杜小妮,李曉丹,呂紅霞,趙麗萍
(西北師范大學(xué) 數(shù)學(xué)與統(tǒng)計學(xué)院,甘肅 蘭州 730070)
文中假設(shè)p為奇素數(shù),q=pm,m為正整數(shù).由有限域Fq到Fp的跡函數(shù)[9]Trm(·) 定義為:
Trm(α)=α+αp+…+αpm-1, ?α∈Fpm.
設(shè)F*q表示Fq中全體非零元素組成的集合,集合D={d1,d2,…,dn}?Fq,則Fq上長度為n的線性碼定義為
稱集合D為線性碼CD的定義集.通過選擇合適的定義集D可以構(gòu)造一些較低重量的線性碼[5].近年來,通過選擇不同的定義集得到了幾類較低重量的線性碼[10-18].研究表明,恰當(dāng)?shù)剡x擇定義集可以得到一些最佳碼[8,19-20].
若m≥2為正整數(shù),Li等[7]通過選取
構(gòu)造了p元線性碼
CD={c(a,b):a,b∈Fpm},
(1)
得到了幾類二重和三重的線性碼.其中
受文獻[7]的啟發(fā),本文選擇定義集
其中c∈F*p,l為正整數(shù)且l∈{1,2,pm/2+1},m≥2為正整數(shù).下面討論由該定義集構(gòu)造的幾類線性碼的重量分布.
首先給出指數(shù)和的一些結(jié)論以及證明主要結(jié)論需要用到的引理.
對任意的a∈Fq,Fq上的加法特征定義為
稱Fq上乘法群F*q的特征為Fq的乘法特征[9],定義為
其中g(shù)是F*q的一個生成元.補充定義λj(0)=0.稱乘法特征λ(q-1)/2為Fq的二次特征,用η來表示.
引理2[22-23]設(shè)λ為F*q上的一個N>2階乘法特征.假設(shè)存在最小正整數(shù)f使得pf≡-1(modN).若m=2ft,t為某個正整數(shù),則對1≤i≤N-1,有
引理3[9]設(shè)λ為Fq上階為N=gcd(n,q-1)≥2的一個乘法特征,則對任意的a∈F*q,有
引理4[9]若f(x)=a2x2+a1x+a0∈Fq[x],其中a2≠0,則
引理5[24]設(shè)m=2s(s為正整數(shù)),a∈F*ps,b∈Fpm,則
引理6[6,13]對每個c∈F*p,有
引理7對每個c∈F*p,設(shè)
Mc={b∈F*q:Trm(bps+1)=c},
則|Mc|=pm-1+pm/2-1.
證明由引理2和引理3可得
所以碼長n=p2m-1-1.
則碼字的重量
W(c(a,b))=n-N(a,b),
(4)
且有
其中,
表1 碼的重量分布
證明由(5)式可以得到
因而,依據(jù)(4)式可得到定理的結(jié)論. 】
表2 m為偶數(shù)時的重量分布
證明分以下4種情況來確定N(a,b)的值.
( i )若a=b=0,則由(5)式可得
由引理6可知該值出現(xiàn)的次數(shù)為
(iv)若a∈FqFp,b∈Fq或a=0,b∈F*q,則
顯然該值出現(xiàn)的次數(shù)為(q-p)q+q-1,即
pm(pm-p+1)-1.
由(4)式可得到碼的重量分布. 】
證明分以下3種情況來確定N(a,b)的值.
( i )若a=b=0,則
由引理6可知該值出現(xiàn)的次數(shù)為
由(4)式可定義
其對應(yīng)的重數(shù)分別為Aw1,Aw2,Aw3,根據(jù)MacWilliams方程[14]可得
解方程可得該碼的重量分布. 】
令m=2s(s為一個整數(shù)).與l=2的情形類似可知,若a?F*p則Ω3=0.若a∈F*p則由引理5有
表的重量分布
證明依據(jù)引理7,該定理的證明方法與定理2的類似,此處不再贅述. 】
根據(jù)文獻[6]的結(jié)論,文中構(gòu)造的線性碼可應(yīng)用于秘密共享方案.
參考文獻:
[1] YUAN Jin,DING Cun-sheng.Secret sharing schemes from three classes of linear codes[J].IEEETransactionsonInformationTheory,2005,52(1):206.
[2] DING Cun-sheng,WANG Xue-song.A coding theory construction of new systematic authentication codes[J].TheoreticalComputerScience,2005,330(1):81.
[3] CALDERBANK A R,GOETHALS J M.Three-weight codes and association schemes[J].PhilipsJournalofResearch,1984,39(4):143.
[4] KL?VE T.CodesforErrorDetection[M].Singapore:World Scientific,2007.
[5] DING Cun-sheng,LI Cheng-ju,LI Nian,et al.Three weight cyclic codes and their weight distributions[J].DiscreteMathematics,2016,339(2):415.
[6] DING Ke-lan,DING Cun-sheng.A class of two-weight and three-weight codes and their applications in secret sharing[J].IEEETransactionsonInformationTheory,2015,61(11):5835.
[7] LI Cheng-ju,YUE Qin,FU Fang-wei.A construction of several classes of two-weight and three-weight linear codes[J].ApplicableAlgebrainEngineeringCommunication&Computing,2017,28(1):11.
[8] XIANG Can,TANG Chun-ming,FENG Ke-qin.A class of linear codes with a few weights[J].Cryptography&Communications,2016,9(1):1.
[9] LIDL R,NIEDERREITER H.FiniteFields[M].Boston:Addison-Wesley Publishing Inc,1983:186.
[10] DING Cun-sheng.CodesfromDifferenceSets[M].Singapore:World Scientific,2014:356.
[11] DING Cun-sheng.Linear codes from some 2-designs[J].IEEETransactionsonInformationTheory,2015,61(6):3265.
[12] LI Fei,WANG Qiu-yan,LIN Dong-dai.Complete weight enumerators of a class of three-weight linear codes[J].JournalofAppliedMathematics&Computing,2017,55(1):733.
[13] LI Cheng-ju,YUE Qin,FU Fang-wei.Complete weight enumerators of some cyclic codes[J].Designs,CodesandCryptography,2016,80(2):295.
[14] LI Fei,WANG Qiu-yan,LIN Dong-dai.A class of three-weight and five-weight linear codes[J].DiscreteAppliedMathematics,https://doi.org/10.1016/j.dam.2016.11.005.
[15] LIU Li,XIE Xian-hong,LI Lan-qiang.A class of two-weight and three-weight linear codes and their duals[EB/OL].[2016-11-20].https://arxiv.org/abs/1611.06458v1.2016.
[16] WANG Qiu-yan,DING Ke-lan,LIN Dong-dai,et al.A kind of three-weight linear codes[J].CryptographyandCommunications,2017,9(3):315.
[17] YANG Shu-di,YAO Zheng-an.Complete weight enumerators of a family of three-weight linear codes[J].DesignsCodes&Cryptography,2017,82(3):663.
[18] YANG Shu-di,YAO Zheng-an,ZHAO Chang-an.A class of three-weight linear codes and their complete weight enumerators[J].JournalCryptographyandCommunications,2017,9(1):133.
[19] WANG Qiu-yan,DING Ke-lan,XUE Rui.Binary linear codes with two weights[J].IEEECommunicationsLetters,2015,19(7):1097.
[20] ZHOU Zheng-chun,DING Cun-sheng.A class of three-weight cyclic codes[J].FiniteFields&TheirApplications,2013,25(10):79.
[21] IRELAND K,ROSEN M.AClassicalIntroductiontoModernNumberTheory[M].Singapore:World Scientific,2003.
[22] BERNDT B C,EVANS R J,WILLIAMS K S.GaussandJacobiSums[M].Hoboken:Wiley,1998:75.
[23] DING Cun-sheng,YANG Jing.Hamming weights in irreducible cyclic codes [J].DiscreteMathematics,2013,313(4):434.
[24] COULTER R S.Further evaluations of Weil sums[J].ActaArithmetica,1998,86(4):217.