尹業(yè)師,陳華海,曹林艷,唐林,何福林
?
尹業(yè)師 博士,教授,湖南科技學(xué)院生物工程學(xué)科帶頭人。從事腸道微生物與宿主相互作用研究。主持國(guó)家自然科學(xué)基金和國(guó)家863計(jì)劃子課題等;以主要作者在、、、、等期刊發(fā)表論文60余篇;以第一發(fā)明人申報(bào)中國(guó)發(fā)明專利6項(xiàng)。中華醫(yī)學(xué)會(huì)消化病學(xué)分會(huì)微生態(tài)組委員、中國(guó)微生物學(xué)會(huì)永久會(huì)員、中國(guó)生物工程學(xué)會(huì)終身會(huì)員和美國(guó)微生物學(xué)會(huì)會(huì)員。、、、、《生物工程學(xué)報(bào)》和《微生物學(xué)通報(bào)》等期刊的審稿專家。
細(xì)菌耐藥性應(yīng)對(duì)策略研究進(jìn)展
尹業(yè)師,陳華海,曹林艷,唐林,何福林
湖南科技學(xué)院 化學(xué)與生物工程學(xué)院 湘南優(yōu)勢(shì)植物資源綜合利用湖南省重點(diǎn)實(shí)驗(yàn)室,湖南 永州 425199
尹業(yè)師, 陳華海, 曹林艷, 等. 細(xì)菌耐藥性應(yīng)對(duì)策略研究進(jìn)展. 生物工程學(xué)報(bào), 2018, 34(8): 1346–1360.Yin YS, Chen HH, Cao LY, et al. Progress in strategies to combat antimicrobial resistance. Chin J Biotech, 2018, 34(8): 1346–1360.
細(xì)菌耐藥性 (Antimicrobial resistance,AMR) 持續(xù)增長(zhǎng),但新上市抗生素?cái)?shù)量卻持續(xù)下降??股啬退幓?(Antimicrobial resistance gene,ARG) 和抗生素耐藥菌感染已嚴(yán)重威脅人類健康。因此,需要多方面聯(lián)合采取措施來(lái)應(yīng)對(duì)AMR所帶來(lái)的各種挑戰(zhàn),包括創(chuàng)新生物醫(yī)藥、改善抗生素使用和抗生素耐藥監(jiān)測(cè)系統(tǒng)、減少抗生素耐藥基因產(chǎn)生速度、阻止健康護(hù)理相關(guān)感染和多重抗生素耐藥菌傳播與擴(kuò)散、開(kāi)發(fā)微生物學(xué)快速診斷方法與設(shè)備、減少臨床和獸醫(yī)抗生素濫用等。慶幸的是,AMR已受到各國(guó)政要、科學(xué)家和企業(yè)家等的高度重視與支持,相信隨著新技術(shù)、新產(chǎn)品的不斷問(wèn)世和管理新措施的不斷出臺(tái),AMR問(wèn)題一定會(huì)得到控制和緩解。
抗生素,細(xì)菌耐藥性,抗生素耐藥菌,抗生素耐藥基因
細(xì)菌耐藥性 (AMR) 已成為當(dāng)代醫(yī)學(xué)和制藥公司面臨的一個(gè)嚴(yán)重問(wèn)題??股啬退幖?xì)菌 (簡(jiǎn)稱耐藥菌) 感染數(shù)量的增加已經(jīng)嚴(yán)重威脅全球公共健康,其發(fā)病率和致死率均很高。由耐藥菌引起的死亡人數(shù)相當(dāng)于HIV、乳腺癌和前列腺癌致死人數(shù)的總和[1-3],這對(duì)社會(huì)經(jīng)濟(jì)學(xué)和生態(tài)學(xué)造成了嚴(yán)重影響。美國(guó)每年大約有200萬(wàn)人的感染和23萬(wàn)人的死亡與耐藥菌相關(guān) (http://1.usa.gov/1nDmtkJ)。更嚴(yán)重的是,全球每年有約70萬(wàn)人的死亡是耐藥菌感染導(dǎo)致的。由于亞洲和非洲抗生素使用量仍然很大,AMR形勢(shì)將不斷惡化,專家們預(yù)測(cè),到2050年每年將有1 000萬(wàn)人因此而死亡,其經(jīng)濟(jì)損失將超過(guò)數(shù)萬(wàn)億美元[4]。
隨著臨床和非臨床抗生素的隨意和大量使用,AMR新時(shí)代已經(jīng)到來(lái)[5],但藥物研發(fā)速度遠(yuǎn)跟不上細(xì)菌耐藥性產(chǎn)生的速度。1983?1987年期間,美國(guó)FDA批準(zhǔn)了16種新的抗生素,但這個(gè)數(shù)字在顯著下降,2008?2012年期間總共只批準(zhǔn)了2種新抗生素[6],而且已經(jīng)有超過(guò)45年沒(méi)有批準(zhǔn)任何用于治療革蘭氏陰性菌感染的新類別抗生素[7]。因此,應(yīng)對(duì)AMR所帶來(lái)的嚴(yán)重威脅和挑戰(zhàn),需要國(guó)際合作與共同努力,包括加大宣傳教育力度、加強(qiáng)抗生素使用管理、研發(fā)新的抗菌物質(zhì)和尋找抗生素替代方法等[8]。
臨床耐藥菌的出現(xiàn)與傳播很大程度上與醫(yī)院和養(yǎng)殖場(chǎng)抗生素銷(xiāo)售的管控不嚴(yán)和隨意使用有關(guān)[9-10]。目前,當(dāng)一個(gè)新抗生素上市,其耐藥菌株很快就可以被找到[11]??梢?jiàn)應(yīng)對(duì)AMR已不能單純通過(guò)研發(fā)新型抗生素來(lái)解決,必須采取綜合治理措施。管控人和動(dòng)物病原菌AMR需在 One health理念指導(dǎo)下,聯(lián)合政策制定者、科研工作者、獸醫(yī)和終端消費(fèi)者來(lái)采取行動(dòng),防止耐藥性的產(chǎn)生和傳播 (圖1)。慶幸的是,抗生素的可持續(xù)利用已經(jīng)受到廣泛關(guān)注。2015年,世界衛(wèi)生組織 (WHO) 決議WAH68.7強(qiáng)烈要求各成員國(guó)制定應(yīng)對(duì)AMR策略[12]。已有超過(guò)100個(gè)成員國(guó)作出了回應(yīng)并采取了相關(guān)措施[12]。近年來(lái),中國(guó)作為成員國(guó)之一也正在積極采取各項(xiàng)措施應(yīng)對(duì)抗生素耐藥[13]。2016年,原國(guó)家衛(wèi)生和計(jì)劃生育委員會(huì)下發(fā)了 (《遏制細(xì)菌耐藥國(guó)家行動(dòng)計(jì)劃 (2016?2020年)》(http://www.nhfpc.gov.cn/yzygj/ s3593/201608/f1ed26a0c8774e1c8fc89dd481ec84d7.shtml)),提出到2020年實(shí)現(xiàn)“爭(zhēng)取研發(fā)上市全新抗菌藥物1?2個(gè),新型診斷儀器設(shè)備和試劑5?10項(xiàng)”,“零售藥店憑處方銷(xiāo)售抗菌藥物的比例基本達(dá)到全覆蓋”等多項(xiàng)行動(dòng)目標(biāo)。2017年,原農(nóng)業(yè)部也印發(fā)了(《全國(guó)遏制動(dòng)物源細(xì)菌耐藥行動(dòng)計(jì)劃(2017?2020年)》(http://www.moa.gov.cn/govpublic/ SYJ/201706/t20170623_5726086.htm)),提出到2020年,實(shí)現(xiàn)“推進(jìn)獸用抗菌藥物規(guī)范化使用。省 (區(qū)、市) 憑獸醫(yī)處方銷(xiāo)售獸用抗菌藥物的比例達(dá)到50%”等目標(biāo)。2016年9月召開(kāi)的“聯(lián)合國(guó)大會(huì)國(guó)家元首高級(jí)別會(huì)議”上,多國(guó)科學(xué)家聯(lián)合發(fā)文呼吁:提高對(duì)AMR的認(rèn)識(shí);加強(qiáng)對(duì)抗生素的監(jiān)測(cè)和評(píng)估,制定確實(shí)有效的措施促進(jìn)抗生素合理使用;鼓勵(lì)國(guó)家和社會(huì)基金資助應(yīng)對(duì)AMR相關(guān)研究;聯(lián)合多部門(mén)開(kāi)展協(xié)調(diào)行動(dòng),在國(guó)家層面協(xié)調(diào)非政府組織、民間團(tuán)體和私人機(jī)構(gòu)等,通過(guò)各國(guó)努力提高抗生素的有效利用,實(shí)現(xiàn)WHO全球行動(dòng)計(jì)劃[14-15]。
圖1 各方協(xié)作應(yīng)對(duì)AMR戰(zhàn)略合作圖(改編自Sharma等的文章[16])
政府部門(mén)應(yīng)加強(qiáng)宣傳與教育,監(jiān)控抗生素使用和耐藥產(chǎn)生情況,鼓勵(lì)和投入更多專項(xiàng)經(jīng)費(fèi)資助科學(xué)家研究AMR產(chǎn)生、傳播和進(jìn)化機(jī)制,引導(dǎo)企業(yè)研發(fā)AMR防治新策略。除了研發(fā)抗菌活性更好的新抗生素外,建立完善的抗生素使用和耐藥性產(chǎn)生監(jiān)控體系、及早診斷和預(yù)測(cè)耐藥菌的產(chǎn)生和有針對(duì)性地采取應(yīng)對(duì)措施也非常重要。只有建立了強(qiáng)大的監(jiān)測(cè)系統(tǒng),應(yīng)用生物信息學(xué)和基因組學(xué)新進(jìn)展將全球和當(dāng)?shù)乜股卦谌撕蛣?dòng)物中的消費(fèi)情況、耐藥機(jī)制和細(xì)菌表型等整合起來(lái),才能獲得更可靠的流行病學(xué)數(shù)據(jù),才能更好地指導(dǎo)應(yīng)對(duì)AMR危機(jī)。如研究發(fā)現(xiàn)在4個(gè)主要場(chǎng)所AMR進(jìn)化比較頻繁:1) 人和動(dòng)物微生物組;2) 醫(yī)院和長(zhǎng)期護(hù)理單位;3) 污水和其他任何形式的生物殘留;4) 土壤及其表面或地下水環(huán)境[17]。這將為我們有針對(duì)性地防治耐藥性指明方向。
WHO將抗生素分為3類——常規(guī)抗生素、被監(jiān)控抗生素和儲(chǔ)備抗生素,且對(duì)不同類別抗生素的使用作了說(shuō)明:常規(guī)抗生素是可廣泛使用、容易獲得的抗生素;被監(jiān)控抗生素是比較容易產(chǎn)生耐藥性的抗生素,因此不建議作為大部分感染治療的首選;儲(chǔ)備抗生素耐藥性產(chǎn)生較少,被推薦僅用于最后一道防線的治療[18]。但臨床醫(yī)生在具體操作時(shí)會(huì)越級(jí)或超量使用[15]。由于長(zhǎng)期濫用抗生素導(dǎo)致攜帶多種耐藥基因的多種AMR細(xì)菌出現(xiàn)[19-21],因此有必要對(duì)臨床醫(yī)生加強(qiáng)抗生素使用培訓(xùn)和教育。在中國(guó)廣西省的2個(gè)縣、25個(gè)鄉(xiāng)鎮(zhèn)衛(wèi)生所進(jìn)行的一項(xiàng)研究中,研究者對(duì)基層醫(yī)務(wù)工作者 (醫(yī)生及護(hù)工) 進(jìn)行了為期9個(gè)月的培訓(xùn),結(jié)果發(fā)現(xiàn)培訓(xùn)后,抗生素處方率從82%顯著下降至40%,而對(duì)照組 (未接受培訓(xùn)) 的抗生素處方率未發(fā)生顯著改變[22]。雖然針對(duì)基層醫(yī)生的培訓(xùn)或可有效減少抗生素濫用,但加強(qiáng)抗生素管理是否能有效阻止AMR還有待進(jìn)一步研究。因?yàn)榇蟛糠謱?shí)驗(yàn)設(shè)計(jì)都不夠完善,不同研究者使用的參數(shù)和條件不一致,很難得出證據(jù)充分的結(jié)論[23]。
加強(qiáng)對(duì)獸醫(yī)工作者的培訓(xùn)和獸用抗生素的管理也非常重要,因?yàn)橛袌?bào)道表明抗生素生產(chǎn)總量的近80%被用于動(dòng)物生產(chǎn)[24]。在動(dòng)物生產(chǎn)過(guò)程中抗生素經(jīng)常被用于疾病預(yù)防和促生長(zhǎng),但動(dòng)物也存在將耐藥菌株傳播給人和環(huán)境的風(fēng)險(xiǎn)[16]。有研究表明,限制食用動(dòng)物行業(yè)抗生素使用,動(dòng)物耐藥菌減少,人群尤其是直接與食用動(dòng)物接觸的人群耐藥菌也有類似減少。但在普通人群中,這種觀點(diǎn)還證據(jù)不足,有待進(jìn)一步研究[25]。
攜帶耐藥基因的耐藥菌在環(huán)境,尤其是飲用水和污水中的出現(xiàn)將嚴(yán)重影響人類健康。雖然自然選擇會(huì)引進(jìn)低水平AMR的出現(xiàn),但人類活動(dòng)可導(dǎo)致環(huán)境中高水平AMR的傳播與流行[26]。工廠、社區(qū)、臨床醫(yī)院和農(nóng)場(chǎng)污水中高濃度耐藥基因和耐藥菌已嚴(yán)重威脅整個(gè)生態(tài)圈[27]。在中國(guó)17個(gè)主要城市的32個(gè)污水處理廠采集并分析116個(gè)污水樣本,發(fā)現(xiàn)381個(gè)AMR基因在各大城市都普遍存在,并與廢水核心菌群和人體腸道菌群顯著相關(guān)[28]。另外DNA也是污水處理廠中不可忽視的AMR基因來(lái)源。在未經(jīng)處理的廢水中,細(xì)胞相關(guān)耐藥基因占主要部分;經(jīng)過(guò)生物處理、污泥沉降、膜過(guò)濾、消毒后,細(xì)胞相關(guān)的耐藥基因顯著減少,但ARG/16S rRNA的比值在消毒后上升[29]。更讓人吃驚的是,在全球25個(gè)城市飲用水樣本中,共檢測(cè)到屬于16種ARG類型的181種亞型;其中針對(duì)桿菌肽、氨基糖苷、磺胺、β-內(nèi)酰胺等的耐藥基因占優(yōu)勢(shì),應(yīng)警惕ARG在飲用水系統(tǒng)中的潛在水平傳播[30]。
另外,優(yōu)化抗生素治療的藥代動(dòng)力學(xué)和藥理學(xué)可以改善治療效果、減少毒性和耐藥性出現(xiàn)的風(fēng)險(xiǎn)[34]。如有研究表明多粘菌素的副作用并不像以前報(bào)道的那樣頻繁,尤其是在精準(zhǔn)靶向用藥后[35]。但由于老抗生素很少被納入監(jiān)測(cè)系統(tǒng),其相關(guān)耐藥性產(chǎn)生速度、最小抑菌濃度 (Minimum inhibitory concentration,MIC) 和協(xié)同作用等數(shù)據(jù)比較缺乏[34]。另外,地域性差異導(dǎo)致從局部得出的結(jié)果并不一定準(zhǔn)確[36],因此需要進(jìn)一步研究。同時(shí),由于一些老的抗生素 (如磷霉素、甲氧芐啶-磺胺甲氧異惡唑、氯林可霉素、普那霉素、梭鏈孢酸) 也可以導(dǎo)致耐藥基因的水平轉(zhuǎn)移,它們的重新啟用需要進(jìn)行全局的生態(tài)學(xué)調(diào)查。
提高已有抗生素療效的一個(gè)方法是聯(lián)合用藥,聯(lián)合用藥比任何單一藥物的效果好很多[37]。實(shí)驗(yàn)室研究表明利福平聯(lián)合達(dá)托霉素 (靶向抗萬(wàn)古霉素腸球菌[38])、拉氧頭孢聯(lián)合妥布霉素或者頭孢曲松聯(lián)合妥布霉素 (靶向腸桿菌科[39])、氨基糖苷類聯(lián)合β-內(nèi)酰胺類 (靶向革蘭氏陰性菌[40])、環(huán)絲氨酸聯(lián)合沒(méi)食子酸 (靶向耐甲氧西林金黃色葡萄球菌[41]),均對(duì)治療耐藥菌感染有較好療效。另外最近研究報(bào)道將傳統(tǒng)的頭孢類抗生素頭孢他啶與β-內(nèi)酰胺酶抑制劑阿維巴坦聯(lián)用既保證了抗生素功能,又減少了細(xì)菌耐藥性[42]。
抗生素與植物提取物聯(lián)合使用也是較有前景的協(xié)同殺菌策略之一[43-45]。多項(xiàng)研究表明,酚類化合物,如玫瑰果中tellimagrandin Ⅰ[46]和熊果中鞣料云實(shí)素[47],其生物轉(zhuǎn)化可提高抗生素的抑菌效果。另外,Souto等報(bào)道杧果乙醇提取物與四環(huán)素和紅霉素聯(lián)合使用可以使其MIC降低4倍[16]。將柚木甲醇提取物與四環(huán)素合用,起到協(xié)同抗鼠傷寒沙門(mén)氏菌和肺炎克雷伯氏菌作用,其MIC濃度分別降低2倍和4倍[16]。
細(xì)菌、真菌和植物次生代謝產(chǎn)物是主要的抗菌物質(zhì)來(lái)源,當(dāng)前醫(yī)藥用抗菌物質(zhì)大約有70%來(lái)源于細(xì)菌和真菌次級(jí)代謝產(chǎn)物。很多次級(jí)代謝產(chǎn)物,如聚酮類抗生素、非核糖體多肽、生物堿類化合物、糖類萜類化合物和細(xì)菌素等主要由基因簇編碼[48],且典型的次生代謝產(chǎn)物產(chǎn)生者其基因組中一般都含有生物合成基因簇(Biosynthetic gene cluster,BGCs)[49]。由于大部分抗生素來(lái)源于可培養(yǎng)細(xì)菌的天然產(chǎn)物,但細(xì)菌可培養(yǎng)率低,大量潛在抗生素難見(jiàn)天日。隨著測(cè)序技術(shù)的發(fā)展和宏基因組學(xué)研究的不斷深入,全球微生物組,包括土壤微生物組和腸道微生物組已被逐漸認(rèn)為是新藥發(fā)現(xiàn)的巨大資源寶庫(kù)[50-51]。Donia等對(duì)人類微生物組進(jìn)行分析,鑒定到了大于14 000個(gè)BGCs,并對(duì)其中3 000多個(gè)進(jìn)行了比較詳細(xì)的分析[52],Walsh等從人類微生物組數(shù)據(jù)庫(kù)中鑒定到了數(shù)十個(gè)細(xì)菌素基因簇[53]。
令人備受鼓舞的是,有些研究開(kāi)始使用生物信息學(xué)分析結(jié)果來(lái)指導(dǎo)抗菌物質(zhì)的發(fā)現(xiàn)與合成 (圖2)。Hover等根據(jù)達(dá)托霉素合成基因的保守序列設(shè)計(jì)引物,構(gòu)建擴(kuò)增子文庫(kù),依據(jù)文庫(kù)序列預(yù)測(cè)和查找新型的基因元件,再結(jié)合進(jìn)一步的宏基因組測(cè)序和異源表達(dá),從土壤中發(fā)現(xiàn)了一種分布廣泛、鈣離子依賴型、抗MRSA菌的新抗生素,被命名為malacidins;新抗生素在小鼠感染模型中效果極佳,且不產(chǎn)生選擇耐藥性[54]。Chu等根據(jù)分析結(jié)果合成了一種新的抗菌物質(zhì)humimycins,它對(duì)臨床分離的MRSA具有很好的抑制活性,能提高一些β-內(nèi)酰胺抗生素的活性,增加感染小鼠的成活率[55]。Vila-Farres等利用生物信息學(xué)分析結(jié)果指導(dǎo)合成了2個(gè)新的抗生素,一個(gè)具有抗細(xì)菌活性,另一個(gè)具有抗真菌活性[56]。
由于環(huán)境微生物在實(shí)驗(yàn)室條件下比較難實(shí)現(xiàn)純培養(yǎng),科學(xué)家們已經(jīng)發(fā)明了從未培養(yǎng)菌中提取活性物質(zhì)的方法。Kim研究組通過(guò)原位混合菌培養(yǎng)的方法從土壤樣品中直接篩選活性分子。通過(guò)對(duì)原位培養(yǎng)菌抑菌活性代謝產(chǎn)物鑒定,發(fā)現(xiàn)了2種新的抗生素Lassomycin和泰斯巴汀 (Teixobactin),這2種新型抗菌物質(zhì)對(duì)MRSA和結(jié)核分枝桿菌有較好的抑制活性,且不容易導(dǎo)致耐藥性產(chǎn)生[57-58]。
2.選人視野的廣闊性。實(shí)行競(jìng)爭(zhēng)性選拔的目的,就是最大限度地“選賢任能”,把各方面優(yōu)秀人才選拔上來(lái)。競(jìng)爭(zhēng)性選拔干部給所有層面的干部,特別是優(yōu)秀年輕干部提供了難得的機(jī)會(huì)和平臺(tái)。從報(bào)名參加競(jìng)聘的干部來(lái)源上看,所屬單位和崗位都各不相同,豐富了源頭活水,保證了干部來(lái)源的廣泛性;從干部所屬的層面上看,競(jìng)爭(zhēng)性選拔特別是公開(kāi)選拔使各個(gè)層面的干部都能參與進(jìn)來(lái),特別是賦予了廣大基層干部以寶貴的機(jī)會(huì),從而能夠有效地優(yōu)化干部隊(duì)伍結(jié)構(gòu)。
化合物文庫(kù)篩選一直是科學(xué)家和制藥企業(yè)使用的經(jīng)典方法之一。Kim等在其最新研究中采用秀麗隱桿線蟲(chóng)-MRSA篩選模型,從82 000個(gè)合成小分子化合物中篩選發(fā)現(xiàn)了185個(gè)化合物可明顯減少M(fèi)RSA引起的秀麗隱桿線蟲(chóng)死亡。進(jìn)一步對(duì)其中兩個(gè)結(jié)構(gòu)相似的合成維甲酸——CD437和CD1530進(jìn)行研究發(fā)現(xiàn),合成維甲酸通過(guò)破壞細(xì)菌脂質(zhì)雙層而殺傷生長(zhǎng)期和持留MRSA;且在MRSA慢性感染的小鼠模型中,CD437及其類似物均具有良好的療效[59]。
盡管抗生素耐藥形勢(shì)仍然嚴(yán)峻,但科學(xué)家們已探索研發(fā)了很多新的抗菌策略 (圖3),以幫助應(yīng)對(duì)可能出現(xiàn)的“無(wú)藥可用”危機(jī)。
圖2 發(fā)現(xiàn)新型抗菌物質(zhì)示意圖(改編自Kim等的文章[60])
圖3 抗菌新策略匯總(改編自Sharma等的文章[16])
隨著多重耐藥病原菌的增多,噬菌體療法越來(lái)越受到關(guān)注。很多學(xué)者使用動(dòng)物模型對(duì)臨床相關(guān)病原菌,如銅綠假單胞菌、艱難梭菌、耐萬(wàn)古霉素腸球菌、產(chǎn)β內(nèi)酰胺酶大腸桿菌、鮑氏不動(dòng)桿菌和金黃色釀膿葡萄球菌進(jìn)行了研究,結(jié)果發(fā)現(xiàn)噬菌體對(duì)細(xì)菌感染或化膿有較好的治療效果,能明顯降低實(shí)驗(yàn)動(dòng)物死亡率[61]。臨床實(shí)驗(yàn)也表明,噬菌體療法對(duì)耐藥銅綠假單胞菌和金黃色釀膿葡萄球菌有較好的抑制作用[62]。最近美國(guó)FDA批準(zhǔn)的一個(gè)緊急案例中,靜脈注射噬菌體拯救了一位由多重耐藥菌感染而瀕臨死亡的患者,更是讓人對(duì)噬菌體療法充滿期待[63]。另外,噬菌體裂解酶、多糖解聚酶等也被報(bào)道具有降解細(xì)菌莢膜、生物膜和革蘭氏陰性菌脂多糖外膜等功能[64-68],具有很好的應(yīng)用開(kāi)發(fā)前景。
盡管AMR持續(xù)增多,但最近25年來(lái),沒(méi)有新類抗生素的問(wèn)世。即使最新的一些鼓勵(lì)刺激措施可能會(huì)促進(jìn)新抗生素的研發(fā),但也可能很快會(huì)出現(xiàn)耐藥。淋球菌已經(jīng)相繼對(duì)用于治療的抗生素產(chǎn)生了耐藥,已經(jīng)接近無(wú)藥可治的地步[69]。疫苗在全球疾病預(yù)防中的重要作用已有近2個(gè)世紀(jì)的歷史,應(yīng)該可以被考慮為防治AMR的重要武器[69]。Laverde等研究發(fā)現(xiàn),TraM免疫或抗TraM抗血清可以靶向4型分泌系統(tǒng)蛋白,對(duì)多重耐藥性革蘭氏陽(yáng)性致病菌有很好抑制作用,能顯著減少小鼠肝臟中腸球菌的菌落數(shù)[70]。Sassone-Corsi 等將鐵載體蛋白連接到高免疫原性蛋白后免疫小鼠,成功激發(fā)了鐵載體蛋白特異的IgA,有效降低鐵載體蛋白結(jié)合鐵的效率,進(jìn)而降低病原體感染[71]。疫苗接種不僅避免了抗生素的初次使用[72],而且減少了細(xì)菌繼發(fā)感染后的二次使用[73]。另外,疫苗的效果可以通過(guò)群體免疫擴(kuò)展至未接種疫苗的人群,從而使細(xì)菌耐藥性減少[74]。針對(duì)肺炎球菌、結(jié)核病、傷寒、流感、呼吸道合胞病毒和淋病的研究已表明加速疫苗研發(fā)具有明顯優(yōu)勢(shì)[69,75-76]。
以毒力因子為治療靶標(biāo)的精準(zhǔn)抗菌治療已有成功案例。小分子virstatin和toxtazin B是影響霍亂弧菌毒素表達(dá)的抗毒力抑制因子,在霍亂弧菌感染動(dòng)物模型中表現(xiàn)出很好的療效[77]??苟玖λ幬颾ezlotoxumab是一種抗艱難梭菌毒素TcdB的單克隆抗體,已于2016年被FDA批準(zhǔn)用于高復(fù)發(fā)風(fēng)險(xiǎn)艱難梭菌感染患者的治療[78]。其他很多抗金黃色葡萄球菌和銅綠假單胞菌的抗毒力因子治療也在進(jìn)行臨床實(shí)驗(yàn)[78]。
植物有多種功能特性,主要表現(xiàn)在具有各種生物活性次級(jí)代謝產(chǎn)物或植物化合物,如皂苷類、生物堿、花青素、香豆素類、黃酮類、酚類、萜類、醌類、單寧、外源凝集素和多肽等[16]。理論上講,天然產(chǎn)物應(yīng)該比普通的抗生素具有更多優(yōu)勢(shì)。很多抗微生物中草藥同時(shí)具有抗細(xì)菌、真菌、原蟲(chóng)和病毒的特性。同時(shí),中草藥產(chǎn)品具有免疫促進(jìn)作用,有利于宿主對(duì)感染的抵抗。青蒿素是傳統(tǒng)醫(yī)學(xué)中分離獲得的最著名的抗微生物藥物,現(xiàn)已成為主要的抗瘧疾藥[18]。另外,如從博落回中分離獲得的植物藥sanguiritrin 已經(jīng)成功用于臨床治療成人和小孩細(xì)菌和真菌感染性耳炎、膿性皮炎、皮膚癬、陰道炎、宮頸糜爛、牙周炎、壞死潰瘍性齦炎等[79]。
盡管益生菌、益生元和合生元的益生功能主要通過(guò)改變腸道環(huán)境和增強(qiáng)宿主抵抗力等方面來(lái)實(shí)現(xiàn)[80],但一些實(shí)驗(yàn)數(shù)據(jù)證實(shí)有些益生菌具有直接對(duì)抗多種耐藥菌的功能。如嗜酸乳桿菌和假鏈狀雙歧桿菌SPM1309對(duì)臨床分離的MDR銅綠假單胞菌具有很強(qiáng)的抑制作用[16,81]。干酪乳桿菌對(duì)MDR賀氏 (桿) 菌和大腸桿菌具有很強(qiáng)抑制活性[16,82]。且基于乳酸菌的直接飼喂微生物已經(jīng)上市,BovamineTM和BovamineDefendTM已經(jīng)被廣泛用于減少大腸桿菌O157:H7感染[83]。另外,糞微生態(tài)移植作為一種新的多重耐藥細(xì)菌感染治療新手段也已用于臨床實(shí)驗(yàn)[84]。
細(xì)菌素是微生物核糖體合成的一種具有抗菌活性的多肽,研究較多的有nisin和lacticin等。雖然一些細(xì)菌素如nisin已被開(kāi)發(fā)用于乳腺炎的抗生素替代治療[85],但目前其主要用途仍以食品保存和防腐為主[41]。目前科學(xué)家們正試圖利用結(jié)構(gòu)-功能關(guān)系理性設(shè)計(jì)原理對(duì)細(xì)菌素進(jìn)行基因改造[86],以提高其特異性、穩(wěn)定性和擴(kuò)大宿主譜,從而擴(kuò)展其用途[87-89]。
宿主防御肽是哺乳動(dòng)物為了抵抗病原菌感染而分泌的一種小分子短肽。研究較多的是從人腸道中發(fā)現(xiàn)的一種陽(yáng)離子抗菌肽LL-37。研究表明,抗菌肽LL-37對(duì)革蘭氏陰性菌 (鮑曼不動(dòng)桿菌、大腸桿菌、鼠傷寒沙門(mén)氏菌、銅綠假單胞菌、嗜麥芽窄食單胞菌、普通變形桿菌、肺炎克雷伯氏菌、淋病奈瑟氏菌) 和革蘭氏陽(yáng)性菌 (葡萄球菌、腸球菌、鏈球菌、芽孢桿菌、嗜酸乳桿菌、單增李斯特菌、痤瘡丙酸桿菌) 均有較好的抑菌效果[90]。另外,β-防御素和新近發(fā)現(xiàn)的β抵抗素樣分子 (RELMβ) 等,也是腸道重要的抗菌蛋白武器[91]。
肽核酸(Peptide nucleic acids,PNAs) 作為反義分子通過(guò)抑制靶基因翻譯起到抑菌作用。由于可以抵抗核酸酶、蛋白酶和其他酶的降解,被認(rèn)為是一種很有前景的體內(nèi)替代經(jīng)典抗生素的方法[92]。Mondhe等通過(guò)設(shè)計(jì)靶向不同翻譯起始區(qū)域的PNAs來(lái)改變其抗菌譜,從而使之有更好的靶向性。如肽BS0001被設(shè)計(jì)用來(lái)靶向殺死枯草芽孢桿菌,肽KS0001被設(shè)計(jì)用來(lái)靶向殺死肺炎克雷伯菌等[93]。
納米顆粒可能通過(guò)電荷相互作用粘附到細(xì)菌膜表面從而破壞細(xì)菌膜完整性,改變細(xì)胞壁結(jié)構(gòu),阻止重要酶信號(hào)通路等。納米顆粒及這些離子誘導(dǎo)的氧化應(yīng)激可以不可逆地?fù)p害細(xì)菌細(xì)胞組分,從而導(dǎo)致細(xì)菌死亡[94]。已有研究報(bào)道納米顆??商娲股赜糜趯?duì)抗流產(chǎn)布魯氏桿菌、金黃色葡萄球菌和牛皮癬感染等[16,95-96]。同時(shí),不同的納米材料(有機(jī)和無(wú)機(jī)納米材料,脂質(zhì)體,生物分子如多糖、脂類、蛋白/多肽和病毒衣殼)與抗生素聯(lián)合使用,其抗菌效果更好[97-100]。將抗生素連接到納米材料將有利于增加感染部位抗生素的濃度和提高抗生素與細(xì)菌間的相互作用。同樣,納米顆粒與抗菌肽和香精油聯(lián)合使用也具有協(xié)同抗菌作用[101]。納米材料可作為新型抗菌藥物載體系統(tǒng),以提高藥物的內(nèi)化[102]。
細(xì)菌代謝減緩與很多抗生素耐受和耐藥相關(guān),促進(jìn)細(xì)菌代謝可增加其敏感性[103-106]。通過(guò)研究耐藥菌的代謝狀態(tài),Peng等發(fā)現(xiàn)耐藥遲鈍愛(ài)德華菌其代謝譜與敏感菌有差異,其中心代謝通路出現(xiàn)了一些缺陷。耐藥菌株的葡萄糖和丙氨酸含量明顯較低[107]。通過(guò)添加外源代謝物可以刺激中心代謝和增加藥物攝入,從而提高抗生素治療的敏感性[107]。這與以前報(bào)道的耐藥嗜麥芽窄養(yǎng)單胞菌和銅綠假單胞菌結(jié)果一致[108-109]。Allison等也表明外源添加代謝物 (如葡萄糖、甘露醇、果糖) 可刺激中心代謝,使氨基糖苷抗生素能更好清除大腸桿菌和金黃色葡萄球菌的持留和生物膜生成[103]。
CRISPR-Cas工具已經(jīng)用來(lái)設(shè)計(jì)生產(chǎn)靶向特異序列的抗微生物制劑[110-113]。這種方法在體外很有效,可選擇性殺死攜帶耐藥基因或毒力基因的靶向細(xì)菌。Citorik等利用CRISPR-Cas技術(shù)設(shè)計(jì)特異性抗生素,顯著提升了大蠟螟感染小鼠的存活率[110]。Bikard等應(yīng)用CRISPR-Cas工具設(shè)計(jì)特異性靶向毒性基因的抗菌物質(zhì),特異性殺死有毒金黃色葡萄球菌,而對(duì)無(wú)毒金黃色葡萄球菌沒(méi)有影響,且在小鼠體內(nèi)具有很好療效[111]。
最近十年,基于光的治療在對(duì)抗各種AMR方面取得了重大進(jìn)展。這種方法包括使用抗微生物藍(lán)光、抗菌光動(dòng)力療法和殺菌紫外線照射等。光治療與傳統(tǒng)抗生素治療相比的優(yōu)點(diǎn)是可選擇性地清除微生物細(xì)胞,而對(duì)人體細(xì)胞和組織無(wú)害。這些治療和裝置有很多有趣功能和應(yīng)用,如牙科、一些眼科和皮膚疾病、很難清洗的表面、內(nèi)科器官 (如胃) 消毒、儀器設(shè)備和房間清毒等[114]。
小RNAs (sRNAs) 是一種存在于細(xì)菌中的長(zhǎng)度在50?500 bp的核苷酸[115]。已有研究表明調(diào)控sRNAs表達(dá)對(duì)維持AMR表型和讓細(xì)菌具有生物優(yōu)勢(shì)非常重要[116-122]。一些選擇性的菌株暴露在抗生素后其sRNAs表達(dá)譜發(fā)生改變[116-119]。更重要的是,調(diào)控抗生素引起的sRNAs反應(yīng)可增加細(xì)菌對(duì)多種抗生素的敏感性[120-121,123]。sRNA 有發(fā)展成為新藥的巨大潛能。sRNA 激動(dòng)劑或拮抗劑與傳統(tǒng)抗生素同時(shí)使用可能是優(yōu)化與減少耐藥菌出現(xiàn)的方法之一[124]。
與DNA類似,PMOs是一個(gè)以合成的磷酰二胺和嗎啉為骨架的ATCG低聚物[92]。PMOs在體外和體內(nèi)均能對(duì)臨床病原菌如鮑氏不動(dòng)桿菌、洋蔥伯克霍爾德菌和大腸桿菌有較好的抑制作用[125-127],代表了一類新的有前景的精準(zhǔn)抗菌物質(zhì)。最新研究表明,靶向、和等必需基因的PMOs與陽(yáng)離子抗生素多粘菌素B結(jié)合后,可提高2–8倍抗銅綠假單胞菌活性[128];靶向可抑制銅綠假單胞菌生物膜形成;靶向的化合物與托普霉素具有協(xié)同作用,可以導(dǎo)致小鼠肺部細(xì)菌總量降低3個(gè)數(shù)量級(jí)。
盡管抗生素的使用和管理還存在很多漏洞,耐藥菌和耐藥基因的診斷與監(jiān)測(cè)還并不完善,以上列舉的各種抗菌策略也還存在許多不足,大眾被警告,一場(chǎng)“抗生素”災(zāi)難即將來(lái)臨,人類即將面臨來(lái)自無(wú)法殺滅細(xì)菌的最大威脅;然而,世界末日還未來(lái)臨,科學(xué)家們正在積極應(yīng)對(duì)AMR的威脅,新知識(shí)及化學(xué)療法正在保衛(wèi)我們的未來(lái),未來(lái)是光明而不是黑暗的[129]。
科學(xué)家和企業(yè)家們正在努力尋找理想的抗生素替代物 (無(wú)毒且容易從人體中排出,能穩(wěn)定通過(guò)胃腸道,環(huán)境友好容易分解,選擇性抗某些病原菌,對(duì)土著腸道菌群影響很小或沒(méi)影響,不產(chǎn)生耐藥性)。各國(guó)政府也正在聯(lián)合各方力量積極應(yīng)對(duì)AMR,包括:1) 改造已有抗生素;2) 尋找新型抗生素;3) 發(fā)展和改善給藥系統(tǒng);4) 優(yōu)化抗生素給藥頻率和劑量等[130]。
[1] Lipsky BA, Itani K, Norden C, et al. Treating foot infections in diabetic patients: a randomized, multicenter, open-label trial of linezolid versus ampicillin-sulbactam/amoxicillin-clavulanate. Clin Infect Dis, 2004, 38(1): 17–24.
[2] de Kraker ME, Davey PG, Grundmann H, et al. Mortality and hospital stay associated with resistantandbacteremia: estimating the burden of antibiotic resistance in Europe. PLoS Med, 2011, 8(10): e1001104.
[3] Carlet J, Collignon P, Goldmann D, et al. Society’s failure to protect a precious resource: antibiotics. Lancet, 2011, 378(9788): 369–371.
[4] 由英國(guó)政府和惠康基金會(huì) (Wellcome Trust) 資助, 以經(jīng)濟(jì)學(xué)家Jim O’Neill為主席的細(xì)菌耐藥性評(píng)估委員會(huì)發(fā)表相關(guān)研究成果. [2016-05-16]. https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf.
[5] Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature, 2016, 529(7586): 336–343.
[6] Boucher HW, Talbot GH, Benjamin DK Jr, et al. 10 x '20 Progress--development of new drugs active against gram-negative bacilli: an update from the infectious diseases Society of America. Clin Infect Dis, 2013, 56(12): 1685–1694.
[7] de La Fuente-Nunez C, Torres MD, Mojica FJ, et al. Next-generation precision antimicrobials: towards personalized treatment of infectious diseases. Curr Opin Microbiol, 2017, 37: 95–102.
[8] Enioutina EY, Teng LD, Fateeva TV, et al. Phytotherapy as an alternative to conventional antimicrobials: combating microbial resistance. Expert Rev Clin Pharmacol, 2017, 10(11): 1203–1214.
[9] Hao HH, Cheng GY, Iqbal Z, et al. Benefits and risks of antimicrobial use in food-producing animals. Front Microbiol, 2014, 5: 288.
[10] Barriere SL. Clinical, economic and societal impact of antibiotic resistance. Expert Opin Pharmacother, 2015, 16(2): 151–153.
[11] Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev, 2010, 74(3): 417–433.
[12] Inoue H, Minghui R. Antimicrobial resistance: translating political commitment into national action. Bull World Health Organ, 2017, 95(4): 242.
[13] Xiao YH, Li LJ. China’s national plan to combat antimicrobial resistance. Lancet Infect Dis, 2016, 16(11): 1216–1218.
[14] Laxminarayan R, Amábile-Cuevas CF, Cars O, et al. UN high-level meeting on antimicrobials—what do we need? Lancet, 2016, 388(10041): 218–220.
[15] Vikesland PJ, Pruden A, Alvarez PJJ, et al. Toward a Comprehensive strategy to mitigate dissemination of environmental sources of antibiotic resistance. Environ Sci Technol, 2017, 51(22): 13061–13069.
[16] Sharma C, Rokana N, Chandra M, et al. Antimicrobial resistance: its surveillance, impact, and alternative management strategies in dairy animals. Front Vet Sci, 2017, 4: 237.
[17] Baquero F, Martínez JL, Cantón R. Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol, 2008, 19(3): 260–265.
[18] Cui LW, Su XZ. Discovery, mechanisms of action and combination therapy of artemisinin. Expert Rev Anti Infect Ther, 2009, 7(8): 999–1013.
[19] Icgen B, Yilmaz F. Co-occurrence of antibiotic and heavy metal resistance in K?z?l?rmak River isolates. Bull Environ Contam Toxicol, 2014, 93(6): 735–743.
[20] Lv L, Yu X, Xu Q, et al. Induction of bacterial antibiotic resistance by mutagenic halogenated nitrogenous disinfection byproducts. Environ Pollut, 2015, 205: 291–298.
[21] Xu YB, Hou MY, Li YF, et al. Distribution of tetracycline resistance genes and AmpC β-lactamase genes in representative non-urban sewage plants and correlations with treatment processes and heavy metals. Chemosphere, 2017, 170: 274–281.
[22] Wong GWK. Reducing antibiotic prescriptions for childhood upper respiratory tract infections. Lancet Glob Health, 2017, 5(12): e1170–e1171.
[23] Bertollo LG, Lutkemeyer DS, Levin AS. Are antimicrobial stewardship programs effective strategies for preventing antibiotic resistance? A systematic review. Am J Infect Control, 2018, doi: 10.1016/j.ajic.2018.01.002.
[24] Zhang QQ, Ying GG, Pan CG, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol, 2015, 49(11): 6772–6782.
[25] Suzuki S, Horinouchi T, Furusawa C. Acceleration and suppression of resistance development by antibiotic combinations. BMC Genomics, 2017, 18: 328.
[26] Rodriguez-Mozaz S, Chamorro S, Marti E, et al. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res, 2015, 69: 234–242.
[27] Devarajan N, Laffite A, Graham ND, et al. Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe. Environ Sci Technol, 2015, 49(11): 6528–6537.
[28] Su JQ, An XL, Li B, et al. Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China. Microbiome, 2017, 5: 84.
[29] Zhang Y, Li AL, Dai TJ, et al. Cell-free DNA: a neglected source for antibiotic resistance genes spreading from WWTPs. Environ Sci Technol, 2018, 52(1): 248–257.
[30] Ma LP, Li B, Jiang XT, et al. Catalogue of antibiotic resistome and host-tracking in drinking water deciphered by a large scale survey. Microbiome, 2017, 5: 154.
[31] Pulcini C, Bush K, Craig WA, et al. Forgotten antibiotics: an inventory in Europe, the United States, Canada, and Australia. Clin Infect Dis, 2012, 54(2): 268–274.
[32] Cassir N, Rolain JM, Brouqui P. A new strategy to fight antimicrobial resistance: the revival of old antibiotics. Front Microbiol, 2014, 5: 551.
[33] Chen FF, Di HX, Wang YX, et al. Small-molecule targeting of a diapophytoene desaturase inhibitsvirulence. Nat Chem Biol, 2016, 12(3): 174–179.
[34] Mouton JW, Ambrose PG, Canton R, et al. Conserving antibiotics for the future: new ways to use old and new drugs from a pharmacokinetic and pharmacodynamic perspective. Drug Resist Updat, 2011, 14(2): 107–117.
[35] Falagas ME, Kasiakou SK. Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit Care, 2006, 10(1): R27.
[36] Deshpande LM, Fritsche TR, Moet GJ, et al. Antimicrobial resistance and molecular epidemiology of vancomycin-resistant enterococci from North America and Europe: a report from the SENTRY antimicrobial surveillance program. Diagn Microbiol Infect Dis, 2007, 58(2): 163–170.
[37] Loewe S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung, 1953, 3(6): 285–290.
[38] Rand KH, Houck H. Daptomycin synergy with rifampicin and ampicillin against vancomycin-resistant enterococci. J Antimicrob Chemother, 2004, 53(3): 530–532.
[39] Fass RJ. Comparativeactivities of beta-lactam-tobramycin combinations againstand multidrug-resistant Gram-negative enteric bacilli. Antimicrob Agents Chemother, 1982, 21(6): 1003–1006.
[40] Scudamore RA, Goldner M. Penetration of the outer membrane ofby synergistic combinations of beta-lactam and aminoglycoside antibiotics. Antimicrob Agents Chemother, 1982, 21(6): 1007–1010.
[41] Zhao WH, Hu ZQ, Okubo S, et al. Mechanism of synergy between epigallocatechin gallate and β-lactams against methicillin-resistant. Antimicrob Agents Chemother, 2001, 45(6): 1737–1742.
[42] Wright GD. Empowering older antibiotics. Cell, 2016, 167(2): 301.
[43] Darwish RM, Aburjai TA. Effect of ethnomedicinal plants used in folklore medicine in Jordan as antibiotic resistant inhibitors on. BMC Complement Altern Med, 2010, 10: 9.
[44] Dudhatra GB, Mody SK, Awale MM, et al. A comprehensive review on pharmacotherapeutics of herbal bioenhancers. Sci World J, 2012, 2012: 637953.
[45] Kumar-Sarangi M, Chandra-Joshi B, Ritchie B. Natural bioenhancers in drug delivery: an overview. P R Health Sci J, 2018, 37(1): 12–18.
[46] Shiota S, Shimizu M, Mizusima T, et al. Restoration of effectiveness of beta-lactams on methicillin-resistantby tellimagrandin I from rose red. FEMS Microbiol Lett, 2000, 185(2): 135–138.
[47] Shimizu M, Shiota S, Mizushima T, et al. Marked potentiation of activity of β-lactams against methicillin-resistantby corilagin. Antimicrob Agents Chemother, 2001, 45(11): 3198–3201.
[48] Cotter PD, Ross RP, Hill C. Bacteriocins-a viable alternative to antibiotics? Nat Rev Microbiol, 2013, 11(2): 95–105.
[49] Cimermancic P, Medema MH, Claesen J, et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell, 2014, 158(2): 412–421.
[50] Lam YC, Crawford JM. Discovering antibiotics from the global microbiome. Nat Microbiol, 2018, 3(4): 392–293.
[51] Garcia-Gutierrez E, Mayer MJ, Cotter PD, et al. Gut microbiota as a source of novel antimicrobials. Gut Microbes, 2018, doi: 10.1080/19490976.2018.1455790.
[52] Donia MS, Cimermancic P, Schulze CJ, et al. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell, 2014, 158(6): 1402–1414.
[53] Walsh CJ, Guinane CM, Hill C, et al.identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project’s reference genome database. BMC Microbiol, 2015, 15: 183.
[54] Hover BM, Kim SH, Katz M, et al. Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat Microbiol, 2018, 3(4): 415–422.
[55] Chu J, Vila-Farres X, Inoyama D, et al. Discovery of MRSA active antibiotics using primary sequence from the human microbiome. Nat Chem Biol, 2016, 12(12): 1004–1006.
[56] Vila-Farres X, Chu J, Inoyama D, et al. Antimicrobials inspired by nonribosomal peptide synthetase gene clusters. J Am Chem Soc, 2017, 139(4): 1404–1407.
[57] Ling LL, Schneider T, Peoples AJ, et al. A new antibiotic kills pathogens without detectable resistance. Nature, 2015, 517(7535): 455–459.
[58] Gavrish E, Sit CS, Cao SG, et al. Lassomycin, a ribosomally synthesized cyclic peptide, killsby targeting the ATP-dependent protease ClpC1P1P2. Chem Biol, 2014, 21(4): 509–518.
[59] Kim W, Zhu WP, Hendricks GL, et al. A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature, 2018, 556(7699): 103–107.
[60] Kim HU, Blin K, Lee SY, et al. Recent development of computational resources for new antibiotics discovery. Curr Opin Microbiol, 2017, 39: 113–120.
[61] Lin DM, Koskella B, Lin HC. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther, 2017, 8(3): 162–173.
[62] Abedon ST. Bacteriophage clinical use as antibacterial “Drugs”: utility and precedent. Microbiol Spectr, 2017, 5(4), doi: 10.1128/microbiolspec.BAD- 0003-2016.
[63] Forde A, Hill C. Phages of life - the path to pharma. Br J Pharmacol, 2018, 175(3): 412–418.
[64] Czaplewski L, Bax R, Clokie M, et al. Alternatives to antibiotics-a pipeline portfolio review. Lancet Infect Dis, 2016, 16(2): 239–251.
[65] Yan JL, Mao JX, Xie JP. Bacteriophage polysaccharide depolymerases and biomedical applications. BioDrugs, 2014, 28(3): 265–274.
[66] Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B. Bacteriophages and phage-derived proteins—applicationapproaches. Curr Med Chem, 2015, 22(14): 1757–1773.
[67] Pires DP, Oliveira H, Melo LD, et al. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol, 2016, 100(5): 2141–2151.
[68] Latka A, Maciejewska B, Majkowska-Skrobek G, et al. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl Microbiol Biotechnol, 2017, 101(8): 3103–3119.
[69] Clift C, Salisbury DM. Enhancing the role of vaccines in combatting antimicrobial resistance. Vaccine, 2017, 35(48 Pt B): 6591–6593.
[70] Laverde D, Probst I, Romero-Saavedra F, et al. Targeting type IV secretion system proteins to combat multidrug-resistant gram-positive pathogens. J Infect Dis, 2017, 215(12): 1836–1845.
[71] Sassone-Corsi M, Chairatana P, Zheng TF, et al. Siderophore-based immunization strategy to inhibit growth of enteric pathogens. Proc Natl Acad Sci USA, 2016, 113(47): 13462–13467.
[72] Fleming-Dutra KE, Hersh AL, Shapiro DJ, et al. Prevalence of inappropriate antibiotic prescriptions among US ambulatory care visits, 2010–2011. JAMA, 2016, 315(17): 1864–1873.
[73] Kwong JC, Maaten S, Upshur RE, et al. The effect of universal influenza immunization on antibiotic prescriptions: an ecological study. Clin Infect Dis, 2009, 49(5): 750–756.
[74] Lipsitch M, Siber GR. How can vaccines contribute to solving the antimicrobial resistance problem? mBio, 2016, 7(3): e00428-16.
[75] Tomczyk S, Lynfield R, Schaffner W, et al. Prevention of antibiotic-nonsusceptible invasive pneumococcal disease with the 13-valent pneumococcal conjugate vaccine. Clin Infect Dis, 2016, 62(9): 1119–1125.
[76] von Gottberg A, de Gouveia L, Tempia S, et al. Effects of vaccination on invasive pneumococcal disease in South Africa. N Engl J Med, 2014, 371(20): 1889–1899.
[77] Anthouard R, DiRita VJ. Chemical biology applied to the study of bacterial pathogens. Infect Immun, 2015, 83(2): 456–469.
[78] Dickey SW, Cheung GYC, Otto M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov, 2017, 16(7): 457–471.
[79] Gupta PD, Birdi TJ. Development of botanicals to combat antibiotic resistance. J Ayurveda Integr Med, 2017, 8(4): 266–275.
[80] Markowiak P, ?li?ewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 2017, 9(9): 1021.
[81] Jamalifar H, Rahimi HR, Samadi N, et al. Antimicrobial activity of differentspecies against multi-drug resistant clinical isolates of. Iran J Microbiol, 2011, 3(1): 21–25.
[82] Mirnejad R, Vahdati AR, Rashidiani J, et al. The antimicrobial effect ofculture supernatant against multiple drug resistant clinical isolates ofand. Iran Red Crescent Med J, 2013, 15(2): 122–126.
[83] Téllez G, Lauková A, Latorre JD, et al. Food-producing animals and their health in relation to human health. Microb Ecol Health Dis, 2015, 26: 25876, doi: 10.3402/mehd.v26.25876.
[84] Manges AR, Steiner TS, Wright AJ. Fecal microbiota transplantation for the intestinal decolonization of extensively antimicrobial-resistant opportunistic pathogens: a review. Infect Dis (Lond), 2016, 48(8): 587–592.
[85] Pieterse R, Todorov SD, Dicks MT. Mode of action andsusceptibility of mastitis pathogens to macedocin ST91KM and preparation of a teat seal containing the bacteriocin. Braz J Microbiol, 2010, 41(1): 133–145.
[86] Nes IF, Johnsborg O. Exploration of antimicrobial potential in LAB by genomics. Curr Opin Biotechnol, 2004, 15(2): 100–104.
[87] Kuwano K, Tanaka N, Shimizu T, et al. Dual antibacterial mechanisms of nisin Z against Gram-positive and Gram-negative bacteria. Int J Antimicrob Agents, 2005, 26(5): 396–402.
[88] Field D, O’Connor R, Cotter PD, et al.activities of nisin and nisin derivatives alone and in combination with antibiotics againstbiofilms. Front Microbiol, 2016, 7: 508.
[89] Field D, Gaudin N, Lyons F, et al. A bioengineered nisin derivative to control biofilms of. PLoS ONE, 2015, 10(3): e0119684.
[90] Xhindoli D, Pacor S, Benincasa M, et al. The human cathelicidin LL-37—A pore-forming antibacterial peptide and host-cell modulator. Biochim Biophys Acta (BBA)-Biomemb, 2016, 1858(3): 546–566.
[91] Propheter DC, Chara AL, Harris TA, et al. Resistin-like molecule β is a bactericidal protein that promotes spatial segregation of the microbiota and the colonic epithelium. Proc Natl Acad Sci USA, 2017, 114(42): 11027–11033.
[92] Sully EK, Geller BL. Antisense antimicrobial therapeutics. Curr Opin Microbiol, 2016, 33: 47–55.
[93] Mondhe M, Chessher A, Goh S, et al. Species-selective killing of bacteria by antimicrobial peptide-PNAs. PLoS ONE, 2014, 9(2): e89082.
[94] Hajipour MJ, Fromm KM, Ashkarran AA, et al. Antibacterial properties of nanoparticles. Trends Biotechnol, 2012, 30(10): 499–511.
[95] Seil JT, Webster TJ. Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine, 2012, 7: 2767–2781.
[96] Gomes F, Henriques M. Control of bovine mastitis: old and recent therapeutic approaches. Curr Microbiol, 2016, 72(4): 377–382.
[97] Veerapandian M, Yun K. Functionalization of biomolecules on nanoparticles: specialized for antibacterial applications. Appl Microbiol Biotechnol, 2011, 90(5): 1655–1667.
[98] Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem, 2009, 17(8): 2950–2962.
[99] Gaucher G, Marchessault RH, Leroux JC. Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. J Control Release, 2010, 143: 2–12.
[100] Subbiah R, Veerapandian M, Yun KS. Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr Med Chem, 2010, 17(36): 4559–4577.
[101] Allahverdiyev AM, Kon KV, Abamor ES, et al. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev Anti Infect Ther, 2011, 9(11): 1035–1052.
[102] Santos RS, Figueiredo C, Azevedo NF, et al. Nanomaterials and molecular transporters to overcome the bacterial envelope barrier: Towards advanced delivery of antibiotics. Adv Drug Deliv Rev, 2017, doi: 10.1016/j.addr.2017.12.010.
[103] Allison KR, Brynildsen MP, Collins JJ. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature, 2011, 473(7346): 216–220.
[104] Bryan LE, van den Elzen HM. Effects of membrane-energy mutations and cations on streptomycin and gentamicin accumulation by bacteria: a model for entry of streptomycin and gentamicin in susceptible and resistant bacteria. Antimicrob Agents Chemother, 1977, 12(2): 163–177.
[105] Kohanski MA, Dwyer DJ, Hayete B, et al. A common mechanism of cellular death induced by bactericidal antibiotics. Cell, 2007, 130(5): 797–810.
[106] Martínez JL, Rojo F. Metabolic regulation of antibiotic resistance. FEMS Microbiol Rev, 2011, 35(5): 768–789.
[107] Peng B, Su YB, Li H, et al. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria. Cell Metab, 2015, 21(2): 249–262.
[108] Alonso A, Morales G, Escalante R, et al. Overexpression of the multidrug efflux pump SmeDEF impairsphysiology. J Antimicrob Chemother, 2004, 53(3): 432–434.
[109] Stickland HG, Davenport PW, Lilley KS, et al. Mutation ofcauses global changes in the physiology and metabolism of. J Proteome Res, 2010, 9(6): 2957–2967.
[110] Citorik RJ, Mimee M, Lu TK. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol, 2014, 32(11): 1141–1145.
[111] Bikard D, Euler CW, Jiang WY, et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol, 2014, 32(11): 1146–1150.
[112] Gomaa AA, Klumpe HE, Luo ML, et al. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio, 2014, 5(1): e00928–13.
[113] Yosef I, Manor M, Kiro R, et al. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci USA, 2015, 112(23): 7267–7272.
[114] Ahmed I, Fang Y, Lu M, et al. Recent patents on light-based anti-infective approaches. Recent Pat Antiinfect Drug Discov, 2017, doi: 10.2174/1872213X11666171108104104.
[115] Kwenda S, Gorshkov V, Ramesh AM, et al. Discovery and profiling of small RNAs responsive to stress conditions in the plant pathogen Pectobacterium atrosepticum. BMC Genomics, 2016, 17: 47.
[116] Molina-Santiago C, Daddaoua A, Gómez-Lozano M, et al. Differential transcriptional response to antibiotics byDOT-T1E. Environ Microbiol, 2015, 17(9): 3251–3262.
[117] Howden BP, Beaume M, Harrison PF, et al. Analysis of the small RNA transcriptional response in multidrug-resistantafter antimicrobial exposure. Antimicrob Agents Chemother, 2013, 57(8): 3864–3874.
[118] Yu J, Schneiders T. Tigecycline challenge triggers sRNA production in Salmonella enterica serovar Typhimurium. BMC Microbiol, 2012, 12: 195.
[119] Chen Y, Indurthi DC, Jones SW, et al. Small RNAs in the genus. mBio, 2011, 2(1): e00340–10.
[120] Kim T, Bak G, Lee J, et al. Systematic analysis of the role of bacterial Hfq-interacting sRNAs in the response to antibiotics. J Antimicrob Chemother, 2015, 70(6): 1659–1668.
[121] Ramos CG, Grilo AM, Sousa SA, et al. Regulation of Hfq mRNA and protein levels inandby theMtvR sRNA. PLoS ONE, 2014, 9(6): e98813.
[122] Jeeves RE, Marriott AAN, Pullan ST, et al.is resistant to isoniazid at a slow growth rate by single nucleotide polymorphisms incodon Ser315. PLoS ONE, 2015, 10(9): e0138253.
[123] Kim JN, Kwon YM. Genetic and phenotypic characterization of the RyhB regulon intyphimurium. Microbiol Res, 2013, 168(1): 41–49.
[124] Chan H, Ho J, Liu XD, et al. Potential and use of bacterial small RNAs to combat drug resistance: a systematic review. Infect Drug Resist, 2017, 10: 521–532.
[125] Greenberg DE, Marshall-Batty KR, Brinster LR, et al. Antisense phosphorodiamidate morpholino oligomers targeted to an essential gene inhibitcomplex. J Infect Dis, 2010, 201(12): 1822–1830.
[126] Geller BL, Deere JD, Stein DA, et al. Inhibition of gene expression inby antisense phosphorodiamidate morpholino oligomers. Antimicrob Agents Chemother, 2003, 47(10): 3233–3239.
[127] Geller BL, Marshall-Batty K, Schnell FJ, et al. Gene-silencing antisense oligomers inhibitgrowthand. J Infect Dis, 2013, 208(10): 1553–1560.
[128] Howard JJ, Sturge CR, Moustafa DA, et al. Inhibition ofby peptide-conjugated phosphorodiamidate morpholino oligomers. Antimicrob Agents Chemother, 2017, 61(4), doi: 10.1128/AAC.01938-16.
[129] Cox JAG, Worthington T. The ‘a(chǎn)ntibiotic apocalypse’-scaremongering or scientific reporting? Trends Microbiol, 2017, 25(3): 167–169.
[130] Sharma A, Kumar AD, Dua M, et al. Nano-technology for targeted drug delivery to combat antibiotic resistance. Expert Opin Drug Deliv, 2012, 9(11): 1325–1332.
(本文責(zé)編 陳宏宇)
Progress in strategies to combat antimicrobial resistance
Yeshi Yin, Huahai Chen, Linyan Cao, Lin Tang, and Fulin He
Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, Hunan, China
Antimicrobial resistance is on the rise while the number of antibiotics being brought to market continues to drop. Drug-resistant genes and drug-resistant bacteria infection have seriously threatened human health. Therefore, antimicrobial resistance presents an ongoing challenge that requires multifaceted approaches including: biomedical innovation; improved surveillance of antibiotic consumption and antimicrobial resistance generated rates; prevention of health-care-associated infections and transmission of multidrug-resistant bacteria and environmental dissemination; rapid microbiological diagnosis; and curtailed clinical and veterinary misuse. Fortunately, combating antimicrobial resistance has been highly valued and supported by the government, scientists and entrepreneurs of various countries. With the continuous introduction of new technologies, new products, and new management measures, the problem of antimicrobial resistance must be controlled and alleviated.
antibiotic, antimicrobial resistance, antibiotic-resistant bacteria, antibiotic-resistant gene
May 26, 2018;
Jun 14, 2018
National Natural Science Foundation of China (No. 31741109), Natural Science Foundation of Hunan Province (No. 2018JJ2146).
Yeshi Yin. Tel/Fax: +86-746-2382989; E-mail: yinyeshi@126.com Fulin He. Tel/Fax: +86-746-6381164; E-mail: 2339695475@qq.com
國(guó)家自然科學(xué)基金 (No. 31741109),湖南省自然科學(xué)基金 (No. 2018JJ2146) 資助。
10.13345/j.cjb.180223