• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      異重流發(fā)育條件、演化過(guò)程及沉積特征

      2018-06-22 07:38:20欒國(guó)強(qiáng)董春梅林承焰任麗華焦紅巖趙海燕彭先國(guó)中國(guó)石油大學(xué)華東地球科學(xué)與技術(shù)學(xué)院山東青島266580山東省油藏重點(diǎn)實(shí)驗(yàn)室山東青島266580中國(guó)石化勝利油田有限公司現(xiàn)河采油廠山東東營(yíng)257068
      石油與天然氣地質(zhì) 2018年3期
      關(guān)鍵詞:異重流泥質(zhì)沉積物

      欒國(guó)強(qiáng),董春梅,2,林承焰,2,任麗華,2,焦紅巖,趙海燕,彭先國(guó)[.中國(guó)石油大學(xué)(華東) 地球科學(xué)與技術(shù)學(xué)院,山東 青島 266580; 2.山東省油藏重點(diǎn)實(shí)驗(yàn)室,山東 青島 266580;.中國(guó)石化 勝利油田有限公司 現(xiàn)河采油廠,山東 東營(yíng) 257068]

      1 異重流研究歷史

      廣義的異重流指兩種密度相差不大、可以相混的流體,在條件適宜時(shí)因密度差異而產(chǎn)生的相對(duì)運(yùn)動(dòng)。在運(yùn)動(dòng)過(guò)程中不發(fā)生全局性紊動(dòng)、摻混。異重流分為雙層體系和多層體系,自然界中異重流現(xiàn)象非常廣泛,既包括水體中的分層潛流,也包括大氣中的冷暖空氣所形成的鋒面。但在水利工程和地質(zhì)學(xué)領(lǐng)域,異重流是指河流攜帶大量沉積物直接潛入蓄水盆地底部并繼續(xù)流動(dòng)的高密度流體[1-3]。

      1885年Forel首次報(bào)道了羅恩河注入日內(nèi)瓦湖時(shí)發(fā)生的異重流現(xiàn)象[4],20世紀(jì)30年代以后,異重流研究才真正受到重視。1935年美國(guó)科羅拉多河胡佛壩落成蓄水,當(dāng)年3月份,上游發(fā)生洪水,河流攜大量泥沙在胡佛大壩前沉入水底,不久后渾濁的泥水從大壩泄水孔流出,在此過(guò)程中水庫(kù)表面始終澄清[5]。這一現(xiàn)象讓人們意識(shí)到異重流可以攜帶大量泥沙沿水庫(kù)底部長(zhǎng)距離搬運(yùn)而不與蓄水體相混,這對(duì)于降低水庫(kù)淤積,延長(zhǎng)水庫(kù)壽命具有重要意義。1953年Bates首次提出異重流的概念,但在地質(zhì)領(lǐng)域,對(duì)于海洋環(huán)境中是否存在異重流及其對(duì)海相深水沉積的影響卻仍然存在巨大爭(zhēng)議。直到20世紀(jì)90年代,相關(guān)研究表明河流入海形成異重流的現(xiàn)象具有普遍性[2,6],異重流作為一種深水沉積物輸送機(jī)制逐漸受到地質(zhì)學(xué)家的重視[7-42](表1;圖1)。

      2 異重流形成條件與影響因素

      2.1 形成條件

      河流與蓄水體的密度差異是異重流發(fā)生的直接原因[2,6,24,43-48]。河流所攜沉積物量、水體鹽度及溫度等都是影響河水密度的重要因素[49]。河流入海形成異重流的沉積物臨界濃度為36~44 kg/m3,臨界濃度與海水溫度和含鹽度密切相關(guān),受氣候背景和所處緯度控制[2](表2)。洪峰到達(dá)前河流對(duì)蓄水體的稀釋作用[50]會(huì)降低河口處蓄水體密度,有利于異重流的發(fā)生。嚴(yán)格來(lái)講,異重流形成的臨界濃度是蓄水體密度(河口周?chē)?、流量、水深和坡降的函數(shù),河口處坡度大、水體深,形成異重流的沉積物臨界濃度也會(huì)相應(yīng)降低。在陸相淡水湖盆中,異重流形成的沉積物臨界濃度非常低(遠(yuǎn)低于1 kg/m3)[2,51]。如果河水與湖水溫度和鹽度相差不大,河水所攜帶沉積物濃度只要略大于千分之一,入湖后便可以形成異重流[52]。通常來(lái)說(shuō),洪泛期的中小型山區(qū)河流更易形成異重流,而大型河流由于流速低,流量大,入海過(guò)程中沉積物易發(fā)生稀釋和卸載,難以形成異重流[6]。Mulder等調(diào)研了全球147條河流的異重流發(fā)育情況,發(fā)現(xiàn)71%的河流會(huì)發(fā)育不同頻次的異重流[2],而實(shí)際上異重流的發(fā)生可能更加普遍。

      不穩(wěn)定的異輕流可以向異重流轉(zhuǎn)化,這是一種特殊而普遍的異重流形成機(jī)制[25,32,53]。溫暖的富含細(xì)粒沉積物的河水在河口形成異輕流,在沉積物自身擴(kuò)散和水體擾動(dòng)(波浪、潮汐等作用)影響下,異輕流與蓄水體界面之間的平衡被破壞,發(fā)生指對(duì)流現(xiàn)象(finger convection),富沉積物流體通過(guò)指對(duì)流到達(dá)盆地底部,形成異重流[53](圖2)。通過(guò)指對(duì)流機(jī)制產(chǎn)生的異重流,其主要沉積物為富含陸源有機(jī)質(zhì)的粘土[25]。如果異輕流長(zhǎng)時(shí)間保持穩(wěn)定,所含細(xì)粒沉積物會(huì)發(fā)生絮凝作用,以海洋雪的方式沉降[54]。

      2.2 主要影響因素

      異重流的形成受構(gòu)造和氣候影響,與源匯系統(tǒng)密切相關(guān)。

      2.2.1 源區(qū)特征

      一定的沉積物濃度是異重流形成的重要條件[48,55],如果源區(qū)能夠提供大量的碎屑物質(zhì),則有利于異重流的形成。源區(qū)構(gòu)造演化與地形起伏是碎屑沉積物形成的基礎(chǔ),母巖固結(jié)程度低,構(gòu)造高差大,易發(fā)生侵蝕搬運(yùn)作用。氣候是沉積物形成的重要條件,一般認(rèn)為半干旱氣候下,物源區(qū)植被稀少,容易發(fā)生水土流失[56],同時(shí)伴隨周期性洪水的發(fā)生,有利于河流攜帶大量懸浮物質(zhì)形成異重流[48,57-58]。

      2.2.2 河流流域

      河流是源匯系統(tǒng)內(nèi)沉積物輸送的重要通道[59],河流流域特征決定了河流類(lèi)型、流量及沉積物輸送能力[6,60]。河流從物源區(qū)攜帶的沉積物只有少部分能直接到達(dá)沉積盆地,其余大部分會(huì)在搬運(yùn)路途中發(fā)生暫時(shí)性沉積,形成心灘、邊灘、決口扇、山麓沖積扇及沖積平原等[61],大量暫時(shí)性沉積的發(fā)生會(huì)緩沖河流向盆地搬運(yùn)沉積物的效率。一般來(lái)說(shuō),流域面積越大,地形高差越低,河流輸送能力越差[6,62-65]。流域氣候條件也會(huì)對(duì)河流輸送能力產(chǎn)生重要影響,蒸發(fā)量大,導(dǎo)致河流流量降低,沉積物在河流區(qū)域大量攜載,不利于異重流發(fā)生。因此,相對(duì)于大型河流,中小型的山間河流因?yàn)榱饔蛎娣e小,高程大,蒸發(fā)量低,易于形成異重流[6]。

      2.2.3 匯水盆地

      蓄水體鹽度、水深、溫度以及河口坡降等都是影響河流潛入的重要因素,盆地水體鹽度低、溫暖、有一定水深和較大的河口坡降,會(huì)降低異重流形成的沉積物臨界濃度。異重流發(fā)生還與海/湖平面高低有密切關(guān)系[26,48,66-73],在狹窄大陸架條件下,低水位體系域時(shí),河流可直接進(jìn)入大陸坡峽谷,有利于異重流的形成;而在寬闊大陸架地帶,低水位體系域時(shí),河流流域面積增大,中小型河流發(fā)生合并,形成大河,更利于三角洲和滑塌型重力流的發(fā)生。

      表1 異重流沉積研究實(shí)例Table 1 Case study of hyperpycnal flow deposition

      圖1 異重流沉積研究實(shí)例全球分布示意圖Fig.1 Global distribution of case study of hyperpycnal flow deposition

      表2 不同氣候環(huán)境下海水溫度、鹽度、密度及對(duì)應(yīng)的河流沉積物臨界濃度(引自文獻(xiàn)[2])Table 2 Temperature,salinity and density of seawater in different climates,and the correspondingcritical concentration of river sediments(cited from reference [2])

      3 異重流演化過(guò)程及沉積特征

      3.1 演化過(guò)程

      在洪水到達(dá)之前,由于河水中所攜帶沉積物濃度低,河水密度低于蓄水體密度,在河口處粗碎屑物質(zhì)卸載,形成三角洲河口沙壩,河水緩慢向前漂浮在蓄水體表面,形成異輕流(圖3a)。隨著洪水發(fā)育,河流攜帶沉積物濃度越來(lái)越大,當(dāng)河水濃度與蓄水體濃度相等時(shí),河水與海水整體混合,形成等密度流(圖3b)。在洪水作用下,河流流速加快,所攜帶沉積物濃度增加,河水密度大于蓄水體密度,達(dá)到潛入臨界條件,河流直接潛入水底,形成向盆地深處運(yùn)移的異重流(圖3c)。異重流的發(fā)生會(huì)帶動(dòng)周?chē)w的運(yùn)動(dòng),形成局部水循環(huán),倒吸先前漂浮在水面的異輕流,大量水體表面漂浮物在潛入點(diǎn)處聚集,形成分明的清渾交界面(圖4a)。

      圖2 尼羅河河口異輕流-異重流轉(zhuǎn)化作用(據(jù)文獻(xiàn)[25]修改)Fig.2 Conversion from hypopycnal flow to hyperpycnal flow at the estuary of Nile River(modified from reference [25])

      在海洋和鹽湖環(huán)境中,如果異重流頭部速度過(guò)低,其所攜帶沉積物的濃度小,局部密度低于周?chē)w密度,會(huì)發(fā)生浮力反轉(zhuǎn),形成上浮相(圖3,圖4),上浮相開(kāi)始產(chǎn)生的位置為上浮點(diǎn),上浮點(diǎn)位置隨異重流頭部運(yùn)動(dòng)發(fā)生遷移,在異重流增強(qiáng)期,上浮點(diǎn)隨異重流向盆運(yùn)動(dòng),在異重流衰退期,上浮點(diǎn)隨異重流向岸運(yùn)動(dòng)(圖3c—f)。上浮點(diǎn)的運(yùn)移方式有連續(xù)運(yùn)移和幕式運(yùn)移,這取決于異重流能量演化特征。上浮相與異重流所攜帶的沉積物類(lèi)型和流速有密切關(guān)系,以粘土為主的異重流不易產(chǎn)生上浮相[74]。異重流衰退末期完全上浮,回歸等密度流和異輕流(圖3g,h)。

      3.2 主要巖相類(lèi)型

      異重流存在3種沉積物搬運(yùn)方式——底床載荷、懸浮載荷和上浮載荷(圖5)。其中底床載荷沉積物主要以滾動(dòng)和跳躍方式搬運(yùn);懸浮載荷是異重流主要沉積物運(yùn)載方式,沉積物以懸浮狀態(tài)發(fā)生搬運(yùn);上浮載荷是指異重流末端沉積物大量卸載,異重流密度低于環(huán)境水體密度后,沉積物發(fā)生上浮擴(kuò)散的一種搬運(yùn)方式,主要發(fā)生在海相和鹽湖環(huán)境中。

      異重流沉積的巖相類(lèi)型與沉積物負(fù)載方式密切相關(guān)[75-77],底床載荷主要沉積細(xì)礫巖與礫質(zhì)砂巖,常見(jiàn)的沉積構(gòu)造有塊狀層理、疊瓦狀構(gòu)造、低角度交錯(cuò)層理、平行層理等。懸浮載荷主要沉積細(xì)砂巖、粉砂巖,典型的沉積構(gòu)造有平行層理、爬升沙紋層理、波狀層理等。沉積物重新聚集和上浮部分主要沉積水平層理泥巖和粉砂質(zhì)泥巖,層面富含有機(jī)質(zhì)和異地搬運(yùn)的植物碎屑[78](圖5)。異重流由近源到遠(yuǎn)源過(guò)程中,能量虧損,流速降低,底床載荷、懸浮載荷和上浮載荷依次卸載形成特有的沉積序列。

      3.3 沉積序列

      單期異重巖沉積過(guò)程與異重流能量演化過(guò)程密切相關(guān),因此異重巖垂向沉積序列記錄了異重流能量增強(qiáng)和減弱兩個(gè)演化階段[24](圖3,圖6,圖7)。在洪水發(fā)育初期,異重流能量不斷增強(qiáng),沉積物具有反序特征,并依次發(fā)育爬升波紋層理、平行層理和低角度交錯(cuò)層理等沉積構(gòu)造;洪峰過(guò)后,隨著洪水能量衰減,異重流所攜帶沉積物由粗到細(xì)依次卸載,沉積物具有正序特征,沉積構(gòu)造與異重流能量增強(qiáng)階段相反。這種反映洪水能量增強(qiáng)的反序沉積單元(Ha)和反映洪水能量減弱的正序沉積單元(Hb)所組成的二元結(jié)構(gòu)是異重巖典型沉積序列(圖6)[9,24,33,74,79-80]。異重流除了經(jīng)歷增強(qiáng)和減弱兩個(gè)大的變化階段外,同一位置異重流能量會(huì)有多次波動(dòng)(圖6),這一特點(diǎn)體現(xiàn)為異重流流動(dòng)過(guò)程的脈動(dòng)性。

      洪峰活動(dòng)期間,如果異重流能量未達(dá)到對(duì)下伏沉積物造成侵蝕的臨界條件,Ha與Hb之間連續(xù)接觸,沉積物最大粒度代表的接觸界面響應(yīng)于洪峰(圖6Ⅲ,圖7Ⅲ);如果洪峰期間異重流能量超過(guò)對(duì)下伏沉積物造成侵蝕的臨界條件,異重流能量增強(qiáng)階段形成的沉積物會(huì)被部分侵蝕,洪峰過(guò)后隨異重流能量減弱,沉積物繼續(xù)在侵蝕面之上沉積,Ha與Hb侵蝕接觸(圖6Ⅱ,圖7Ⅱ);當(dāng)洪峰能量足夠大,持續(xù)時(shí)間足夠長(zhǎng),異重流能量增強(qiáng)階段形成的反序單元(Ha)在洪峰期會(huì)被完全侵蝕,洪峰過(guò)后隨異重流能量降低,沉積物卸載,僅保存正序單元(Hb)(圖6Ⅰ,圖7Ⅰ)。實(shí)際上由于河流注入量和所攜帶沉積物濃度的變化,異重流存在多個(gè)能量波動(dòng)過(guò)程[41],導(dǎo)致單期異重巖沉積序列更加復(fù)雜。異重流不僅有時(shí)間上的波動(dòng)性,還有空間上的遲滯性。離河口越遠(yuǎn),異重流速度越低,一期洪峰總是先到達(dá)近端,一段時(shí)間之后才能傳播到遠(yuǎn)端(圖6),導(dǎo)致同一能量波動(dòng)在不同位置異重巖中的時(shí)間響應(yīng)不同,同一期異重流在不同位置形成的沉積序列不同(圖7)。

      圖3 異重流演化過(guò)程[74] Fig.3 Evolution of hyperpycnal flow[74] a.洪水初期,異輕流發(fā)育;b.隨洪水能量增強(qiáng),河流攜帶沉積物濃度達(dá)到臨界濃度,等密度流形成;c.隨洪水能量增強(qiáng),異重流形成并加速向深水流動(dòng);d.洪峰到達(dá),異重流能量達(dá)到最強(qiáng);e.洪峰之后,異重流能量開(kāi)始衰減;f.異重流能量進(jìn)一步衰減;g.異重流衰減為等密度流;h.洪水過(guò)后,等密度流恢復(fù)為異輕流

      圖4 紅海阿卡巴灣異重流[28]Fig.4 Hyperpycnal flows in the Gulf of Aqaba,Red Sea[28]a.異重潛入點(diǎn)處清渾交界;b,c.異重流表面上浮相

      圖5 異重巖主要巖相類(lèi)型[74]Fig.5 Major lithofacies of hyperpycnites[74]

      異重流近端洪峰期能量強(qiáng),對(duì)下伏沉積物侵蝕強(qiáng)烈,以正序水道充填沉積為主;中部洪峰期異重流能量中等,形成侵蝕接觸的Ha-Hb二元結(jié)構(gòu),侵蝕面附近富含泥礫。遠(yuǎn)端洪峰期異重流能量低,形成連續(xù)接觸的Ha-Hb二元結(jié)構(gòu)(圖6,圖7)。

      圖6 異重流沉積演化過(guò)程(據(jù)文獻(xiàn)[9]修改)Fig.6 Depositional evolution of hyperpycnal flows (modified from reference [9])

      圖7 異重流沉積序列(圖中Ⅰ,Ⅱ,Ⅲ位置與圖6中Ⅰ,Ⅱ,Ⅲ位置相對(duì)應(yīng))Fig.7 Sedimentary sequence of hyperpycnal flows (location Ⅰ,Ⅱand Ⅲ are also the location Ⅰ,Ⅱand Ⅲ in Fig.6)

      3.4 沉積模式

      河流攜帶沉積物直接入水所形成的異重流沉積與盆內(nèi)滑塌型濁流存在差異。本文在總結(jié)阿根廷內(nèi)烏肯盆地、美國(guó)阿巴拉契亞盆地、中國(guó)的松遼盆地和鄂爾多斯盆地等古代異重流沉積的基礎(chǔ)上,結(jié)合地中海現(xiàn)代深水水道發(fā)育特征,建立了由溝道充填沉積-天然堤-溝道側(cè)緣沉積-前緣朵葉體組成的異重流沉積的理想模式(圖8)。異重流沉積近端,由于能量較強(qiáng),侵蝕作用顯著,溝道陡深,由近端向遠(yuǎn)端逐漸變寬緩,溝道底部充填底負(fù)載相的細(xì)礫巖和礫質(zhì)砂巖,向上依次為懸浮相細(xì)砂巖、粉砂巖和上浮相泥巖,具有顯著的正序特征。兩側(cè)天然堤主要由懸浮相的細(xì)砂巖、粉砂巖和上浮相泥質(zhì)粉砂巖、泥巖組成,由溝道向兩側(cè)粒度減小,泥質(zhì)含量增加,逐漸過(guò)渡到溝道側(cè)緣沉積。溝道側(cè)緣沉積主要由上浮相的泥質(zhì)粉砂巖、粉砂質(zhì)泥巖和泥巖組成,常見(jiàn)大量植物碎屑和紅色層理。在異重流沉積前緣末端,由于沒(méi)有溝道約束,沉積物大量溢出,形成以懸浮相和上浮相為主的前緣朵葉體,該部分沉積物與天然堤和側(cè)緣沉積相似,具有典型的Ha-Hb二元結(jié)構(gòu)。

      4 討論

      4.1 異重流與經(jīng)典濁流的區(qū)別

      沉積物重力流包括盆內(nèi)滑塌型重力流和盆外洪水型異重流[81-82],兩類(lèi)重力流在成因機(jī)制、流體動(dòng)力學(xué)過(guò)程及沉積特征等方面都存在差異性,進(jìn)一步造成油氣儲(chǔ)層分布的不同[21,82]。同時(shí),由于傳統(tǒng)的涌浪型濁流與異重流存在相似性,致使在以往研究中有大量異重流沉積被解釋為經(jīng)典濁流沉積[9]。因此認(rèn)識(shí)傳統(tǒng)濁流沉積與異重流沉積的區(qū)別與聯(lián)系,對(duì)于建立和完善深水重力流沉積模式具有重要意義。

      圖8 異重流沉積模式Fig.8 Depositional model of hyperpycnal flows

      根據(jù)Ha-Hb二元結(jié)構(gòu)、內(nèi)部侵蝕突變界面、富含陸源植物碎屑等特征可以從巖心和露頭對(duì)異重流和經(jīng)典濁流沉積進(jìn)行初步識(shí)別,但更多的識(shí)別標(biāo)志仍需要進(jìn)一步發(fā)掘,兩種不同沉積的地球物理差異性仍然有待研究(表3)。

      在實(shí)際研究中,三角洲地帶往往存在三角洲-異重流-盆內(nèi)重力流綜合沉積作用(圖9)[83]。洪水期間異重流的發(fā)生可以作為觸發(fā)機(jī)制,造成斜坡失穩(wěn),產(chǎn)生盆內(nèi)重力流,導(dǎo)致多種重力流事件同時(shí)發(fā)生[20,84];進(jìn)積型三角洲帶來(lái)的沉積物大量堆積,也可以為盆內(nèi)重力流提供物質(zhì)基礎(chǔ),導(dǎo)致盆外和盆內(nèi)重力流交替發(fā)生。盆內(nèi)和盆外重力流的混合發(fā)育以及復(fù)雜的流體轉(zhuǎn)化過(guò)程,增加了重力流研究的挑戰(zhàn)性。

      4.2 異重流與細(xì)粒沉積

      異重流對(duì)深水細(xì)粒沉積有重要影響。細(xì)粒沉積物形成于弱水動(dòng)力條件一直是沉積學(xué)界的共識(shí),然而近年來(lái)沉積學(xué)家們通過(guò)大量的實(shí)際觀察和實(shí)驗(yàn)研究逐漸認(rèn)識(shí)到,在較強(qiáng)水動(dòng)力條件下也可以沉積細(xì)粒物質(zhì)[85-89]。異重流是細(xì)粒沉積物重要的運(yùn)載方式之一[48,74,81,90],異重流中的懸浮相和上浮相都以細(xì)粒沉積物為主,泥質(zhì)異重流和通過(guò)指對(duì)流方式形成的異重流所攜沉積物以粘土為主,異重流可以攜帶大量陸源細(xì)粒沉積物直接進(jìn)入深水形成細(xì)粒沉積,對(duì)正常深水環(huán)境產(chǎn)生重要影響。

      洪水期間,泥質(zhì)異重流從三角洲前緣溢出,可在平緩的地形條件下將大量陸源細(xì)粒沉積物輸送上百千米,在近海大陸架形成大規(guī)模泥質(zhì)沉積。這種成因的細(xì)粒沉積巖在淺海陸架地區(qū)具有普遍性,被稱(chēng)為泥質(zhì)前三角洲異重巖[29]。泥質(zhì)前三角洲異重巖通常由粉砂巖和泥巖組成,單層厚度為厘米尺度,下部發(fā)育侵蝕面。單層內(nèi)部主要由3部分組成,下部為發(fā)育脈動(dòng)式牽引流特征的泥質(zhì)粉砂巖或粉砂質(zhì)泥巖,中間為無(wú)明顯宏觀特征的泥巖,最上部為發(fā)育大量生物變形構(gòu)造的泥巖[29](圖10)。單層的沉積過(guò)程大致可分為3個(gè)階段,首先是過(guò)路侵蝕階段,形成下部的侵蝕界面,之后在異重流能量虧損階段,開(kāi)始沉積形成下部的泥質(zhì)粉砂巖、粉砂質(zhì)泥巖(推移質(zhì))和中間的泥巖(懸浮質(zhì)),最后形成上部的暗色泥巖并發(fā)育生物擾動(dòng)(圖10)。

      表3 異重流與經(jīng)典濁流沉積差異對(duì)比Table 3 Similarities and differences between typical turbidites and hyperpycnal flows

      圖9 三角洲-異重流-滑塌重力流綜合沉積模式Fig.9 Composite depositional model of delta,hyperpycnal flow,and slumping gravity flow

      由于異重流能量的波動(dòng)性,泥質(zhì)前三角洲異重巖在單層系和層系組級(jí)別發(fā)育正粒序和反粒序,但在幾十到上百米的準(zhǔn)層序級(jí)別具有向上變粗變厚的反序特征[32]。

      異輕流、層間流、滑塌型重力流都是深水細(xì)粒沉積物的重要供給方式,但異重流特殊性在于將河水和陸源沉積物直接輸送到盆地底部,大量陸源物質(zhì)的加入,會(huì)改變深層水體含氧量、含鹽度等物理化學(xué)性質(zhì),從而對(duì)原地有機(jī)質(zhì)的保存產(chǎn)生影響,同時(shí)形成大量陸源有機(jī)質(zhì)沉積[32,79,91]。

      4.3 中國(guó)陸相湖盆異重流沉積研究

      相比于海相環(huán)境,陸相湖盆由于水體鹽度低、物源近、以中小型河流為主等特點(diǎn),更容易發(fā)生異重流。楊仁超等(2017)從構(gòu)造和氣候角度,對(duì)鄂爾多斯盆地異重流沉積特征開(kāi)展研究,并提出了異重巖測(cè)井識(shí)別標(biāo)志[21]。馮志強(qiáng)等(2010)發(fā)現(xiàn)松遼盆地嫩江組發(fā)育大規(guī)模湖底水道系統(tǒng),起源于杏樹(shù)崗三角洲,在平緩的湖底延伸70 km,最后成扇體撒開(kāi)(圖11),巖心中發(fā)育植物葉片、平行層理和交錯(cuò)層理[92],綜合分析這些特征,可初步判斷為異重流沉積。我國(guó)陸相湖盆普遍發(fā)育的洪水型湖底扇,其形成機(jī)制及沉積特征都與底負(fù)載型異重流類(lèi)似。渤海灣盆地濟(jì)陽(yáng)坳陷東營(yíng)三角洲在沙三中亞段發(fā)生大規(guī)模進(jìn)積,同時(shí)形成了一系列滑塌濁積體,是巖性油氣藏勘探重點(diǎn)區(qū)塊[93-94],但巖心觀察發(fā)現(xiàn),該地區(qū)存在大規(guī)模異重流沉積過(guò)程(圖12),有效區(qū)分滑塌濁積和異重流沉積,對(duì)于進(jìn)一步推動(dòng)該地區(qū)的勘探工作有重要意義。

      圖10 紐約中部中泥盆世杰納西奧組細(xì)粒沉積巖異重流沉積模式及理想巖相特征[29] Fig.10 Depositional model and idealized lithofacies features of hyperpycnal flows with fine-grained sedimentary rocks in the Middle Denovian Genesee Formation,central New York[29]a. Northern Appalachian盆地泥盆世素描圖,發(fā)生異重流沉積;b.圖a中沿A—B剖面圖,異重流發(fā)育底負(fù)載、懸浮負(fù)載和上浮負(fù)載;c.理想泥質(zhì)異重流巖相序列素描圖

      圖11 松遼盆地嫩江組陸相湖盆湖底水道體系(據(jù)文獻(xiàn)[92]修改)Fig.11 Bottom channel system of a continental lacustrine basin in the Neijiang Formation,Songliao Basin(modified from reference [92])

      圖12 東營(yíng)凹陷沙三中亞段異重流沉積構(gòu)造Fig.12 Sedimentary structure of hyperpycnal flows in the middle Es3,Dongying saga.上攀層理,濱424井,埋深2 496.1 m;b.逆正粒序,局部炭質(zhì)碎屑成層富集,發(fā)育火焰狀構(gòu)造,說(shuō)明上部沉積時(shí)下部泥質(zhì)富含水,為同一期異重流能量波動(dòng)成因,牛116井,埋深3 102.1 m;c.層面富集植物碎片,河155井,埋深2 979.49 m;d.逆正粒序泥質(zhì)粉 砂巖,發(fā)育紅色層理,河155井,埋深3 002.4 m

      5 結(jié)論

      1) 異重流作為一種深水沉積物輸送機(jī)制,其發(fā)育具有普遍性。對(duì)異重流的成因機(jī)制、演化過(guò)程及沉積特征開(kāi)展研究有助于加深對(duì)深水重力流沉積的理解。有效區(qū)分異重流與盆內(nèi)滑塌型濁流,建立異重流沉積巖心-測(cè)井-地震識(shí)別標(biāo)志,完善異重流沉積模式,是異重流研究的當(dāng)務(wù)之急。

      2) 異重流能夠沿相對(duì)平緩地形將陸源沉積物輸送上百公里,泥質(zhì)異重流對(duì)于盆地細(xì)粒沉積具有重要影響,異重流研究對(duì)于進(jìn)一步拓展隱蔽油氣藏勘探范圍,指導(dǎo)非常規(guī)油氣勘探具有重要意義。

      3) 中國(guó)陸相湖盆異重流沉積研究處于起步階段,將異重流沉積體系與現(xiàn)有陸相湖盆沉積體系融合,建立陸相湖盆異重流沉積模式,必將進(jìn)一步推動(dòng)中國(guó)湖相油氣勘探進(jìn)程。

      參 考 文 獻(xiàn)

      [1] Bates C C.Rational theory of delta formation[J].AAPG Bulletin,1953,37(9):2119-2162.

      [2] Mulder T,Syvitski J P M.Turbidity currents generated at river mouths during exceptional discharges to the world oceans[J].The Journal of Geology,1995,103(3):285-299.

      [3] Mulder T,Syvitski J P M.Climatic and morphologic relationships of rivers:implications of sea-level fluctuations on river loads[J].The Journal of Geology,1996,104(5):509-523.

      [4] Forel F A.Les ravins sous-lacustres des fleuves glaciaires[M].Paris:Gauthier-Villars,1885.

      [5] Grover N C,Howard C L.The passage of turbid water through lake mead[J].Transactions of the American Society of Civil Engineers,1938,103(1):720-781.

      [6] Milliman J D,Syvitski J P M.Geomorphic/tectonic control of sediment discharge to the ocean:the importance of small mountainous rivers[J].The Journal of Geology,1992,100(5):525-544.

      [7] Buatois L A,Saccavino L L,Zavala C.Ichnologic signatures of hyperpycnal flow deposits in Cretaceous river-dominated deltas,Austral Basin,southern Argentina[M]∥Slatt R M,Zavala C.Sediment transfer from shelf to deep water-Revisiting the delivery system.Tulsa:AAPG,2011:153-170.

      [8] Zavala C,Azúa G,Freije R H,et al.Grupo Curamalal(Paleozoico inferior),Cuenca paleozoica de Ventania,provincia de Buenos Aires,Argentina[J].Revista de la Asociación Geológica Argentina,2000,55(3):165-178.

      [9] Zavala C.Ancient lacustrine hyperpycnites:A depositional model from a case study in the Rayoso Formation(Cretaceous)of West-Central Argentina[J].Journal of Sedimentary Research,2006,76(1-2):41-59.

      [10] Zavala C,González R.Estratigrafia del Grupo Cuyo(Jurásico inferior-medio)en la Sierra de la Vaca Muerta,cuenca Neuquina[J].Boletín de Informaciones Petroleras,2001,65:40-54.

      [11] Zavala C.Tracking sea bed topography in the Jurassic:the Lotena Group in the Sierra de la Vaca Muerta(Neuquén Basin,Argentina)[J].Geologica Acta,2005,3(2):107-118.

      [12] Zavala C.Nuevos avances en la sedimentología y estratigrafía secuencial de la Formación Mulichinco en la Cuenca Neuquina[J].Boletín de Informaciones Petroleras,2000,63:40-54.

      [13] Gamero H,Zavala C,Contreras C.A reinterpretation of the Misoa facies types:Implications of a new depositional model,Maracaibo Basin,Venezuela[C]∥2005 AAPG International Conference and Exhibition:Evolving stratigraphic techniques and interpretation III.Paris:AAPG,2005.

      [14] Guzmán O,Campos C.The Pampatar Formation(Margarita Island,Venezuela):A result of gravity flows in deep marine water[C]∥AAPG Hedberg Conference:Sediment transfer from shelf to deepwater-Revisiting the delivery mechanisms.Argentina:AAPG,2008.

      [15] Zavala C,Marcano J,Carvajal J.Proximity and laterality indexes:a new tool for the analysis of ancient hyperpycnal deposits in the subsurface[C]∥GSTT 4th Geological Conference.Trinidad and Tobago:GSTT,2007.

      [16] Gamero H,Reader J,Izatt C,et al.Herrera sandstones in the Southern Basin Area,Trinidad:Evidence of hyperpycnites deposited away from ancient Oficina delta systems in eastern Venezuela[C]∥2007 AAPG Annual Meeting Abstracts volume.California:AAPG,2007:51.

      [17] Zavala C.Stratigraphy and sedimentary history of the Plio-Pleistocene Sant’Arcangelo basin,Southern Apennines,Italy[J].Rivista Italiana Di Paleontologia E Stratigrafia,2000,106(3):399-416.

      [18] Zavala C,Valiente L B,Vallez Y.The origin of lofting rhythmites.Lessons from thin sections[C]∥AAPG Hedberg Conference:Sediment transfer from shelf to deepwater-Revisiting the delivery mechanisms.Argentina:AAPG,2008.

      [19] Gamero H,Lewis N,Welsh R,et al.Evidences of a shelfal hyperpycnal deposition in the Pliocene sandstones in the Oilbird field,SE Coast,Trinidad:Impact on reservoir distribution and field redevelopment[C]∥AAPG Hedberg Conference:Sediment transfer from shelf to deepwater-Revisiting the delivery mechanisms.Argentina:AAPG,2008.

      [20] 楊仁超,金之鈞,孫冬勝,等.鄂爾多斯晚三疊世湖盆異重流沉積新發(fā)現(xiàn)[J].沉積學(xué)報(bào),2015,33(1):10-20.

      Yang Renchao,Jin Zhijun,Sun Dongsheng,et al.Discovery of hyperpycnal flow deposits in the Late Triassic Lacustrine Ordos Basin[J].Acta Sedimentologica Sinica,2015,33(1):10-20.

      [21] Yang R,Jin Z,Van Loon A J,et al.Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin,central China:Implications for unconventional petroleum development[J].AAPG Bulletin,2017,101(1):95-117.

      [22] Yang T,Cao Y,Wang Y.A new discovery of the early cretaceous supercritical hyperpycnal flow deposits on Lingshan Island,East China[J].Acta Geologica Sinica(English Edition),2017,91(2):749-750.

      [23] Migeon S,Savoye B,Faugeres J C.Quaternary development of migrating sediment waves in the Var deep-sea fan:distribution,growth pattern,and implication for levee evolution[J].Sedimentary Geology,2000,133(3-4):265-293.

      [24] Mulder T,Migeon S,Savoye B,et al.Inversely graded turbidite sequences in the deep Mediterranean:a record of deposits from flood-generated turbidity currents?[J].Geo-Marine Letters,2001,21(2):86-93.

      [25] Ducassou E,Mulder T,Migeon S.Nile floods recorded in deep Mediterranean sediments[J].Quaternary Research,2008,70(3):382-391.

      [26] Plink-Bj?rklund P,Steel R J.Initiation of turbidity currents:outcrop evidence for Eocene hyperpycnal flow turbidites[J].Sedimentary Geology,2004,165(1):29-52.

      [27] Girard F,Ghienne J F,Rubino J L.Occurrence of hyperpycnal flows and hybrid event beds related to glacial outburst events in a Late Ordovician Proglacial Delta(Murzuq Basin,SW Libya)[J].Journal of Sedimentary Research,2012,82(9):688-708.

      [28] Katz T,Ginat H,Eyal G,et al.Desert flash floods form hyperpycnal flows in the coral-rich Gulf of Aqaba,Red Sea[J].Earth & Planetary Science Letters,2015,417:87-98.

      [29] Wilson R D,Schieber J.Muddy prodeltaic hyperpycnites in the Lower Genesee Group of Central New York,USA:Implications for mud transport in Epicontinental Seas[J].Journal of Sedimentary Research,2014,84(10):866-874.

      [30] Lash G G.Hyperpycnal transport of carbonaceous sediment-Example from the Upper Devonian Rhinestreet Shale,western New York,U S A [J].Palaeogeography Palaeoclimatology Palaeoecology,2016,459:29-43.

      [31] Varban B L,Guy Plint A.Sequence stacking patterns in the Western Canada foredeep:Influence of tectonics,sediment loading and eustasy on deposition of the Upper Cretaceous Kaskapau and Cardium formations[J].Sedimentology,2008,55(2):395-421.

      [32] Bhattacharya J P,Maceachern J A.Hyperpycnal rivers and prodeltaic shelves in the Cretaceous Seaway of North America[J].Journal of Sedimentary Research,2009,79(4):184-209.

      [33] Soyinka O A,Slatt R M.Identification and micro-stratigraphy of hyperpycnites and turbidites in Cretaceous Lewis Shale,Wyoming[J].Sedimentology,2008,55(5):1117-1133.

      [34] Olariu C,Steel R J,Petter A L.Delta-front hyperpycnal bed geometry and implications for reservoir modeling:Cretaceous Panther Tongue delta,Book Cliffs,Utah[J].AAPG Bulletin,2010,94(6):819-845.

      [35] Pattison S A J.Isolated highstand shelf sandstone body of turbiditic origin,lower Kenilworth Member,Cretaceous Western Interior,Book Cliffs,Utah,USA[J].Sedimentary Geology,2005,177(1-2):131-144.

      [36] Pattison S A J,Williams H,Davies P.Clastic sedimentology,sedimentary architecture,and sequence stratigraphy of fluvio-deltaic,shoreface,and shelf deposits,Upper Cretaceous,Book Cliffs,eastern Utah and western Colorado[M]∥Raynolds R G.Roaming the Rocky Mountains and Environs:Geological Field Trips.Denver:The Geolo-gical Society of America,2008(10):17-43.

      [37] de Luca P H V,Basilici G.A prodeltaic system controlled by hyperpycnal flows and storm waves:reinterpretation of the Punta Negra Formation(Lower-Middle Devonian,Argentine Precordillera)[J].Brazilian Journal of Geology,2013,43(4):673-94.

      [38] Lamb M P,Myrow P M,Lukens C,et al.Deposits from wave-infl-uenced turbidity currents:Pennsylvanian Minturn Formation,Colorado,U S A [J].Journal of Sedimentary Research,2008,78(7-8):480-98.

      [39] Mulder T,Joumes M,Bassetti M A,et al.Flood characterization in Rhǒne prodelta sediments[C]∥EGU General Assembly Conference Abstracts.Vienna:EGU,2015:17.

      [40] Zavala C,Arcuri M,Di Meglio M,et al.Prodelta hyperpycnites:Facies,processes and reservoir significance.Examples from the lower cretaceous of Russia[C]∥International Conference and Exhibition,Barcelona,Spain,2016.Spain :Society of Exploration Geophysicists and American Association of Petroleum Geologists,2016:73-73.

      [41] Lamb M P,Mohrig D.Do hyperpycnal-flow deposits record river-flood dynamics?[J].Geology,2009,37(12):1067-1070.

      [42] 李濤,談廣鳴,張俊華,等.水庫(kù)異重流研究進(jìn)展[J].中國(guó)農(nóng)村水利水電,2006,9:21-24.

      Li Tao,Tan Guangming,Zhang Junhua,et al.Progress in the study of reservoir hyperpycnal flow[J].China Rural Water and Hydropower,2006,9:21-24.

      [43] 范家驊.異重流泥沙淤積的分析[J].中國(guó)科學(xué),1980,(1):82-89.

      Fan Jiahua.Anylysis of hyperpycnal flow sediments diposition[J].Science China Press,1980,(1):82-89.

      [44] 范家驊.沉淀池異重流的實(shí)驗(yàn)研究[J].中國(guó)科學(xué)A輯,1984,(11):1053-1064.

      Fan Jiahua.Experiment study of hyperpycnal flow in sedimentation tank[J].Science China PressA,1984,(11):1053-1064.

      [45] 范家驊,王華豐,黃寅,等.異重流的研究和應(yīng)用[M].北京:水利電力出版社,1959.

      Fan Jiahua,Wang Huafeng,Huang Yin,et al.The research and application of hyperpycnal flow[M].Beijing:Water Resources and Electric Power Press,1959.

      [46] 曹文洪,姜乃森,傅玲燕,等.白石水庫(kù)泥沙問(wèn)題的試驗(yàn)研究[J].水利水電技術(shù),1997,(9):20-23.

      Cao Wenhong,Jiang Naisen,Fu Lingyan,et al.Model study on sedimentation problems in the Baishi Reservoir[J].Water Resources and Hydropower Engineering,1997,(9):20-23.

      [47] Mulder T,Migeon S,Savoye B,et al.Twentieth century floods recorded in the deep Mediterranean sediments[J].Geology,2001,29(11):1011-1014.

      [48] Mulder T,Syvitski J P M,Migeon S,et al.Marine hyperpycnal flows:initiation,behavior and related deposits.A review[J].Marine & Petroleum Geology,2003,20(6-8):861-882.

      [49] 解河海,張金良,郝振純,等.水庫(kù)異重流研究綜述[J].人民黃河,2008,30(5):28-30.

      Xie Hehai,Zhang Jinliang,Hao Zhenchun,et al.Review on the research of reservoir hyperpycnal flow[J].Yellow River,2008,30(5):28-30.

      [50] Mulder T,Syvitski J P M,Skene K I.Modeling of erosion and deposition by turbidity currents generated at river mouths[J].Journal of Sedimentary Research,1998,68(1):124-137.

      [51] Johnson K S,Paull C K,Barry J P,et al.A decadal record of underflows from a coastal river into the deep sea[J].Geology,2001,29(11):1019-1022.

      [52] Bell H S.The effect of entrance mixing on the size of density currents in Shaver Lake[J].Eos Transactions American Geophysical Union,1947,28(5):780-791.

      [53] Parsons J D,Bush J W M,Syvitski J P M.Hyperpycnal plume formation from riverine outflows with small sediment concentrations[J].Sedimentology,2001,48(2):465-478.

      [54] Macquaker J H S.Mudstone sedimentation at high latitudes:Ice as a transport medium for mud and supplier of nutrients[J].Journal of Sedimentary Research,2005,75(4):696-709.

      [55] Alexander J,Mulder T.Experimental quasi-steady density currents[J].Marine Geology,2002,186(3-4):195-210.

      [56] Summerfield M A.Global geomorphology[M].Longdon and New York:Routledge,2014.

      [57] Petter A L,Steel R J.Hyperpycnal flow variability and slope organization on an Eocene Shelf Margin,Central Basin,Spitsbergen[J].AAPG Bulletin,2006,90(10):1451-1472.

      [58] Wright L D,Yang Z S,Bornhold B D,et al.Hyperpycnal plumes and plume fronts over the Huanghe(Yellow River)delta front[J].Geo-Marine Letters,1986,6(2):97-105.

      [59] Allen P A.From landscapes into geological history[J].Nature,2008,451(7176):274.

      [60] Milliman J D,Meade R H.World-wide delivery of river sediment to the oceans[J].The Journal of Geology,1983,91(1):1-21.

      [61] Allen P A,Allen J R.Basin analysis:Principles and application to petroleum play assessment[M].Oxford:Wiley-Black well,2013.

      [62] Wilson L.Variations in mean annual sediment yield as a function of mean annual precipitation[J].American Journal of Science,1973,273(4):335-349.

      [63] Meade R H.Sources,sinks,and storage of river sediment in the Atlantic Drainage of the United States[J].The Journal of Geology,1982,90(3):235-252.

      [64] Pinet P,Souriau M.Continental erosion and large-scale relief[J].Tectonics,1988,7(3):563-582.

      [65] Dickinson W R.Provenance and sediment dispersal in relation to paleotectonics and paleogeography of sedimentary basins[M]∥Kleinspehn K L,Paola C.New perspectives in basin analysis.New York:Springer,1988:3-25.

      [66] Mutti E.Turbidite systems and their relations to depositional sequences[M]∥Zuffa G G.Provenance of arenites.Cosenza:Springer,1985:65-93.

      [67] Shanmugam G,Moiola R J,Damuth J E.Eustatic control of submarine fan development[M]∥Bouma A H,Normark W R,BarnesN E.Submarine fans and related turbidite systems.New York:Springer,1985:23-28.

      [68] Mutti E,Normark W R.An integrated approach to the study of turbidite systems[M]∥Paul Weimer P,Link M H.Seismic facies and sedimentary processes of submarine fans and turbidite systems.New York:Springer,1991:75-106.

      [69] Posamentier H W,Erskine R D,Mitchum R M.Models for submarine-fan deposition within a sequence-stratigraphic framework[M]∥Paul Weimer P,Link M H.Seismic facies and sedimentary processes of submarine fans and turbidite systems.New York:Springer,1991:127-136.

      [70] Normark W R,Posamentier H,Mutti E.Turbidite systems:State of the art and future directions[J].Reviews of Geophysics,1993,31(2):91-116.

      [71] Plinkbjorklund P,Mellere D,Steel R J.Turbidite variability and architecture of sand-prone,deep-water slopes:Eocene Clinoforms in the Central Basin,Spitsbergen[J].Journal of Sedimentary Research,2001,71(6):895-912.

      [72] Plink-Bj?rklund P,Steel R.Perched-delta architecture and the detection of sea level fall and rise in a slope-turbidite accumulation,Eocene Spitsbergen[J].Geology,2002,30(2):115-118.

      [73] Mellere,Plink-Bjorklund,Crabaugh,et al.Deltas vs rivers on the shelf-edge:Their relative contributions to the growth of shelf-margins and basin-floor fans(Barremian & Eocene,Spitsbergen)[J].Gcssepm Proceedings,2000,20:981-1009.

      [74] Zavala C,Arcuri M,Gamero H,et al.A genetic facies tract for the analysis of sustained hyperpycnal flow deposits[M]∥Slatt R M,Zavala C.Sediment transfer from shelf to deep water-Revisiting the delivery system.Tulsa:AAPG,2011:31-51.

      [75] Peakall J,Felix M,Mccaffrey B,et al.Particulate gravity currents:Perspectives[M].Oxford:Wiley,2009.

      [76] Leclair,Suzanne F.Preservation of cross-strata due to the migration of subaqueous dunes:An experimental investigation[J].Sedimentology,2002,49(6):1157-1180.

      [77] Baas J H.Conditions for formation of massive turbiditic sandstones by primary depositional processes[J].Sedimentary Geology,2004,166(3-4):293-310.

      [78] Zavala C,Arcuri M,Valiente L B.The importance of plant remains as diagnostic criteria for the recognition of ancient hyperpycnites[J].Revue De Paleobiologie,2012,11(6):457-469.

      [79] Nakajima T.Hyperpycnites deposited 700 km away from river mouths in the Central Japan Sea[J].Journal of Sedimentary Research,2006,76(1):60-73.

      [80] Weimer P,Slatt R M,Bouroullec R,et al.Introduction to the petroleum geology of deepwater setting[M].New York:AAPG,2006.

      [81] Mulder T,Chapron E.Flood deposits in continental and marine environments:Character and significance[M]∥Slatt R M,Zavala C.Sediment transfer from shelf to deep water-Revisiting the delivery system.Tulsa:AAPG,2011:1-30.

      [82] Zavala C,Arcuri M.Intrabasinal and extrabasinal turbidites:Origin and distinctive characteristics[J].Sedimentary Geology,2016,337:36-54.

      [83] Mcconnico T S,Bassett K N.Gravelly Gilbert-type fan delta on the Conway Coast,New Zealand:Foreset depositional processes and clast imbrications[J].Sedimentary Geology,2007,198(3):147-166.

      [84] Khripounoff A,Vangriesheim A,Crassous P,et al.High frequency of sediment gravity flow events in the Var submarine canyon(Mediterranean Sea)[J].Marine Geology,2009,263(1-4):1-6.

      [85] Macquaker J H S,Bohacs K M.On the accumulation of mud[J].Science,2007,318(5857):1734-1735.

      [86] Ichaso A A,Dalrymple R W.Tide-and wave-generated fluid mud deposits in the Tilje Formation(Jurassic),offshore Norway[J].Geology,2009,37(6):539-542.

      [87] Aplin A C,Macquaker J H S.Mudstone diversity:Origin and implications for source,seal,and reservoir properties in petroleum systems[J].AAPG Bulletin,2011,95(12):2031-2059.

      [88] Ghadeer S G,Macquaker J H S.The role of event beds in the preservation of organic carbon in fine-grained sediments:Analyses of the sedimentological processes operating during deposition of the Whitby Mudstone Formation(Toarcian,Lower Jurassic)preserved in northeast England[J].Marine and Petroleum Geology,2012,35(1):309-320.

      [89] Wilson R D,Schieber J.Sediment transport processes and lateral facies gradients across a muddy shelf:Examples from the Geneseo Formation of central New York,United States[J].AAPG Bulletin,2017,101(4):423-431.

      [90] 談明軒,朱筱敏,朱世發(fā).異重流沉積過(guò)程和沉積特征研究[J].高校地質(zhì)學(xué)報(bào),2015,21(1):94-104.

      Tan Mingxuan,Zhu Xiaomin,Zhu Shifa.Research on sedimentary process and characteristics of hyperpycnal flows[J].Geological Journal of China Universities,2015,21(1):94-104.

      [91] Yoshida M,Yoshiuchi Y,Hoyanagi K.Occurrence conditions of hyperpycnal flows,and their significance for organic-matter sedimentation in a Holocene estuary,Niigata Plain,Central Japan[J].Island Arc,2009,18(2):320-332.

      [92] Feng Z Q,Zhang S,Cross T A,et al.Lacustrine turbidite channels and fans in the Mesozoic Songliao Basin,China[J].Basin Research,2009,22(1):96-107.

      [93] 秦雁群,萬(wàn)侖坤,計(jì)智鋒,等.深水塊體搬運(yùn)沉積體系研究進(jìn)展[J].石油與天然氣地質(zhì),2018,39(1):140-152.

      Qin Yanqun,Wan Lunkun,Ji Zhifeng,et al.Progress of research on deep-water mass-transport deposits[J].Oil & Gas Geology,2018,39(1):140-152.

      [94] 王永詩(shī),王勇,郝雪峰,等.深層復(fù)雜儲(chǔ)集體優(yōu)質(zhì)儲(chǔ)層形成機(jī)理與油氣成藏——以濟(jì)陽(yáng)坳陷東營(yíng)凹陷古近系為例[J].石油與天然氣地質(zhì),2016,37(4):490-498.

      Wang Yongshi,Wang Yong,Hao Xuefeng,et al.Genetic mechanism and hydrocarbon accumulation of quality reservoir in deep and complicated reservoir rocks:A case from the Palaeogene in Dongying Sag,Jiyang Depression[J].Oil & Gas Geology,2016,37(4):490-498.

      猜你喜歡
      異重流泥質(zhì)沉積物
      晚更新世以來(lái)南黃海陸架沉積物源分析
      小浪底水庫(kù)異重流排沙效率分析
      渤海油田某FPSO污水艙沉積物的分散處理
      海洋石油(2021年3期)2021-11-05 07:43:12
      水生植被影響異重流動(dòng)力特性的試驗(yàn)分析
      水體表層沉積物對(duì)磷的吸收及釋放研究進(jìn)展
      改進(jìn)的徑向基神經(jīng)網(wǎng)絡(luò)模型在水庫(kù)異重流泥沙淤積量模擬中的應(yīng)用
      異重流沉積過(guò)程和沉積特征研究
      化工管理(2017年9期)2017-03-05 12:05:20
      某泵站廠房泥質(zhì)粉砂巖地基固結(jié)沉降有限元分析
      不同泥質(zhì)配比條件下剩余污泥的深度減容研究
      討論用ICP-AES測(cè)定土壤和沉積物時(shí)鈦對(duì)鈷的干擾
      准格尔旗| 夏邑县| 奎屯市| 神农架林区| 教育| 鸡西市| 耿马| 灌云县| 桐乡市| 莆田市| 上饶县| 永济市| 且末县| 三门峡市| 清水河县| 东明县| 从化市| 吉木萨尔县| 庆城县| 万全县| 师宗县| 江山市| 行唐县| 康定县| 宁化县| 青岛市| 南和县| 那坡县| 敦化市| 会理县| SHOW| 乐山市| 曲麻莱县| 根河市| 视频| 博客| 班戈县| 灌云县| 铁岭县| 桃园县| 舟山市|