隋成亮 黃照權(quán)
[摘要] miRNA是一類保守的、非編碼的、單鏈的小RNA分子,通過調(diào)節(jié)基因表達(dá)從而在各種生物進(jìn)程中發(fā)揮著重要的生物學(xué)作用。miR-375作為特異的miRNA,最初在胰島β細(xì)胞內(nèi)被發(fā)現(xiàn),同時它也是一種多功能miRNA,它能調(diào)控胰島素的分泌和胰島的形成,更重要的是參與腫瘤的發(fā)生發(fā)展。研究證實miR-375是通過靶向多個重要的致癌基因如AEG-1、YAPI、IGFIR及PDKI等發(fā)揮作用的。研究發(fā)現(xiàn)miRNA-375在肝癌、胃癌等腫瘤中明顯下調(diào),但在乳腺癌和前列腺癌中卻顯著上調(diào),并且miR-375在前列腺癌和乳腺癌中起到促腫瘤生長作用。因此miR-375可能成為調(diào)控腫瘤細(xì)胞生長的一個新靶點,并且miR-375表達(dá)水平的監(jiān)測能促進(jìn)腫瘤的早期診斷和預(yù)后判斷。
[關(guān)鍵詞] 微小RNA-375;胰島β細(xì)胞;腫瘤;診斷
[中圖分類號] R730 [文獻(xiàn)標(biāo)識碼] A [文章編號] 1673-7210(2018)05(a)-0035-04
Advanced in the research of miR-375 on tumor development and diagnosis
SUI Chengliang1 HUANG Zhaoquan2
1.School of Basic Medicine, Guilin Medical University, Guangxi Zhuang Autonomous Region, Guilin 541001, China; 2.Department of Pathology, Affiliated Hospital of Guilin Medical University, Guangxi Zhuang Autonomous Region, Guilin 541001, China.
[Abstract] MicroRNAs (miRNAs) are conserved small non-coding RNAs that play important roles in various biological processes via controlling gene expression. Among them, miR-375 is firstly identified in pancreatic β-cells and proved to regulate insulin secretion and islet formation. Furthermore, it turns that miR-375 is involved in cancer development and progression by targeting several important oncogenes including AEG-1, YAP1, IGF1R and PDK1. Unlike some other cancers, the levels of miR-375 in prostate and breast cancer specifically increase, indicating its action in tumor development. Therefore, miR-375 may be a potential target for suppressing tumor growth, and has the clinical value as a biomarker for early diagnosis and prognosis prediction.
[Key words] miR-375; Pancreatic β-cells; Tumor; Diagnosis
miRNA是長度約22個堿基的單鏈非編碼的小RNA,成熟的miRNA分子是通過RNA聚合酶Ⅱ和核糖核酸酶Ⅲ在細(xì)胞核內(nèi)外加工處理后形成的[1-2],它能夠被導(dǎo)入到RNA誘導(dǎo)的沉默復(fù)合物中,并互補結(jié)合到信使miRNA的3′-UTR非編碼區(qū)導(dǎo)致翻譯抑制[3-5]。miRNA-375是miRNAs家族中高度保守的一員,位于人2號染色體q35,2個編碼基因cryba2和Ccdc108之間[6],miR-375在生物體內(nèi)具有廣泛的基因表達(dá)調(diào)控作用,它的發(fā)現(xiàn)開辟了一個關(guān)于轉(zhuǎn)錄后基因表達(dá)調(diào)控的全新生物領(lǐng)域。miR-375最早發(fā)現(xiàn)于胰島β細(xì)胞內(nèi),參與胰島的形成及胰島素的分泌[7]。隨著對于miRNA表達(dá)譜的深入研究,發(fā)現(xiàn)miR-375廣泛的存在于各組織器官中并且參與多種惡性腫瘤的增殖、轉(zhuǎn)移、凋亡及細(xì)胞周期的調(diào)控,如頭頸部腫瘤、肝癌、食管癌和乳腺癌等[8-11]。
1 miR-375與頭頸部腫瘤
頭頸部腫瘤(hepatocellular carcinoma,HNC)涵蓋廣泛,包括來自口,鼻,咽等上皮惡性腫瘤,絕大部分HNC都是鱗狀細(xì)胞癌。大量的研究表明miR-375是頭頸部腫瘤(HNC)中下降最多的miRNA之一[12]。miR-375的過表達(dá)抑制頭頸部腫瘤細(xì)胞(head and neck squamous cell carcinoma,HNCC)的增殖、轉(zhuǎn)移和侵襲[13-15],同時在HNC中發(fā)現(xiàn)miR-375的直接作用靶點是AEG-1和LDHB[14,16]。這些研究表明了miR-375在HNC中的腫瘤抑制作用。
2 miR-375與食管癌
Mathe等[17]通過170例食管癌患者,用基因芯片技術(shù)檢測其癌組織和癌旁組織中miRNA的表達(dá),結(jié)果發(fā)現(xiàn)miR-375在癌組織中的表達(dá)明顯低于癌旁組織。Kong等[18]闡明了miR-375的腫瘤抑制作用是通過抑制腫瘤細(xì)胞的增殖,體內(nèi)外的克隆和轉(zhuǎn)移實現(xiàn)的,并且發(fā)現(xiàn)了它的一個新靶點——胰島素樣生長因子1受體(insulin-like growth factor 1 receptor,IGFIR1)。IGF結(jié)合到IGFI并誘導(dǎo)受體磷酸化激活下游的信號途徑,如PI3k/Akt信號通路。Li等[19]研究確定3-磷酸肌醇依賴性蛋白激酶1(3-phosphoinositide-dependent protein kinase-1,PDK1)是miR-375的直接靶點。因此,可以推測miR-375可能成為PI3k/Akt信號通路的一個重要的調(diào)節(jié)因子。進(jìn)一步研究發(fā)現(xiàn)miR-375可直接抑制PDKI、IGFIR和AEG-1激活的PI3k/Akt信號通路,從而抑制促進(jìn)食管癌細(xì)胞生長的糖酵解[20-22]。
3 miR-375與肝惡性腫瘤
Yan等[23]比較肝癌組織與正常肝組織中miR-375的表達(dá),發(fā)現(xiàn)miR-375是肝惡性腫瘤中下調(diào)最顯著的miRNA之一,星形膠質(zhì)細(xì)胞升高基因1(astrocyte elevated gene-1,AEG-1)的表達(dá)與miR-375呈負(fù)相關(guān)。研究證實AEG-1是miR-375信號途徑的下游直接靶點[24],進(jìn)一步研究表明AEG-1是重要的癌基因,miR-375通過靶向AEG-1對肝癌細(xì)胞的生長、轉(zhuǎn)移、侵襲起到一定抑制作用[24]。此外,研究發(fā)現(xiàn)miR-375可以通過抑制缺氧誘導(dǎo)的自噬而影響肝癌在缺氧條件下的生存,而且miR-375也能夠抑制LC3Ⅰ向LC3Ⅱ的轉(zhuǎn)化來阻斷自噬體的形成。另外,自噬相關(guān)蛋白7(autophagy-related protein 7,ATG7)介導(dǎo)其他ATGs分子的連接從而促進(jìn)自噬的激活,也被作為miR-375的直接靶點[25]。Liu等[26]發(fā)現(xiàn)miR-375可以通過靶向致癌基因Yes相關(guān)蛋白1(yes-associated protein,YAP1),從而抑制肝惡性腫瘤的發(fā)生發(fā)展。
4 miR-375與胃癌
Ding等[27]研究發(fā)現(xiàn)大量的miR-375在胃惡性腫瘤中顯著低表達(dá),miR-375通過靶向Janus激酶2(janus kinase 2,JAK2)抑制胃癌細(xì)胞的增殖,JAK2和miR-375在胃癌組織中的表達(dá)水平呈負(fù)相關(guān),JAK2表達(dá)下調(diào)后,胃癌細(xì)胞的生長受到抑制。有研究發(fā)現(xiàn)miR-375在胃癌中的腫瘤抑制作用并確定miR-375的兩個靶點[28-29],一個是PDK1,能夠激活蛋白激酶Akt及下游的信號通路途徑,另一個是YWHAZ,屬于高度保守的14-3-3結(jié)合蛋白的致癌基因,能夠結(jié)合大量參與有絲分裂、細(xì)胞生存、細(xì)胞周期和細(xì)胞凋亡調(diào)控的蛋白[30],此外,miR-375靶向的YWHAZ和PDKI都可以誘導(dǎo)胃癌細(xì)胞Caspases的激活[29]。
5 miR-375與骨腫瘤
Shi等[31]通過轉(zhuǎn)染技術(shù),發(fā)現(xiàn)miR-375過表達(dá)抑制骨腫瘤細(xì)胞的增殖,而下調(diào)miR-375的表達(dá)則促進(jìn)骨腫瘤細(xì)胞的生長,并且通過生物信息學(xué)軟件發(fā)現(xiàn)PIK3CA上存在miR-375的結(jié)合位點即3′-UTR,熒光素酶基因報告證實miR-375顯著降低了PIK3CA的活性,且證明PIK3CA是miR-375的直接靶向基因,因此可以得出miR-375直接作用于靶向基因PIK3CA,干預(yù)PI3k/Akt信號通路來抑制腫瘤細(xì)胞的增殖。
6 miR-375與乳腺癌及前列腺癌
miRNA的特征可以作為腫瘤抑制劑,但在某些腫瘤中卻有相反的結(jié)果,例如miR-375在乳腺癌和前列腺癌中是上調(diào)的。Szcczyrba等[32]通過miRNA深層測序技術(shù)發(fā)現(xiàn)miR-375在原發(fā)性前列腺癌中比正常的前列腺組織上調(diào)9.1倍,此外,有研究發(fā)現(xiàn)miR-375在雌激素受體陽性的乳腺癌細(xì)胞系中也呈上調(diào)趨勢[33],而miR-375的低表達(dá)可以抑制乳腺癌細(xì)胞MCF-7的增殖[34]。Giricz等[35]證實miR-375在乳腺小葉腫瘤細(xì)胞中通過乳腺癌細(xì)胞極性的損失和增生表型的獲得而被上調(diào),因此,從目前的研究表明miR-375在多種乳腺癌細(xì)胞中具有腫瘤促進(jìn)作用。
7 miR-375作為腫瘤診斷和預(yù)后的標(biāo)志物之一
早期發(fā)現(xiàn)、早期診斷是改善預(yù)后,提高生存質(zhì)量的關(guān)鍵,miR-375在腫瘤中的差異表達(dá)能夠促進(jìn)早期診斷。Yan等[23]發(fā)現(xiàn)miR-375在腫瘤中普遍降低,表明miR-375可能作為一個理想的標(biāo)志物,并通過原發(fā)性腫瘤和活檢樣本的篩選,證實miR-375可以用來區(qū)分腫瘤的良惡性。Avissar等[36]報道m(xù)iR-221/miR-375的比率可以準(zhǔn)確的區(qū)分頭頸部鱗狀細(xì)胞癌及非癌組織。Wang等[37]證實miR-375、miR-424和miR-92a的綜合利用可以區(qū)分大腸癌標(biāo)本中的腺瘤和高級上皮內(nèi)瘤變。血清中的miR-375也可以作為一種潛在的腫瘤標(biāo)志物,Juzenas等[9]研究發(fā)現(xiàn)胃癌患者血清中miR-375的表達(dá)量明顯低于健康人,因此miR-375的表達(dá)為惡性腫瘤的判斷及早期診斷提供了新的視野,Zhang等[25]研究證明miR-375與胃癌的預(yù)后和復(fù)發(fā)呈正相關(guān)。以上研究充分的說明了miR-375可以作為腫瘤疾病診斷和預(yù)后的標(biāo)志物。
8 展望
到目前為止,低表達(dá)的miR-375在各種腫瘤中主要作為抑制劑,miR-375的許多關(guān)鍵靶向基因已經(jīng)被證實,但參與miR-375的信號通路機制尚未完全闡明。miR-375靶向基因和生物信息學(xué)網(wǎng)絡(luò)調(diào)控的綜合分析對進(jìn)一步闡明miR-375的功能具有重要的意義。此外,最近的研究強調(diào)miR-375在腫瘤的診斷和預(yù)后中具有巨大的潛力,然而miR-375是否可以作為一種治療劑尚未清楚,我們應(yīng)進(jìn)一步研究miR-375的臨床應(yīng)用潛力,將基礎(chǔ)醫(yī)學(xué)結(jié)合于臨床醫(yī)學(xué),對腫瘤的早期診斷、發(fā)展程度、臨床預(yù)后等方面產(chǎn)生深遠(yuǎn)的影響。
[參考文獻(xiàn)]
[1] Lee Y,Ahn C,Han J,et al. The nuclear RNase III Drosha initiates microRNA processing [J]. Nature,2003,425(6956):415-419.
[2] Chendrimada TP,Gregory RI,Kumaraswamy E,et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing [J]. Nature,2005,436(7051):740-744.
[3] Bartel DP. MicroRNAs: genomics,biogenesis,mechanism,and function [J]. Cell,2004,116(2):281-297.
[4] Lewis BP,Burge CB,Bartel DP. Conserved seed pairing,often flanked by adenosines,indicates that thousands of human genes are microRNA targets [J]. Cell,2005,120(1):15.
[5] Gregory RI,Chendrimada TP,Cooch N,et al. Human RISC Couples MicroRNA Biogenesis andPosttranscriptional Gene Silencing [J]. Cell,2005,123(4):631-640.
[6] Baroukh NN,Van OE. Function of microRNA-375 and mic?鄄roRNA-124a in pancreas and brain [J]. Febs J,2009,276(22):6509.
[7] Poy M N,Eliasson L,Krutzfeldt J,et al. A pancreatic islet-specific microRNA regulates insulin secretion [J]. Nature,2004,432(7014):226-230.
[8] Chendrimada TP,Gregory RI,Kumaraswamy E,et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing [J]. Nature,2005,436(7051):740-744.2011,17(24):7539-7550.
[9] Juzenas S,Saltenien V,Kupcinskas J,et al. Analysis of deregulated microRNAs and their target genes in gastric cancer [J]. PloS One,2015,10(8):e0 135 762.
[10] Chang Y,Yan W,He X,et al. miR-375 inhibits autop?鄄hagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions [J]. Gastroenterology,2012, 143(1):177-187.
[11] Rotkrua P,Akiyama Y,Hashimoto Y,et al. MiR-9 downr?鄄egulates CDX2 expression in gastric cancer cells [J]. International Journal of Cancer,2011,129(11):2611-2620.
[12] Argiris A,Karamouzis MV,Raben D,et al. Head and neck cancer [J]. N Engl J Med,1993,328(24):1783.
[13] Avissar M,Christensen BC,Kelsey KT,et al. MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma [J]. Clin Cancer Res,2009,15(8):2850.
[14] Hui AB,Bruce JP,Alajez NM,et al. Significance of dysregulatedmetadherin and microRNA-375 in head and neck cancer [J]. Clin Cancer Res,2011,17(24):7539-50.
[15] Harris T,Jimenez L,Kawachi N,et al. Low-level expression of miR-375 Correlates with Poor Outcome and metastasis while altering the invasive properties of head and neck squamous cell carcinomas [J]. Am J Pathol,2012,180(3):917-928.
[16] Kinoshita T,Nohata N,Yoshino H,et al. Tumor suppressive microRNA-375 regulates lactate dehydrogenase B in,maxillary sinus squamous cell carcinoma [J]. Int J of Oncol,2012,40(1):185.
[17] Mathe EA,Nguyen GH,Bowman ED,et al. MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus:associations with survival [J]. Clin Cancer Res,2009,15(19):6192-6200.
[18] Kong K L,Kwong D L,Chan T H,et al. MicroRNA-375 inhibits tumour growth and metastasis in oesophageal squamous cell carcinoma through repressing insulin-like growth factor 1 receptor [J]. Gut,2012,61(1):33-42.
[19] Li X,Lin R,Li J. Epigenetic silencing of microRNA-375 regulates PDK1 expression in esophageal cancer [J]. Dig Dis Sci,2011,56(10):2849-2856.
[20] Alessi DR,James SR,Downes CP,et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha [J]. Curr Biol,1997,7(4):261.
[21] Alessi DR,Andjelkovic M,Caudwell B,et al. Mechanism of activation of protein kinase B by insulin and IGF-1 [J]. Embo J,1996,15(23):6541-6551.
[22] Lee SG,Su ZZ,Emdad L,et al. Astrocyte elevated gene-1 activates cell survival pathways through PI3K-Akt signaling [J]. Oncogene,2008,27(8):1114-1121.
[23] Yan JW,Lin JS,He XX. The emerging role of miR-375 in cancer [J]. Inter J Cancer,2014,135(5):1011-1018.
[24] He XX,Chang Y,Meng FY,et al. MicroRNA-375 targets AEG-1 in hepatocellular carcinoma and suppresses liver cancer cell growth in vitro and in vivo [J]. Oncogene,2012, 31(28):3357.
[25] Zhang X,Yan Z,Zhang J,et al. Combination of hsa-miR-375 and hsa-miR-142-5p as a predictor for recurrence risk in gastric cancer patients following surgical resection [J]. Ann Oncol,2011,22(10):2257.
[26] Liu AM,Poon RTP,Luk JM. MicroRNA-375 targets Hippo-signaling effector YAP in liver cancer and inhibits tumor properties [J]. Biochem Biophys Res Commun,2010, 394(3):623-627.
[27] Ding L,Xu Y,Zhang W,et al. MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2 [J]. Cell Res,2010,20(7):784-793
[28] El Ouaamari A,Baroukh N,Martens GA,et al. miR-375 targets PDK1 and regulates glucose-induced biological responses in pancreatic beta-cells [J]. Diabetes,2008,57(10):2708-2717.
[29] Tsukamoto Y,Nakada C,Noguchi T,et al. MicroRNA-375 Is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3 [J]. Cancer Res,2010,70(6):2339-2349.
[30] Tzivion G,Gupta VS,Kaplun L,et al. 14-3-3 proteins as potential oncogenes [J]. Semin Cancer Biol,2006,16(3):203.
[31] Shi ZC,Chu XR,Wu YG,et al. MicroRNA-375 functions as a tumor suppressor in osteosarcoma by targeting PIK3CA [J]. Tumor Biol,2015,36(11):8579-8584.
[32] Szczyrba J,Nolte E,Wach S,et al. Downregulation of Sec 23A protein by miRNA-375 in prostate carcinoma [J]. Mol Cancer Res Mcr,2011,9(6):791.
[33] Simonini PDSR,Breiling A,Gupta N,et al. Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor in breast cancer cells [J]. Cancer Res,2010,70(22):9175.
[34] Jonsdottir K,Janssen SR,Rosa FCD,et al. Validation of expression patterns for Nine miRNAs in 204 lymph-node negative breast cancers [J]. PloS One,2012,7(11):e48 692.
[35] Giricz O,Reynolds P A,Ramnauth A,et al. Hsa-miR-375 is differentially expressed during breast lobular neoplasia and promotes loss of mammary acinar polarity [J]. JPathol,2012,226(1):108-19.
[36] Avissar M,Christensen BC,Kelsey KT,et al. MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma [J]. Clin Cancer Res,2009,15(8):2850.
[37] Wang S,Wang L,Bayaxi N,et al. A microRNA panel to discriminate carcinomas from high-grade intraepithelial neoplasms in colonoscopy biopsy tissue [J]. Gut,2013,62(2):280-289.
(收稿日期:2018-01-05 本文編輯:蘇 暢)