xing[11]proposes a general framework for V&V of LES to get the numerical, modeling and their coupling errors. The investigations by Dutta and Xing[13]have achieved promising achievements.

    Inspired by the aforementioned studies, this letter carries out the large eddy simulation and error analysis of the attached turbulent cavitating flow around the Clark-Y hydrofoil. Comparisons between available experiments[14]and numerical results have been made. Quantitative analyses of LES errors are presented and cavitation influence on LES errors is also discussed.

    The chord lengthCof hydrofoil is 0.07 m and angle of attack is 8°. The length, width and height of the computational domain are 10.0C, 0.3Cand 2.7C, respectively. The boundary inlet velocity is set asU∞=10m/s , and outlet boundary is fixed at the static pressure pout, deriving from the cavitation number σ=0.8 (σ=(pout-pv)/(0.5ρU∞2)), wherepvis the saturated vapor pressure andρis the liquid density). Detailed information about the setup can see Ref. [15]. Case 1 is refined with the same mesh topology from Case 3, and Case 2 is the same as Case 1 except for the change of Smagorinsky constant.Detail information about mesh, model constant and calculations setup has been displayed in Table 1.

    Table 1 Mesh and model constant and calculation setup

    Herein, the LES errors estimation method, proposed by Freitag and Klein[12], has been employed.Some revised thoughts by Xing[11]have been adopted in this paper considering that the time step and grid spacing changing simultaneously. The numerical error and modeling error are estimated with power series expansions as a function ofh*and Δ:

    whereSCis the numerical benchmark,S1,S2,S3denotes the standards LES solution, the LES solution with a modified model contribution and solution on a coarser mesh, respectively.cNandcMare the unknown coefficient. The local spatial and temporal resolutionh*[11]is defined as

    where Δtis the time step andhis the local mesh size. Herehis equal to the filter width Δ. The model variation factor α=1.3. The time step and grid spacing share the same refinement ratior=1.6.pNandpMhas a large effect on the LES errors estimations.pN=1.7 andpM=1.5 were recommended by Dutta and Xing[16], whilepN=2 andpM=2/3 by Freitag and Klein[12]have been investigated and applied in some researches. Therefore,pN=2 andpM=2/3 are adopted in this paper.

    The numerical error and modeling error for case1 are corresponding to the first term and second term on the right hand sides of Eq. (1). The normalized averaged stream wise velocityu/U∞is chosen as the target variable to gain the numerical and modeling error. The velocity and cavitation data are obtained from the medial surface along the span wise location.

    Figure 1 shows the comparison of experimental and numerical snapshots of cavity shedding within one typical cycle. The experimental results are from Ref. [14]. Numerical results are used to represent the unsteady cavity evolution colored with vertical velocity. From Figs. 1(a)-1(d), it can be observed that the numerical results can capture the unsteady cavity evolution features, including the cavity inception,development and shedding along the hydrofoil suction face. The periodic cavity shedding behavior can lead to complex and turbulent flow structures. This can cause huge difficulties to accurately simulate the unsteady cavitating flow even with well performance numerical methods. Owing to the extensive use of LES in academic research in recent years, the reliability or risk assessment has become an essential step for LES results in cavitation. At present, it has the possibility to carry out quantitative LES errors analysis in cavitation simulation. Verification and validation of LES will be a necessary procedure in the future.

    Fig.1 (Color online)Timeevolution of cavity shedding in one typical cycle for Case1 (Left: Experimental results[14].Right: Cavitation patterns by iso-surface of αv=0.1)

    Figure 2 presents the average values versus different flow time about the normalized stream wise velocityu/U∞at monitoring point A (x/c=0.2,y/c=0.09) and point B (x/c=0.8,y/c=0.16). It can be seen that the variations ofu/U∞at the ending of statistical flow time are clearly smaller compared to the beginning of flow time. This ensures that the selection of final averaged velocity in this paper has almost no effect on obtaining the LES errors.

    Fig.2 Average values versus different flow time about the normalized stream wise velocities at monitoring points

    The magnitudes of numerical error and modeling error for Case 1 are shown in Fig.3 for the unsteady cavitating flow. From the results, it can be seen that the modeling error and numerical error are almost on the same order of magnitude in most situations, while the modeling error is often a bit larger if compared to numerical error. For each chord wise location in Fig.3,the numerical error and modeling error sometimes partially have opposite signs and they can offset each other. In Fig.3(a), the errors are large and squeezed in very little space at vertical direction, but sharply decrease to almost zero. The cavitation occurs generally around this narrow location, and the accuracy of the inner cavitating flow structure at this narrow location is a great difficulty for numerical simulation,also for experiments. This might be in charge of the error distribution in Fig.3(a). From Figs. 3(b)-3(e),the numerical and modeling errors start to oscillate along the vertical direction. The errors magnitudes and fluctuation levels gradually become larger fromx/c=0.4 tox/c=1.0. It has the similar tendency that the errors decrease to almost zero when the distance is far away from foil surface. The cavitation area becomes thicker from Figs. 3(b), 3(e). The velocity fluctuate sviolently due to the periodic cavity shedding,which can cause much large scale vortexstructure. It has a huge impact on the cavitation simulation. This might result in the errors changing in a large range. From above analyses, it can be con-cluded that the LES errors are significantly influenced by the unsteady cavitation.

    Fig.3 The numerical errors and modeling errors of averaged u/ U∞ at five chord wise locations for Case 1

    Large eddy simulation and error analyses of the attached turbulent cavitating flow around the Clark-Y hydrofoil has been made in this letter. Quantitative LES errors analyses of cavitation simulation are carried out and cavitation influence on LES errors is also discussed. The main conclusions can be summarized as follows:

    (1) The numerical results can capture the periodic cavity shedding behavior and they are in well agreement with the experiments. The shedding of cavity can lead to complex and turbulent flow structures,which results in great difficulties to model the details of the turbulent cavitating flow even with well performance numerical methods.

    (2) In this simulation of the transient cavitating flow, the modeling error and numerical error are on the same order of magnitude in most situations, while the modeling error is often a little bit larger than numerical error. The numerical error and modeling error sometimes have the opposite sign and they can partially offset each other.

    (3) The numerical error and modeling error are significantly influenced by the cavitation. The unsteady cavitation can extend the magnitudes and oscillation levels of LES numerical error and modeling error.

    It still has a long way to go for the quantitative LES reliability estimation with V&V. Owing to the extensive use of LES in academic research in recent years, the LES reliability estimation should become an essential part to LES results in cavitation. Due to that Smagorinsky constant cannot change arbitrarily, the LES error estimation method adopted in this paper needs more investigations. The three-equation method proposed by Dutta and Xing[16]may give more promising results. The LES error estimation applied in the unsteady cavitation simulation with the guideline of Ref. [16] will be the focus of our future investigations.

    [1] Li X. S., Li X. L. All-speed Roe scheme for the large eddy simulation of homogeneous decaying turbulence [J].International Journal of Computational Fluid Dynamics,2016, 30(1): 69-78.

    [2] Li X. S., Xu J. Z., Gu C. W. Preconditioning method and engineering application of large eddy simulation [J].Science in ChinaSeries G-Physics, Mechanics and Astronomy, 2008, 51(6): 667-677.

    [3] Wu Q., Huang B., Wang G. et al. The transient characteristics of cloud cavitating flow over a flexible hydrofoil[J].International Journal of Multiphase Flow, 2018, 99:162-173.

    [4] Cui P., Zhang A. M., Wang S. et al. Ice breaking by a collapsing bubble [J].Journal of Fluid Mechanics, 2018,841: 287-309.

    [5] Peng X. X., Ji B., Cao Y. et al. Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils [J].International Journal of Multiphase Flow, 2016, 79:10-22.

    [6] Ji B., Luo X., Arndt R. E. A. et al. Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil [J].International Journal of Multiphase Flow, 2015, 68:121-134.

    [7] Wang Y., Xu C., Wu X. et al. Ventilated cloud cavitating flow around a blunt body close to the free surface [J].Physical Review Fluids, 2017, 2(8): 084303.

    [8] Long X., Cheng H., Ji B. et al. Large eddy simulation and Euler-Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil [J].International Journal of Multiphase Flow, 2018, 100:41-56.

    [9] Cheng H. Y., Long X. P., Ji B. et al. 3-D Lagrangian based investigations of the time-dependent cloud cavitating flows around a Clark-Y hydrofoil with special emphasis on shedding process analysis [J].Journal of Hydrodynamics,2018, 30(1): 122-130.

    [10] Long Y., Long X., Ji B. et al. Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil [J].Journal of Hydrodynamics, 2017,29(4): 610-620.

    [11] Xing T. A general framework for verification and validation of large eddy simulations [J].Journal of Hydrodynamics, 2015, 27(2): 163-175.

    [12] Freitag M., Klein M. An improved method to assess the quality of large eddy simulations in the context of implicit filtering [J].Journal of Turbulence, 2006, 7(40): 1-11.

    [13] Dutta R., Xing T. Quantitative solution verification of large eddy simulation of channel flow [C].Proceedings of the 2nd Thermal and Fluid Engineering Conference and 4th International Workshop on Heat Transfer, Las Vegas,USA, 2017.

    [14] Huang B., Young Y. L., Wang G. et al. Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation [J].Journal of Fluids Engineering, 2013, 135(7): 071301.

    [15] Ji B., Long Y., Long X. P. et al. Large eddy simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavitation interactions [J].Journalof Hydrodynamics,2017, 29(1): 27-39.

    [16] Dutta R., Xing T. Five-equation and robust three-equation methods for solution verification of large eddy simulation[J].Journal of Hydrodynamics,2018, 30(1): 23-33.

    猜你喜歡
    龍云新平
    幼兒園里歡樂多
    幼兒園(2021年18期)2021-12-06 02:45:42
    小螞蟻去游玩
    幼兒園(2021年16期)2021-12-06 01:06:48
    老腔唱新歌
    金秋(2021年22期)2021-03-10 07:59:16
    出滇抗戰(zhàn)時期龍云對滇軍的治理研究
    創(chuàng)造(2020年6期)2020-11-20 05:58:42
    讓蘑菇
    幼兒園(2020年3期)2020-03-27 07:00:07
    劉新平 油畫作品
    An integral calculation approach for numerical simulation of cavitating flow around a marine propeller behind the ship hull *
    URANS simulations of the tip-leakage cavitating flow with verification and validation procedures *
    你總是給我力量
    Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil*
    亚洲黑人精品在线| 爱豆传媒免费全集在线观看| 精品国产乱码久久久久久男人| 青春草视频在线免费观看| 免费在线观看日本一区| 欧美97在线视频| 一级毛片电影观看| 亚洲国产av新网站| 欧美激情高清一区二区三区| 一本一本久久a久久精品综合妖精| 丝瓜视频免费看黄片| 午夜福利影视在线免费观看| 国产成人av激情在线播放| 精品久久蜜臀av无| 亚洲美女黄色视频免费看| 最黄视频免费看| 熟女少妇亚洲综合色aaa.| 欧美大码av| 在线观看国产h片| 国产一区二区 视频在线| 亚洲欧洲国产日韩| 国产免费福利视频在线观看| 热99久久久久精品小说推荐| 在线 av 中文字幕| 啦啦啦视频在线资源免费观看| 日韩制服骚丝袜av| 成人黄色视频免费在线看| 欧美xxⅹ黑人| 午夜福利在线免费观看网站| 国产欧美日韩一区二区三 | 欧美精品亚洲一区二区| 欧美 亚洲 国产 日韩一| 性色av一级| 丝袜喷水一区| 成人亚洲精品一区在线观看| 青草久久国产| 国产激情久久老熟女| 91九色精品人成在线观看| 一级a爱视频在线免费观看| 久久久久久久大尺度免费视频| 欧美在线黄色| 亚洲人成77777在线视频| 18在线观看网站| 国产97色在线日韩免费| 一级毛片我不卡| 丰满饥渴人妻一区二区三| 一个人免费看片子| 亚洲成色77777| 国产精品国产三级专区第一集| 一本—道久久a久久精品蜜桃钙片| 国产片内射在线| 国产精品免费视频内射| 国产真人三级小视频在线观看| 19禁男女啪啪无遮挡网站| 亚洲精品日韩在线中文字幕| 一级毛片 在线播放| 欧美大码av| 国产1区2区3区精品| 女人爽到高潮嗷嗷叫在线视频| 亚洲五月色婷婷综合| 免费黄频网站在线观看国产| 岛国毛片在线播放| 免费高清在线观看视频在线观看| 夫妻午夜视频| 一二三四在线观看免费中文在| videos熟女内射| 久久精品熟女亚洲av麻豆精品| 精品久久久久久久毛片微露脸 | 一级毛片 在线播放| 午夜激情久久久久久久| 美女福利国产在线| 黄网站色视频无遮挡免费观看| 国产亚洲av片在线观看秒播厂| 大陆偷拍与自拍| 日本色播在线视频| 色视频在线一区二区三区| 老司机在亚洲福利影院| 欧美在线黄色| 国产成人精品无人区| 一级片免费观看大全| 一区在线观看完整版| 一本色道久久久久久精品综合| av国产精品久久久久影院| 少妇 在线观看| 午夜福利视频在线观看免费| 视频区欧美日本亚洲| 精品福利永久在线观看| 久久影院123| 国语对白做爰xxxⅹ性视频网站| 久久久久国产精品人妻一区二区| 青春草视频在线免费观看| 亚洲成人国产一区在线观看 | 欧美黑人欧美精品刺激| 国产成人影院久久av| 国产成人欧美在线观看 | 日本五十路高清| 中文字幕人妻丝袜一区二区| 一级片免费观看大全| 国产精品人妻久久久影院| 成人国产av品久久久| 成年动漫av网址| 亚洲av电影在线进入| 日本a在线网址| 亚洲人成电影免费在线| 老司机深夜福利视频在线观看 | 一二三四在线观看免费中文在| 搡老岳熟女国产| 精品人妻熟女毛片av久久网站| 国产av一区二区精品久久| 久久久精品国产亚洲av高清涩受| 熟女av电影| av在线播放精品| 午夜免费鲁丝| 老司机影院毛片| 日韩精品免费视频一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 日韩中文字幕视频在线看片| 免费在线观看黄色视频的| 少妇人妻 视频| 一本—道久久a久久精品蜜桃钙片| 免费久久久久久久精品成人欧美视频| 亚洲情色 制服丝袜| 免费在线观看日本一区| 国产成人欧美在线观看 | 久久99热这里只频精品6学生| 久久久久久久久免费视频了| 777米奇影视久久| 亚洲av男天堂| 一区在线观看完整版| 亚洲天堂av无毛| 美女主播在线视频| 欧美精品人与动牲交sv欧美| 国产伦人伦偷精品视频| 精品国产乱码久久久久久男人| 中文字幕人妻丝袜制服| 亚洲国产日韩一区二区| 精品国产一区二区三区久久久樱花| 黄频高清免费视频| 亚洲人成电影免费在线| 亚洲自偷自拍图片 自拍| 精品亚洲成a人片在线观看| 99国产精品免费福利视频| 欧美人与性动交α欧美精品济南到| 国产男女内射视频| 欧美日韩精品网址| 极品少妇高潮喷水抽搐| 国产免费现黄频在线看| 老熟女久久久| 免费av中文字幕在线| a级毛片黄视频| 国产又爽黄色视频| 日韩一本色道免费dvd| av又黄又爽大尺度在线免费看| 精品少妇内射三级| av线在线观看网站| 大陆偷拍与自拍| 午夜久久久在线观看| 视频区图区小说| 国产一区二区 视频在线| 自线自在国产av| 亚洲av日韩精品久久久久久密 | 啦啦啦中文免费视频观看日本| 建设人人有责人人尽责人人享有的| 一区福利在线观看| 精品国产一区二区三区久久久樱花| 日本vs欧美在线观看视频| 99久久99久久久精品蜜桃| 日韩制服丝袜自拍偷拍| 久久中文字幕一级| 多毛熟女@视频| 高清欧美精品videossex| 久久人人97超碰香蕉20202| 亚洲,欧美精品.| 日韩av不卡免费在线播放| 中文精品一卡2卡3卡4更新| 久久精品国产综合久久久| 欧美成人精品欧美一级黄| 亚洲国产精品999| 母亲3免费完整高清在线观看| 免费久久久久久久精品成人欧美视频| 亚洲欧美精品综合一区二区三区| 日韩欧美一区视频在线观看| 国产精品国产三级专区第一集| 午夜免费鲁丝| 伊人久久大香线蕉亚洲五| 成人免费观看视频高清| 七月丁香在线播放| 欧美性长视频在线观看| 午夜免费男女啪啪视频观看| 免费观看a级毛片全部| 久久99热这里只频精品6学生| 中文字幕亚洲精品专区| 人人妻人人澡人人爽人人夜夜| 国产熟女午夜一区二区三区| 真人做人爱边吃奶动态| a级片在线免费高清观看视频| 亚洲人成电影观看| 50天的宝宝边吃奶边哭怎么回事| 18禁观看日本| 久久精品国产亚洲av高清一级| 啦啦啦在线观看免费高清www| 一边摸一边抽搐一进一出视频| 精品视频人人做人人爽| 又大又爽又粗| 国产av国产精品国产| 亚洲av综合色区一区| 精品人妻熟女毛片av久久网站| 国产97色在线日韩免费| 久久久精品区二区三区| 大香蕉久久网| 成人国产av品久久久| 波多野结衣av一区二区av| 亚洲精品美女久久av网站| 一级片免费观看大全| 精品一品国产午夜福利视频| 每晚都被弄得嗷嗷叫到高潮| 十八禁高潮呻吟视频| 国产伦理片在线播放av一区| 性色av乱码一区二区三区2| 免费观看a级毛片全部| 九草在线视频观看| 久久人妻福利社区极品人妻图片 | 日本a在线网址| 肉色欧美久久久久久久蜜桃| 久久免费观看电影| 久久久亚洲精品成人影院| 亚洲一码二码三码区别大吗| 久久人妻熟女aⅴ| av片东京热男人的天堂| 人人妻人人添人人爽欧美一区卜| 水蜜桃什么品种好| 国产精品久久久av美女十八| 成人亚洲欧美一区二区av| 久久精品久久久久久噜噜老黄| 精品欧美一区二区三区在线| a级毛片黄视频| 精品人妻在线不人妻| 久久这里只有精品19| 欧美成人午夜精品| 欧美日韩综合久久久久久| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久国产精品人妻一区二区| 国产伦理片在线播放av一区| 日本wwww免费看| 精品少妇内射三级| 一区福利在线观看| 久9热在线精品视频| 国产免费视频播放在线视频| 日韩视频在线欧美| 成人亚洲欧美一区二区av| 少妇的丰满在线观看| 超碰成人久久| 国产一卡二卡三卡精品| 波多野结衣一区麻豆| 咕卡用的链子| 久久久精品免费免费高清| 波多野结衣一区麻豆| 欧美日韩国产mv在线观看视频| 男女无遮挡免费网站观看| 国产黄色免费在线视频| 亚洲av片天天在线观看| 免费看不卡的av| 国产精品偷伦视频观看了| 我的亚洲天堂| 乱人伦中国视频| 青草久久国产| 国产在视频线精品| 考比视频在线观看| 亚洲av国产av综合av卡| 少妇猛男粗大的猛烈进出视频| 精品亚洲成国产av| 一区二区三区精品91| 啦啦啦视频在线资源免费观看| 日韩视频在线欧美| 日韩伦理黄色片| 精品国产国语对白av| 精品国产一区二区三区四区第35| 观看av在线不卡| 久久青草综合色| 亚洲 国产 在线| 日韩av在线免费看完整版不卡| 亚洲精品久久午夜乱码| 日韩视频在线欧美| 国产一区二区三区av在线| 精品少妇内射三级| 赤兔流量卡办理| 久9热在线精品视频| 18禁裸乳无遮挡动漫免费视频| 欧美乱码精品一区二区三区| 尾随美女入室| 婷婷丁香在线五月| 黄色 视频免费看| 叶爱在线成人免费视频播放| 欧美另类一区| 欧美日韩亚洲综合一区二区三区_| 两人在一起打扑克的视频| 日韩免费高清中文字幕av| 免费看不卡的av| 日本色播在线视频| 欧美 亚洲 国产 日韩一| 尾随美女入室| 18禁裸乳无遮挡动漫免费视频| 99热全是精品| 九草在线视频观看| 最黄视频免费看| 在现免费观看毛片| 精品人妻在线不人妻| 叶爱在线成人免费视频播放| 婷婷色综合大香蕉| 国产精品熟女久久久久浪| 午夜福利在线免费观看网站| 菩萨蛮人人尽说江南好唐韦庄| 自拍欧美九色日韩亚洲蝌蚪91| 免费在线观看日本一区| 超碰97精品在线观看| 色94色欧美一区二区| 国产一区亚洲一区在线观看| 天天躁夜夜躁狠狠躁躁| 免费女性裸体啪啪无遮挡网站| 欧美另类一区| 亚洲精品在线美女| 久久性视频一级片| 亚洲av片天天在线观看| 亚洲国产看品久久| 久久免费观看电影| 亚洲国产欧美网| 日本91视频免费播放| 超色免费av| 女人爽到高潮嗷嗷叫在线视频| 欧美老熟妇乱子伦牲交| 在线av久久热| 国产精品久久久久久精品古装| 欧美精品一区二区大全| 99久久综合免费| 成人午夜精彩视频在线观看| 女人精品久久久久毛片| 性色av一级| 亚洲欧美精品自产自拍| 亚洲精品久久午夜乱码| 在线观看免费视频网站a站| 免费在线观看黄色视频的| 老司机影院成人| 黄片小视频在线播放| 国产国语露脸激情在线看| 狂野欧美激情性bbbbbb| 久久鲁丝午夜福利片| 亚洲成国产人片在线观看| 性色av一级| videosex国产| 国产精品免费大片| 人妻 亚洲 视频| 视频区图区小说| 麻豆乱淫一区二区| 欧美激情极品国产一区二区三区| 国产男女内射视频| av天堂在线播放| 成人手机av| 久久久久网色| 国产精品av久久久久免费| 精品一区在线观看国产| 免费少妇av软件| 婷婷色麻豆天堂久久| 亚洲 欧美一区二区三区| av在线app专区| 国产成人精品久久久久久| 日日摸夜夜添夜夜爱| 久久国产精品男人的天堂亚洲| 肉色欧美久久久久久久蜜桃| 国产成人免费无遮挡视频| 国产av一区二区精品久久| 亚洲一区二区三区欧美精品| 制服人妻中文乱码| 丝袜喷水一区| 99热国产这里只有精品6| 国产黄色视频一区二区在线观看| 成年动漫av网址| 日韩大片免费观看网站| 欧美亚洲日本最大视频资源| 美女大奶头黄色视频| 国产成人精品久久二区二区免费| 欧美激情 高清一区二区三区| 亚洲国产欧美在线一区| 极品少妇高潮喷水抽搐| 国产国语露脸激情在线看| 日韩一区二区三区影片| 欧美在线一区亚洲| 天天躁日日躁夜夜躁夜夜| 亚洲成av片中文字幕在线观看| 国产精品成人在线| 热99国产精品久久久久久7| 国产在线免费精品| 婷婷色综合大香蕉| 亚洲成人免费电影在线观看 | 十分钟在线观看高清视频www| 飞空精品影院首页| 日韩大码丰满熟妇| 亚洲欧美一区二区三区国产| 久久久国产精品麻豆| 夫妻午夜视频| 男女午夜视频在线观看| 婷婷色综合大香蕉| 美女视频免费永久观看网站| 欧美精品人与动牲交sv欧美| 日本欧美国产在线视频| 午夜福利在线免费观看网站| 中文字幕精品免费在线观看视频| 久久久久久久久久久久大奶| 午夜两性在线视频| 99九九在线精品视频| av又黄又爽大尺度在线免费看| 国产真人三级小视频在线观看| 两人在一起打扑克的视频| 国产无遮挡羞羞视频在线观看| 国产免费福利视频在线观看| 黑丝袜美女国产一区| 成人三级做爰电影| 免费看av在线观看网站| 嫁个100分男人电影在线观看 | 波多野结衣av一区二区av| 视频区图区小说| 每晚都被弄得嗷嗷叫到高潮| 成人黄色视频免费在线看| 亚洲精品在线美女| 嫁个100分男人电影在线观看 | 日本色播在线视频| 麻豆乱淫一区二区| 99精国产麻豆久久婷婷| 久久 成人 亚洲| 如日韩欧美国产精品一区二区三区| 一二三四在线观看免费中文在| 国产伦人伦偷精品视频| 高清不卡的av网站| 国产伦理片在线播放av一区| 婷婷丁香在线五月| 黑人巨大精品欧美一区二区蜜桃| 麻豆av在线久日| 一本综合久久免费| 久久亚洲国产成人精品v| 色综合欧美亚洲国产小说| 天天躁夜夜躁狠狠躁躁| 免费人妻精品一区二区三区视频| 免费日韩欧美在线观看| 亚洲人成77777在线视频| xxxhd国产人妻xxx| 国产午夜精品一二区理论片| 国产成人欧美在线观看 | 久久女婷五月综合色啪小说| 男女国产视频网站| 日韩视频在线欧美| 亚洲av男天堂| 亚洲专区中文字幕在线| 国产精品偷伦视频观看了| 亚洲欧美中文字幕日韩二区| 亚洲国产欧美一区二区综合| 婷婷色av中文字幕| 女人精品久久久久毛片| 欧美变态另类bdsm刘玥| 久久99热这里只频精品6学生| 国产男女超爽视频在线观看| xxx大片免费视频| 在线亚洲精品国产二区图片欧美| 成人国语在线视频| 欧美变态另类bdsm刘玥| 日日爽夜夜爽网站| 久久精品国产亚洲av高清一级| 精品少妇一区二区三区视频日本电影| 欧美日韩福利视频一区二区| 免费少妇av软件| 成人影院久久| 亚洲成色77777| 久久久久网色| 波多野结衣一区麻豆| 日本五十路高清| 国产精品三级大全| www.999成人在线观看| 亚洲av片天天在线观看| 人成视频在线观看免费观看| 亚洲av综合色区一区| 日本vs欧美在线观看视频| av欧美777| 精品少妇久久久久久888优播| 国产av精品麻豆| 一边摸一边抽搐一进一出视频| 国产色视频综合| 女人高潮潮喷娇喘18禁视频| 国产片内射在线| 国产在线免费精品| 美女国产高潮福利片在线看| 超色免费av| 亚洲伊人色综图| 91麻豆av在线| 在线精品无人区一区二区三| 高清欧美精品videossex| 丝袜人妻中文字幕| 国产在线一区二区三区精| 久久久国产一区二区| 国产精品二区激情视频| 91老司机精品| 波野结衣二区三区在线| 一级a爱视频在线免费观看| 欧美日韩福利视频一区二区| 免费少妇av软件| 青青草视频在线视频观看| 久久国产精品大桥未久av| 高清欧美精品videossex| 51午夜福利影视在线观看| 国语对白做爰xxxⅹ性视频网站| 日韩一区二区三区影片| 欧美激情 高清一区二区三区| 久久午夜综合久久蜜桃| av欧美777| svipshipincom国产片| av视频免费观看在线观看| 又粗又硬又长又爽又黄的视频| 国产爽快片一区二区三区| 黄色片一级片一级黄色片| 18禁观看日本| bbb黄色大片| 午夜视频精品福利| 成人黄色视频免费在线看| 老汉色∧v一级毛片| 亚洲熟女精品中文字幕| 晚上一个人看的免费电影| 成人黄色视频免费在线看| 国产高清视频在线播放一区 | 欧美成狂野欧美在线观看| 超碰97精品在线观看| 两性夫妻黄色片| 欧美 日韩 精品 国产| 亚洲av成人精品一二三区| 91字幕亚洲| 极品人妻少妇av视频| 国产亚洲精品第一综合不卡| 亚洲免费av在线视频| 无遮挡黄片免费观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲av电影在线观看一区二区三区| 亚洲成人国产一区在线观看 | 国产在线免费精品| 国产成人精品久久二区二区免费| 免费观看人在逋| 热re99久久精品国产66热6| 成人国语在线视频| www.999成人在线观看| 色婷婷久久久亚洲欧美| 亚洲人成电影免费在线| 日韩欧美一区视频在线观看| 热re99久久国产66热| 久久精品成人免费网站| videos熟女内射| 黄片播放在线免费| 天堂中文最新版在线下载| 久久久久久免费高清国产稀缺| 亚洲精品乱久久久久久| 十八禁网站网址无遮挡| 亚洲国产精品成人久久小说| 亚洲欧洲国产日韩| 免费看不卡的av| 美国免费a级毛片| 91国产中文字幕| 波多野结衣av一区二区av| 人人妻人人添人人爽欧美一区卜| 国产福利在线免费观看视频| 亚洲 国产 在线| 久久久久精品国产欧美久久久 | 久久久久久久久久久久大奶| 亚洲图色成人| 久久影院123| 天堂中文最新版在线下载| 欧美成人精品欧美一级黄| 亚洲欧洲日产国产| 黑丝袜美女国产一区| 啦啦啦啦在线视频资源| 国产精品人妻久久久影院| 欧美激情极品国产一区二区三区| 一二三四在线观看免费中文在| 亚洲人成电影观看| 国产日韩欧美在线精品| 真人做人爱边吃奶动态| 欧美亚洲 丝袜 人妻 在线| 国产亚洲精品第一综合不卡| 夫妻午夜视频| 丝袜美腿诱惑在线| 亚洲国产欧美日韩在线播放| 一边亲一边摸免费视频| 90打野战视频偷拍视频| 日韩中文字幕欧美一区二区 | 国产成人一区二区在线| 成年人午夜在线观看视频| 日本wwww免费看| 国产成人一区二区在线| 亚洲一区中文字幕在线| 老司机午夜十八禁免费视频| 尾随美女入室| 亚洲午夜精品一区,二区,三区| 日韩制服骚丝袜av| 欧美老熟妇乱子伦牲交| 五月天丁香电影| 极品人妻少妇av视频| 91精品三级在线观看| 亚洲欧美一区二区三区国产| 国产97色在线日韩免费| 19禁男女啪啪无遮挡网站| 一级黄片播放器| 777米奇影视久久| 亚洲av电影在线进入| 亚洲av综合色区一区| 欧美国产精品一级二级三级| 中文字幕人妻丝袜制服| 成年av动漫网址| 两个人看的免费小视频| 欧美在线一区亚洲| 新久久久久国产一级毛片| 亚洲色图综合在线观看| 日韩大码丰满熟妇|