周云賈凡丁 奚樹杭
摘 要:基于貝葉斯理論的抽樣方法,對結(jié)構(gòu)的多模型結(jié)構(gòu)識別問題進(jìn)行試驗研究.采用基于貝葉斯理論的多模型結(jié)構(gòu)識別的概念與基本框架,以及馬爾科夫鏈-蒙特卡洛模擬(MCMC),建立了有限元模型庫.針對MCMC在參數(shù)維度較高時不易收斂和計算效率低下等問題,提出了一種改進(jìn)的MCMC抽樣方法來進(jìn)行多模型結(jié)構(gòu)識別.利用Matlab-Strand7的交互訪問技術(shù)(API)能夠進(jìn)行大型結(jié)構(gòu)有限元模型的參數(shù)自動修正,在獲得校驗后的有限元模型庫后,能基于有限元模型的后驗概率分布進(jìn)行預(yù)測.為了驗證該理論的可行性和有效性,針對一根簡支梁的數(shù)值算例和一座實際大跨鋼管混凝土桁架系桿拱橋進(jìn)行了基于貝葉斯理論的結(jié)構(gòu)識別研究與響應(yīng)評估,并使用傳統(tǒng)的單模型結(jié)構(gòu)識別方法——遺傳算法(GA)進(jìn)行對比分析,結(jié)果表明本文提出的基于貝葉斯理論的多模型結(jié)構(gòu)識別方法能夠更好地進(jìn)行結(jié)構(gòu)響應(yīng)預(yù)測.
關(guān)鍵詞:結(jié)構(gòu)識別;多模型方法;貝葉斯理論;馬爾科夫鏈的蒙特卡洛模擬;橋梁結(jié)構(gòu)
中圖分類號:TU317.1, TU279.7 文獻(xiàn)標(biāo)志碼:A
Experiment Research on Multi-model Structural Identification Theory Based on Bayesian Theory
ZHOU Yun1,2?, JIA Fanding1, XI Shuhang1
(1. College of Civil Engineering, Hunan University, Changsha 410082, China;
2. Hunan Provincial Key Laboratory of Damage Detection, Hunan University, Changsha 410082, China)
Abstract: In this paper, the issue related to multi-model structural identification (MM St-Id) has been researched based on Bayesian theory. The concept and basic framework of MM St-Id method based on Bayesian theory were introduced, and then the Markov chain - Monte Carlo simulation (MCMC) was utilized to build finite element (FE) model libraries. Since MCMC is not easy to converge and it has low calculation efficiency when the parameters have high dimensions, an improved MCMC sampling method for MM St-Id is introduced. The Matlab-Strand7 Application Programming Interface (API) strategy can be used to update the parameters of large structural FE model automatically. After the calibrated FE model libraries were established, they can be used to predict the responses based on the posterior probability distribution of the FE models. In order to verify the feasibility and effectiveness of the proposed theory, a numerical example of a simply-supported beam and an on-site large concrete-steel tubular truss arch bridge St-Id were researched based on Bayesian theory and response prediction. A simple model St-Id method -genetic algorithm (GA) is used to compare. The results show that the proposed MM St-Id method based on Bayesian theory is much better in structural response prediction.
Key words: structural identification (St-Id); multi-model method; Bayesian theory; MCMC; bridge structurse
結(jié)構(gòu)識別是一門跨學(xué)科的綜合性研究,“結(jié)構(gòu)識別” (St-Id)的概念是在20世紀(jì)70年代由Liu和Yao[1]最先提出的.傳統(tǒng)的結(jié)構(gòu)識別一般是基于單模型識別方法:它通過調(diào)整模型參數(shù)尋找一個滿足目標(biāo)函數(shù)最小的模型來反映實際結(jié)構(gòu)的真實狀態(tài),在模型結(jié)構(gòu)選定的情況下,其本質(zhì)屬于參數(shù)優(yōu)化問題.然而,由于偶然誤差與認(rèn)知誤差的存在,利用單模型結(jié)構(gòu)識別經(jīng)常會造成結(jié)構(gòu)參數(shù)識別問題的誤判且與實際情況不符,因此多模型結(jié)構(gòu)識別的方法應(yīng)運而生并快速發(fā)展.
在過去的近20年里,瑞士聯(lián)邦理工學(xué)院的Smith教授研究團(tuán)隊對多模型結(jié)構(gòu)識別方法開展了大量研究:1998年,Raphael和Smith[2]提出了多模型方法,并通過模型誤差和實驗誤差形成閾值,用以消除單模型的誤差.2005年,Robert-Nicoud等[3]發(fā)現(xiàn)誤差的相互補(bǔ)償可能導(dǎo)致識別模型發(fā)生錯誤.2010年,Goulet等[4]提出了一種基于不確定參數(shù)和建模假設(shè)的多模型結(jié)構(gòu)識別方法,并對Langensand橋的結(jié)構(gòu)性能進(jìn)行了評估,候選模型預(yù)測顯示位移測量相對誤差僅為4%~7%. 2016年,Pasquier等[5]利用一種新穎的針對服役久的復(fù)雜結(jié)構(gòu)的多模型識別迭代理論對新澤西州的一座混凝土橋進(jìn)行了識別研究.