李成龍 劉向紅 吳也可
[摘要] 谷胱甘肽(GSH)廣泛存在于革蘭陰性菌和部分革蘭陽性菌中,是其中含量最豐富的含巰基小分子肽。部分細菌可在體內(nèi)直接合成GSH,也有部分細菌可從外界獲得GSH。GSH在細菌體內(nèi)參與代謝中的氧化還原反應(yīng),并通過酶促反應(yīng)維持體內(nèi)的平衡。而這種平衡在細菌面對生長過程中來自環(huán)境和自身代謝所造成的高氧、高滲透壓、藥物、金屬離子等各種變化時,能夠直接或間接的發(fā)揮抵抗作用。本文將就GSH在細菌中的合成、代謝平衡及主要的作用進行綜述。
[關(guān)鍵詞] 谷胱甘肽;細菌;穩(wěn)態(tài);抗氧化
[中圖分類號] R446 [文獻標識碼] A [文章編號] 1673-7210(2018)04(c)-0021-04
Research Progress of Glutathione in Bacteria
LI Chenglong1 LIU Xianghong1 WU Yeke2
1.School of Medicine, University of Electronic Science and Technology, Sichuan Province, Chengdu 610054, China; 2.School of Clinical Medicine, Chengdu University of of TCM, Sichuan Province, Chengdu 610072, China
[Abstract] Glutathione is a small molecule peptide that is one of the most abundant thiols present in gram-negative bacteria and most gram-positive bacteria. Some bacteria can synthesis glutathione directly, some may acquire glutathione form external environment. Bacteria encounter various stress conditions from the environment and their own metabolites, such as oxidative stress, osmotic stress and other stresses coming from chlorine compounds, metal ions and so on. Glutathione can protects the bacterial cells from these stress damage directly or indirectly. This article is to review the synthesis, metabolic balance and main roles of Glutathione in bacteria.
[Key words] Glutathione; Bacteria; Homeostasis; Antioxidant
谷胱甘肽(glutathione ,GSH)廣泛分布于多種生物體內(nèi)[1]。在細菌領(lǐng)域,主要存在于革蘭陰性菌和部分革蘭陽性菌中,包括藍藻細菌和變形菌門[2]。GSH是細菌體內(nèi)最主要的、含量最豐富的含巰基的小分子肽。1888年首次從酵母中分離出天然型GSH起[3],GSH的研究就沒有中斷。在1921年,Hopkins第一次將其作為化合物進行了分離,并命名為谷胱甘肽[4];1929年,GSH的三肽結(jié)構(gòu)被證實[5],這為進一步合成并研究GSH的生物作用打下了基礎(chǔ)。
GSH在細菌中的分布溶度通常較高,0.1~10 mmol/L不等,但它在細胞內(nèi)的總量分布卻并不均勻。通常情況下,大多數(shù)的GSH都分布于細胞質(zhì)中,含量大約占到了總量的90%[6]。GSH既能通過二硫鍵的形成來阻止蛋白質(zhì)的氧化,也能通過作為GPx的底物,抑制脂質(zhì)的過氧化,從而起到抗氧化的作用[7]。除了抗氧化作用,GSH在細菌細胞內(nèi)還起了諸多其他作用:例如抵抗?jié)B透壓[8]、對細胞內(nèi)鉀離子通道活性調(diào)控[9]、對毒性物質(zhì)的抵抗等[10]。本綜述將從GSH在細菌中的生物合成、細胞體內(nèi)含量的平衡及其在細菌中的主要作用三個方面進行概述。
1 GSH的合成
通常情況下,細菌能夠在體內(nèi)自發(fā)的合成GSH,以維持其含量。GSH合成過程可分為兩步:
(1)
(2)
GSH的合成過程由ATP水解提供能量,此過程中涉及到了兩種酶的催化:γ-谷氨酰半胱氨酸合成酶(γ-glutamate- cysteine ligase,GCS)及谷胱甘肽合酶(glutathione synthetase,GS)[11]。首先,一個谷氨酸分子(L-Glu)和一個半胱氨酸(L-Cys)分子通過GCS催化生成γ-谷氨酰半胱氨酸(γ-Glu-Cys)[12];之后后者與一個甘氨酸分子(Gly)在谷胱甘肽合酶的作用下,結(jié)合形成GSH[13]。通常來說,γ-谷氨酰半胱氨酸合成酶和谷胱甘肽合酶分別由gshA基因與gshB基因編碼形成[2];但研究發(fā)現(xiàn),在一些革蘭陽性菌,如腸球菌、鏈球菌、李斯特菌等中,雖然細菌缺少GshB基因,卻依然能夠產(chǎn)生大量的GSH,可能是因為細胞中的γ-谷氨酰半胱氨酸合成酶卻可以同時完成兩個反應(yīng)的催化作用,從而使得反應(yīng)能夠正常進行[14]。
2 GSH的代謝
GSH在細菌體內(nèi)的合成分為兩步進行。第一步反應(yīng):GCS催化生成γ-谷氨酰半胱氨酸。在其中,GCS的活性與細菌體內(nèi)GSH的含量構(gòu)成了一種反饋抑制,同時,細胞內(nèi)谷氨酸鹽的含量對半胱氨酸的濃度有限制作用。第二步反應(yīng):GS催化甘氨酸與γ-谷氨酰半胱氨酸結(jié)合形成GSH[15]。
正常情況下,GSH在細菌體內(nèi)濃度的維持,一方面來自于生物合成,一方面還有分解。在GSH中存在巰基,這使得它易于被氧化,例如兩個GSH中的巰基氧化形成二硫鍵,從而轉(zhuǎn)變成為GSSG,但這種氧化是可逆的。此外,目前的研究發(fā)現(xiàn),γ-谷氨酰轉(zhuǎn)肽酶(GGT)能夠裂解L-谷氨酸與L-半胱氨酸間的伽馬連接,使得分子分解,從而影響到體內(nèi)GSH的濃度[16]。
目前研究成果中,對于細菌中GSH含量維持的主要機制,依然沒有定論。例如,在大腸埃希菌中,GGT是一種周質(zhì)蛋白酶,當細胞質(zhì)內(nèi)的GSH流入細胞周質(zhì)時,在GGT的作用下被分解[17]。但沒有證據(jù)顯示,這個過程對維持細胞內(nèi)GSH的濃度有關(guān)鍵作用。事實上,細胞周質(zhì)中沒有確定有GSH的存在,也沒有發(fā)現(xiàn)GSH是否會出現(xiàn)在細胞周質(zhì)間隙中。此外,研究人員發(fā)現(xiàn),在缺少GGT的情況下,GSH的體內(nèi)含量依然會減少,而機制尚不清楚[18]。
3 GSH在細菌中作用
在氧化環(huán)境中,GSH能夠與其他含巰基蛋白質(zhì)形成二硫鍵,此二硫鍵能夠被還原,從而保護了其他蛋白質(zhì)的生物活性。同時,鏈端的巰基氧化還原電位極低,這使得它能夠優(yōu)先與體內(nèi)的活性氧自由基(reactive oxygen species,ROS)結(jié)合,從而保護細胞體內(nèi)的其他組織不受氧化[19]。除開這種抗氧化能力,GSH還具有抵抗?jié)B透壓、控制細胞內(nèi)的鉀離子通道活性及包括大多數(shù)氯化物在內(nèi)的毒性物質(zhì)的解毒功能[20]。
3.1 抗氧化
GSH在發(fā)生氧化應(yīng)激時,能夠通過在酶促作用下進行GSH與GSSG的相互轉(zhuǎn)換,或是通過GSH/GPx系統(tǒng)參與氧化還原反應(yīng)[11]。GSH/GPx系統(tǒng)的主要組成部分包括與GSH合成相關(guān)的兩種酶:GCS、GS,以及谷胱甘肽還原酶(GR)、谷胱甘肽過氧化物酶(GPx)和還原型輔酶Ⅱ(triphosphopyridine nucleotide,NADPH)[21]。這個系統(tǒng)能夠直接清除細胞內(nèi)多余的自由基。當細胞內(nèi)ROS過多,如生成少量H2O2時,GSH在GPx的作用下,把H2O2還原成H2O,其自身被氧化為GSSG,GSSG在GR作用下,接受H被還原成GSH,使體內(nèi)自由基的清除反應(yīng)能夠持續(xù)進行[22]。在一項研究中,研究人員萃取了乳酸乳球菌乳脂亞種進行了培育實驗;試驗中發(fā)現(xiàn)在具有充足氧氣條件下培養(yǎng)的細菌比無氧條件下培養(yǎng)的細菌GSH的積累量高了30%,而谷胱甘肽過氧化物酶(GPx)得活性高了5倍[23],這為GSH/GPx系統(tǒng)的抗氧化作用提供了直接證據(jù)。
3.2 抵抗?jié)B透壓
研究表明,GSH能夠調(diào)控細菌細胞內(nèi)鉀離子的輸運通道,這對于維持細胞內(nèi)滲透勢有重要作用。在大腸埃希菌中,鉀離子輸出通道的控制基因為KefB及KefC,它們受到GSH的抑制[24],當細胞內(nèi)缺少GSH時,鉀離子的流失速度將會加快,這表明GSH是鉀離子輸出通道的閘門[25],相同的結(jié)果也表現(xiàn)在其他革蘭陰性菌中。此外,在細胞質(zhì)中的GSH分子是帶負電荷的,當鉀離子大量積累時,GSH的積累能夠與鉀離子形成電荷對,從而維持細胞體內(nèi)的電荷平衡[26]。在高滲透壓環(huán)境下細胞內(nèi)還可能伴隨有氧化應(yīng)激的出現(xiàn),比如大腸埃希菌在高滲透壓的環(huán)境中將會減少SodA與SodB的表達,這將使得細胞體內(nèi)的氧活性自由基增多,此時GSH的積累將有助于維持氧化還原的平衡,間接的維持滲透壓濃度[27]。
3.3 抗毒性
GSH參與解毒過程的常見方式是通過酶促反應(yīng)與有害物質(zhì)的親電子基團發(fā)生巰基偶聯(lián),這種結(jié)合可以增加其分子的疏水性,這將使得反應(yīng)產(chǎn)物能夠較容易的穿越細胞膜,分解后排出體外,從而達到解毒的目的[28]。催化這種反應(yīng)進行的一類酶被稱為谷胱甘肽硫轉(zhuǎn)移酶(glutathione S-transferases,GSTs),它能催化GSH的巰基與一些親電子類物質(zhì)結(jié)合,這些物質(zhì)主要包括過氧化物、不飽和醛酮、烷基或芳香基化合物等。除了酶促反應(yīng)外,GSH也會與某些氯化物直接反應(yīng),并生產(chǎn)低毒性物質(zhì)排除體外,起到解毒的作用。在大腸埃希菌中,GSH能通過直接與次氯酸(HClO)或是氯化銨(NH4Cl)等氯化物直接反應(yīng),生成無害的物質(zhì)并排出體外,從而起到解毒的作用[29]。也有研究發(fā)現(xiàn),GSH對部分重金屬離子也有抵抗作用,細菌暴露于氯化汞(HgCl2)環(huán)境中時,若維持一定的抵抗作用,則其谷胱甘肽還原酶的活性的與GSH的合成速率均增長為正常值的2倍[30]。
綜上所述,本文圍繞GSH在細菌中的主要作用對近年來GSH在細菌中的研究進行了綜述,分別從抗氧化、抗?jié)B透壓和抗毒性出發(fā),概述了對GSH作用機制的研究。這些研究結(jié)果提供了許多有關(guān)GSH在細菌中所起主要作用的證據(jù),其現(xiàn)象幫助人們更好地認識了細菌及其內(nèi)GSH的代謝,也為研究者提供了更多利用應(yīng)激制取GSH的思路。
[參考文獻]
[1] Bathige SD,Umasuthan N,Godahewa GI,et al. Two variants of selenium-dependent glutathione peroxidase from the disk abalone Haliotis discus discus:Molecular characterization and immune responses to bacterial and viral stresses [J]. Fish Shellfish Immunol,2015,45(2):648-655.
[2] Narainsamy K,F(xiàn)arci S,Braun E,et al. Oxidative-stress detoxification and signalling in cyanobacteria: the crucial glutathione synthesis pathway supports the production of ergothioneine and ophthalmate [J]. Mol Microbiol,2016, 100(1):15-24.
[3] Gutierrez-Praena D,Pichardo S,Jos A,et al. Alterations observed in the endothelial HUVEC cell line exposed to pure Cylindrospermopsin [J]. Chemosphere,2012,89(9):1151-1160.
[4] Hopkinson RJ,Leung IK,Smart TJ,et al. Studies on the Glutathione-Dependent Formaldehyde-Activating Enzyme from Paracoccus denitrificans [J]. PLoS One,2015,10(12):e0145085.
[5] Kumar S,Kasturia N,Sharma A,et al. Redox-dependent stability of the gamma-glutamylcysteine synthetase enzyme of Escherichia coli:a novel means of redox regulation [J]. Biochem J,2013,449(3):783-794.
[6] Lim B,Pasternak M,Meyer AJ,et al. Restricting glutamylcysteine synthetase activity to the cytosol or glutathione biosynthesis to the plastid is sufficient for normal plant development and stress tolerance [J]. Plant Biol (Stuttg),2014,16(1):58-67.
[7] Yang Y,Wang W,Huang T,et al. Transgenesis of Tol2-mediated seamlessly constructed BAC mammary gland expression vectors in Mus musculus [J]. J Biotechnol,2016, 218(3):66-72.
[8] Xu Z,Xie J,Liu J,et al. Whole-genome resequencing of Bacillus cereus and expression of genes functioning in sodium chloride stress [J]. Microb Pathog,2017,104(6):248-253.
[9] Chauhan AK,Kang SC. Thymol disrupts the membrane integrity of Salmonella ser. typhimurium in vitro and recovers infected macrophages from oxidative stress in an ex vivo model [J]. Res Microbiol,2014,165(7):559-565.
[10] Krishna G,Gopalakrishnan G,Goel S. In vitro and in vivo genotoxicity assessment of the dopamine receptor antagonist molindone hydrochloride [J]. Environ Mol Mutagen,2016,57(4):288-298.
[11] Guzman-Guillen R,Prieto Ortega AI,Martin-Camean A,et al. Beneficial effects of vitamin E supplementation against the oxidative stress on Cylindrospermopsin-exposed tilapia(Oreochromis niloticus)[J]. Toxicon,2015,104(3):34-42.
[12] Stout J,De Vos D,Vergauwen B,et al. Glutathione biosynthesis in bacteria by bifunctional GshF is driven by a mod?鄄ular structure featuring a novel hybrid ATP-grasp fold [J]. J Mol Biol,2012,416(4):486-494.
[13] Kadiyala M,Ponnusankar S,Elango K. Calotropis gigantiea (L.) R. Br(Apocynaceae):a phytochemical and pharmacological review [J]. J Ethnopharmacol,2013,150(1):32-50.
[14] Lu D,Tang G,Wang D,et al. The Sinorhizobium meliloti LysR family transcriptional factor LsrB is involved in regulation of glutathione biosynthesis [J]. Acta Biochim Biophys Sin (Shanghai),2013,45(10)):882-888.
[15] Guzman-Guillen R,Prieto AI,Vazquez CM,et al. The pro?鄄tective role of l-carnitine against cylindrospermopsin-induced oxidative stress in tilapia (Oreochromis niloticus)[J]. Aquat Toxicol,2013,132(3):141-150.
[16] Lee EH,Kim HY,Hwang KY. The GSH- and GSSG-bound structures of glutaredoxin from Clostridium oremlandii [J]. Arch Biochem Biophys,2014,564(4):20-25.
[17] Zhang J,Quan C,Wang C,et al. Systematic manipulation of glutathione metabolism in Escherichia coli for improved glutathione production [J]. Microb Cell Fact,2016,15(4):31-38.
[18] van der Stel AX,van Mourik A,Laniewski P,et al. The Campylobacter jejuni RacRS two-component system activates the glutamate synthesis by directly upregulating gamma-glutamyltranspeptidase(GGT)[J]. Front Microbiol,2015,345(6):561-567.
[19] Chen F,Gao J,Wu D,et al. Clinical and pathologic features of a suspected selenium deficiency in captive plains zebras [J]. Biol Trace Elem Res,2017,176(1):114-119.
[20] Kirankumar B,Kulkarni GB,Sanjeevkumar S,et al. Influence of DMF-induced oxidative stress on membrane and periplasmic proteins in Paracoccus sp. SKG [J]. Appl Biochem Biotechnol,2014,173(5):1263-1273.
[21] Lu J,Holmgren A. The thioredoxin antioxidant system [J]. Free Radic Biol Med,2014,66(3):75-87.
[22] Wang D,Zhu F,Wang Q,et al. Disrupting ROS-protection mechanism allows hydrogen peroxide to accumulate and oxidize Sb(Ⅲ) to Sb(Ⅴ) in Pseudomonas stutzeri TS44 [J]. BMC Microbiol,2016,16(1):274-279.
[23] Fu RY,Bongers RS,van S,et al. Introducing glutathione biosynthetic capability into Lactococcus lactis subsp. cremoris NZ9000 improves the oxidative-stress resistance of the host [J]. Metab Eng,2006,8(6):662-671.
[24] Fujisawa M,Ito M,Krulwich TA. Three two-component transporters with channel-like properties have monovalent cation/proton antiport activity [J]. Proc Natl Acad Sci USA,2007,104(33):13289-13294.
[25] Healy J,Ekkerman S,Pliotas C,et al. Understanding the structural requirements for activators of the Kef bacterial potassium efflux system [J]. Biochemistry,2014,53(12):1982-1992.
[26] Iantomasi T,F(xiàn)avilli F,Vincenzini MT. Evidence of glutathione transporter in rat brain synaptosomal membrane vesicles [J]. Neurochem Int,1999,34(6):509-516.
[27] Dhar MS,Gupta V,Virdi JS. Detection,distribution and characterization of novel superoxide dismutases from Yersinia enterocolitica Biovar 1A [J]. PLoS One,2013,8(5):e63919.
[28] Carneiro M,Reis B,Azevedo J,et al. Glutathione Transferases responses induced by microcystin-lr in the gills and hepatopancreas of the clam venerupis philippinarum [J]. Toxins(Basel),2015,7(6):2096-2120.
[29] Lemke LS,Chura-Chambi RM,Rodrigues D,et al. Investigation on solubilization protocols in the refolding of the thioredoxin TsnC from Xylella fastidiosa by high hydrostatic pressure approach [J]. Protein Expr Purif,2015, 106(3):72-77.
[30] Zhang W,Yin K,Li B,et al. A glutathione S-transferase from Proteus mirabilis involved in heavy metal resistance and its potential application in removal of Hg2+ [J]. J Hazard Mater,2013,261(2):646-652.
(收稿日期:2017-12-26 本文編輯:蘇 暢)