于佳動,趙立欣,馮 晶,姚宗路,黃開明,羅 娟,魏世萌
?
噴淋次數(shù)和接種量對序批式秸稈牛糞混合干發(fā)酵產(chǎn)氣性能的影響
于佳動,趙立欣※,馮 晶,姚宗路,黃開明,羅 娟,魏世萌
(農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計研究院農(nóng)村能源與環(huán)保研究所,農(nóng)業(yè)農(nóng)村部農(nóng)業(yè)廢棄物能源化利用重點實驗室,北京 100125)
序批式干法厭氧發(fā)酵產(chǎn)沼氣技術(shù)可明顯提高有機廢棄物處理能力,但在提高以秸稈為主的農(nóng)業(yè)廢棄物發(fā)酵效率核心工藝及產(chǎn)氣性能方面還缺乏系統(tǒng)的研究。該文通過調(diào)節(jié)噴淋次數(shù)和接種量研究了以玉米秸稈為主要原料的序批式干法厭氧發(fā)酵產(chǎn)氣性能,并通過模型擬合、水解產(chǎn)物分析等手段揭示了影響水解和甲烷生產(chǎn)的制約因素。結(jié)果表明,調(diào)節(jié)噴淋次數(shù)和接種量均對沼氣產(chǎn)量具有顯著性影響(<0.05)。噴淋次數(shù)為4次/d,接種量不低于質(zhì)量分數(shù)20%時,沼氣產(chǎn)量最大為251.6 L/kg。而且,產(chǎn)氣高峰期甲烷體積分數(shù)平均為55%左右。增加接種量、提高噴淋次數(shù)可有效促進底物的水解。但是,甲烷產(chǎn)量、最大產(chǎn)甲烷率卻呈現(xiàn)先增加后降低的趨勢,并明顯受到有機酸(丙酸)、氨氮積累濃度的制約,水解產(chǎn)物高效轉(zhuǎn)化對提高產(chǎn)氣效率具有重要作用。該研究可為改善秸稈序批式干法厭氧發(fā)酵工藝優(yōu)化提供理論指導。
秸稈;甲烷;水解;序批式干法厭氧發(fā)酵;噴淋次數(shù);接種量
秸稈是中國主要的農(nóng)業(yè)廢棄物資源,可收集量為9億t。近年來,秸稈綜合利用不斷加強,利用率為80.11%。然而,受到地區(qū)性、季節(jié)性、結(jié)構(gòu)性等因素的影響,秸稈過?,F(xiàn)象依然嚴重,露天焚燒屢禁不止,還田不當易導致土地肥力下降、農(nóng)田病蟲害的發(fā)生[1]。秸稈資源處置依然嚴峻,仍需尋找規(guī)?;⒏哔|(zhì)化、無污染的利用方式,提高處理效率和能源產(chǎn)出。
干法厭氧發(fā)酵是原料含固率(total solid)≥15%的沼氣生產(chǎn)技術(shù),是規(guī)?;幚碛袡C廢棄物生產(chǎn)清潔能源的重要途徑。歐洲發(fā)達國家約60%的新建沼氣工程選擇高含固率(干法)厭氧發(fā)酵技術(shù),其中,處理農(nóng)業(yè)廢棄物(秸稈類)占工程數(shù)量的30%,產(chǎn)業(yè)化發(fā)展近30 a[2]。原料處理量大、運行能耗低、節(jié)約用水是其顯著特點,同時,工程占地面積小,容積產(chǎn)氣效率高,發(fā)酵剩余物沼渣無需固液分離便可用于有機肥的生產(chǎn),原料適應(yīng)范圍廣,適合處理難降解有機廢棄物[3]。在中國,廢棄秸稈以干黃秸稈為主,含水率低,質(zhì)地堅韌,主要成分由纖維素、半纖維素、木質(zhì)素組成,屬于難降解有機廢棄物[4]。目前,以秸稈為主要原料的沼氣工程均采用濕法厭氧發(fā)酵技術(shù)(TS<15%),但是,進出料過程易堵塞,對原料粒徑要求高,攪拌能耗高,需要大量水稀釋原料等問題限制了秸稈沼氣工程的進一步發(fā)展[5]。利用序批式干法厭氧發(fā)酵技術(shù),不僅可解決上述問題,同時,還大幅增加了秸稈處理量和單位容積產(chǎn)氣效率,可在秸稈相對集中地區(qū)推廣使用[6]。然而,序批式厭氧干發(fā)酵技術(shù)在中國尚處于中試階段,對以秸稈為主要原料的研究較少,圍繞影響序批式干法厭氧發(fā)酵效率的關(guān)鍵技術(shù)問題,如影響傳質(zhì)效率、產(chǎn)氣抑制因素等方面還需進一步探明。
噴淋是提高序批式干法厭氧發(fā)酵物質(zhì)流動的重要手段,通過滲濾液回流噴淋提高物料含水率,可為微生物提供主動轉(zhuǎn)移機制,加速物質(zhì)間轉(zhuǎn)化。歐洲Bioferm、BECON、GICON公司的序批式干法厭氧發(fā)酵沼氣工程,均通過有效地噴淋調(diào)節(jié),改善體系物料的傳質(zhì)速率,產(chǎn)氣效率得到增強。而且,每種發(fā)酵原料的最優(yōu)噴淋策略各不相同,常以噴淋次數(shù)為優(yōu)化對象[7-8]。而提高接種量是促進物質(zhì)轉(zhuǎn)化更加直接的方法,序批式干法厭氧發(fā)酵接種量折合成質(zhì)量分數(shù),一般為20%~40%,接種量過高易影響體系的容積產(chǎn)氣效率[9-10]。然而,在優(yōu)化噴淋和接種量參數(shù)過程中,對序批式干法厭氧發(fā)酵的產(chǎn)氣規(guī)律和發(fā)酵性質(zhì)研究還不夠深入,特別是以秸稈為主要原料的序批式干法厭氧發(fā)酵過程,噴淋和接種量如何影響體系的發(fā)酵性質(zhì),還有待進一步研究。
本文以玉米秸稈為主要原料,考慮到維持微生物發(fā)酵適宜的碳氮比((2 530) : 1)[11],添加少量牛糞,使發(fā)酵初始干物質(zhì)物料配比為7 : 3。另一方面,規(guī)?;B(yǎng)殖場清糞工藝正在發(fā)生改變,添加部分干清糞,可反映當前農(nóng)村的種養(yǎng)結(jié)構(gòu),使干發(fā)酵工藝更加適應(yīng)以秸稈為主的農(nóng)村廢棄物[12]。在此種物料配比下,通過控制噴淋次數(shù)和接種量,研究序批式干法厭氧發(fā)酵性質(zhì),揭示不同發(fā)酵階段物質(zhì)間的變化規(guī)律。
玉米秸稈取自河北省張家口市崇禮縣某農(nóng)場,取回后,粉碎至粒徑1~3 cm,試驗室通風處保存,混料前,測定秸稈TS為89.45%±0.78%。牛糞取自河北省廊坊市三河市某使用干清糞收集工藝的規(guī)?;?,在試驗室常溫下(25 ℃)保存,取用前,測定牛糞TS為23.89%± 0.55%,揮發(fā)性固體(volatile solid)為15.02%±0.36%。
接種物為北郎中沼氣廠(順義區(qū)趙全營鎮(zhèn),北京)濕法厭氧發(fā)酵罐底部出料濃縮后的污泥,在試驗室厭氧發(fā)酵罐內(nèi)培養(yǎng)至不產(chǎn)氣,測定TS為31.15% ± 0.15%,VS為17.46% ± 0.18%。
發(fā)酵罐為圓柱形結(jié)構(gòu),有效體積為10 L,高徑比為2 : 1,主體材料為有機玻璃材質(zhì),罐底橫截面裝有布滿直徑為5 mm圓孔篩板,用于盛放混合物料,下方留有一定的滲濾液暫存空間,并設(shè)置取樣口,便于對滲濾液取樣,其余滲濾液沿管路流入位于發(fā)酵罐下方有效體積為5 L的滲濾液儲存罐。位于發(fā)酵罐頂中心處裝有圓形噴淋頭,噴孔孔徑為3 mm,來自滲濾液儲存罐中的液體沿回流管路至噴淋頭均勻噴灑物料,液體沿物料孔隙滲濾,經(jīng)篩板返回至滲濾液儲存罐形成循環(huán)。噴淋-滲濾循環(huán)系統(tǒng)通過流量為2 L/min的蠕動泵(BT 600-2J,保定蘭格,中國)和定時開關(guān)實現(xiàn)自動控制。罐體裝有保溫夾套,通過水浴循環(huán)維持罐體溫度恒定。產(chǎn)生的沼氣通過濕式氣體流量計用連接氣袋收集。
試驗設(shè)定原料初始TS為25%,玉米秸稈和牛糞的物料配比(TS)為7 : 3;接種量參照國外工程經(jīng)驗,按質(zhì)量分數(shù)設(shè)定為10%、20%、30%;噴淋策略借鑒國內(nèi)外研究進展和預(yù)試驗結(jié)果,噴淋次數(shù)相比噴淋量更能引起干發(fā)酵體系沼氣產(chǎn)量的變化,并便于工程實踐調(diào)控[8],本試驗以每天噴淋的次數(shù)計,設(shè)定噴淋次數(shù)分別3、4、6和12次/d,每次噴淋量均為1 L,每個噴淋條件下噴淋結(jié)束到下次開始噴淋的時間間隔相等。試驗共進行12組。
發(fā)酵周期為40 d,發(fā)酵溫度為(38±0.5)℃。每天測定沼氣產(chǎn)量、甲烷含量和pH值。取發(fā)酵前期11 d和后期35 d滲濾液分析總有機酸及其組分(乙酸、丙酸、丁酸、戊酸)、氨氮(NH4+-N)濃度。
TS、VS采用APHA方法測定[13];每日沼氣產(chǎn)量和甲烷含量分別使用濕式氣體流量計(LMF-1)和便攜式沼氣成分分析儀(Biogas Check,Geotech,英國)測定,累積沼氣產(chǎn)量、甲烷產(chǎn)量(L/kg)的計算參照文獻[14];pH值使用上海三信儀表廠生產(chǎn)的便攜式pH計(SX-610)測定;有機酸(mg/L)采用氣相色譜法測定,測試前樣品需12 000 r/min離心30 min,取上清過0.22m濾膜,過濾后的液體與甲酸1 : 1混合后上機測試,測定程序及方法參照文獻[15];NH4+-N濃度(mg/L)采用水楊酸-紫外可見分光光度計法測定[13]。
數(shù)據(jù)處理與分析使用Microsoft Excel 2016 Pro、Origin v9.0軟件。序批式干法厭氧發(fā)酵過程水解常數(shù)通過First-Order(FO)水解模型擬合,預(yù)測水解速率。如公式(1)所示[16]。
式中K為水解速率;為時刻的累積甲烷產(chǎn)量,L/kg;max為最終累積甲烷產(chǎn)量,L。
使用修正的Gompertz模型對序批式干法厭氧發(fā)酵產(chǎn)甲烷過程進行擬合,預(yù)測體系最大產(chǎn)甲烷量(L/kg)、最大產(chǎn)甲烷速率(L/(kg·d))和延滯期(d),如公式(2)所示[17]。
式中0為最終甲烷產(chǎn)量,L/kg;max為最大產(chǎn)甲烷速率,L/(kg·d);為延滯期,d;為常數(shù),取值2.72;為發(fā)酵時間,d。
不同噴淋次數(shù)和接種量對序批式干法厭氧發(fā)酵沼氣產(chǎn)量的影響如圖1所示,當接種量為10%時(圖1a),噴淋次數(shù)對沼氣產(chǎn)量具有顯著影響(<0.05),噴淋次數(shù)過少或過多均不利于體系的沼氣生產(chǎn),當噴淋次數(shù)為4次/d時,沼氣產(chǎn)量最大,為164.7 L/kg;當接種量提高到20%時(圖1b),沼氣產(chǎn)量得到明顯提升的同時還縮短了啟動時間,特別是接種量20%、噴淋次數(shù)為12次/d時,與接種量為10%、噴淋次數(shù)為12次/d相比,沼氣產(chǎn)量提高了76.8%,啟動時間縮短近5 d。噴淋次數(shù)為4次/d時,沼氣產(chǎn)量最大,為222.1 L/kg;接種量提高到30%時(圖1c),沼氣產(chǎn)量升高趨勢放緩,與接種量為20%相比,沼氣產(chǎn)量平均提高了12.8%,噴淋次數(shù)對沼氣產(chǎn)量的影響依然顯著(<0.05),沼氣產(chǎn)量最高為4次/d,最低為12次/d,最大沼氣產(chǎn)量為251.6 L/kg。Pezzolla等在研究噴淋次數(shù)對農(nóng)業(yè)廢棄物序批式干法厭氧發(fā)酵產(chǎn)氣效果影響時指出,噴淋次數(shù)在一定范圍內(nèi)(0~6次/d),增加噴淋次數(shù)有利于干發(fā)酵體系物質(zhì)轉(zhuǎn)化,促進沼氣生產(chǎn)[18-19]。然而,當噴淋次數(shù)過高,易引起反應(yīng)體系的酸化,同時,滲濾液的沖刷作用將影響產(chǎn)甲烷菌群的穩(wěn)定性,適合一種物料的噴淋次數(shù)范圍較窄,過高或過低均不利于序批式干法厭氧發(fā)酵沼氣產(chǎn)量的提高[8]。本研究中,在不同接種量條件下,沼氣產(chǎn)量排在前2位的噴淋次數(shù)為4和6次/d。另外,當接種量為20%時,可保證干發(fā)酵體系的啟動效率和產(chǎn)氣水平,繼續(xù)提高接種量,對產(chǎn)氣效率影響不明顯,而接種量為10%時,由于干發(fā)酵體系缺乏足夠的接種物,導致體系產(chǎn)氣效率下降。所以,當秸稈-牛糞TS比例為7 : 3時,應(yīng)至少滿足接種量為20%,噴淋次數(shù)為4次/d,產(chǎn)氣快速增長期平均為15 d。
圖1 序批式干法厭氧發(fā)酵沼氣產(chǎn)量的變化
序批式干法厭氧發(fā)酵在不同噴淋次數(shù)和接種量作用下的甲烷含量如圖2所示,甲烷含量整體呈現(xiàn)先增加后降低的趨勢,產(chǎn)氣高峰甲烷體積分數(shù)在55%左右。接種量為10%時,在不同噴淋次數(shù)的影響下,甲烷含量上升速度差異明顯,噴淋次數(shù)增加,甲烷體積分數(shù)達到50%以上的時間分別為15、11、16和15 d,噴淋次數(shù)為4次/d時,甲烷含量率先出現(xiàn)高峰,而其他噴淋條件甲烷含量高峰平均后移5 d,噴淋次數(shù)過多,不利于體系甲烷含量的提升,36 d后,噴淋次數(shù)對甲烷含量影響不顯著(>0.05);隨著接種量進一步提升(圖2b、圖2c),噴淋次數(shù)對甲烷含量的影響作用逐漸減弱,接種量對甲烷含量的影響并不顯著(>0.05)。當體系接種物濃度低、噴淋次數(shù)高時,不利于甲烷含量的提升,使干發(fā)酵體系缺乏充足的產(chǎn)甲烷菌及時轉(zhuǎn)移中間產(chǎn)物(有機酸)進行甲烷生產(chǎn)[20]。另外,發(fā)酵20 d后,甲烷含量下降明顯,可能是由于體系可溶性物質(zhì)消耗殆盡,剩余的纖維素、木質(zhì)素等不溶性物質(zhì)不能被水解細菌進一步利用,導致產(chǎn)甲烷菌營養(yǎng)物質(zhì)匱乏,甲烷生產(chǎn)效率降低[21-22]。另一方面,序批式干法厭氧發(fā)酵后期,易受到氨抑制的影響,產(chǎn)甲烷菌活性降低[23]。
圖2 序批式干法厭氧發(fā)酵甲烷含量的變化
分別使用First-order水解模型和修正的Gompertz產(chǎn)甲烷預(yù)測模型對序批式干法厭氧發(fā)酵過程的水解速率常數(shù)、甲烷產(chǎn)量、最大甲烷產(chǎn)率和延滯期進行預(yù)測(表1),當水解模型2>0.80、甲烷生產(chǎn)模型2>0.99,擬合數(shù)值可反映真實的水解和產(chǎn)甲烷性質(zhì)[16-17]。水解常數(shù)()表征干發(fā)酵體系每天有機物的水解速率,值隨著接種量的提高而明顯升高,接種量為30%與10%相比,水解速率提高了20%~30%。在每種接種量條件下,增加噴淋次數(shù),值逐漸升高,噴淋次數(shù)的提升顯著促進了干發(fā)酵體系的水解效率(0.05)。
表1 模型擬合參數(shù)
接種量提高對甲烷產(chǎn)量具有促進作用,特別是接種量從10%增加到20%,在相同噴淋次數(shù)情況下的甲烷產(chǎn)量增加了24.7%~62.1%。接種量相同時,隨著噴淋次數(shù)增加,甲烷產(chǎn)量呈現(xiàn)先增加后降低的趨勢,噴淋次數(shù)過高(12次/d)不利于甲烷生產(chǎn),當噴淋次數(shù)為4次/d時,甲烷產(chǎn)量最大;最大甲烷產(chǎn)率的變化趨勢與甲烷產(chǎn)量變化相同,增加接種量可明顯提高相同噴淋次數(shù)下的最大甲烷產(chǎn)率,接種量為30%,噴淋次數(shù)為4次/d時,最大甲烷產(chǎn)率達到7.81 L/(kg·d);接種量低,顯著增加了產(chǎn)甲烷的延滯期,接種量為10%與20%、30%相比,延滯期分別增加了30.6%和89.2%。除了接種量為30%、噴淋次數(shù)為12次/d處理以外,減少噴淋次數(shù),可有效降低甲烷生產(chǎn)延滯期,有利于促進干發(fā)酵體系的啟動效率??刂茋娏艽螖?shù)為4次/d,提高接種量可使產(chǎn)甲烷延滯期減少到約5d。
在序批式干法厭氧發(fā)酵體系中,增加噴淋次數(shù)有利于提高水解速率,滲濾液高頻次噴淋增加了罐內(nèi)物料的水分含量,促進物質(zhì)間的擴散速率,加之微生物反應(yīng)活性提高,促進了體系的傳質(zhì)效率[20]。值得注意的是,雖然水解速率隨噴淋次數(shù)增加而提高,但是,對甲烷產(chǎn)量的促進并不顯著(>0.05)。Guendouz等研究表明,促進水解效率并不能直接影響甲烷產(chǎn)量,限制序批式干法厭氧發(fā)酵產(chǎn)氣效率的重要步驟是水解產(chǎn)物的及時轉(zhuǎn)化,可通過改變工藝參數(shù),達到促進水解產(chǎn)物轉(zhuǎn)化是序批式干法厭氧發(fā)酵的關(guān)鍵技術(shù)環(huán)節(jié),當體系中有足夠的接種物或通過調(diào)節(jié)噴淋次數(shù)維持穩(wěn)定的古菌環(huán)境時,將有利于產(chǎn)甲烷效率的提高[24]。本研究通過直接增加接種量和優(yōu)化噴淋次數(shù)的方式提高了體系的甲烷產(chǎn)量,將對水解產(chǎn)物性質(zhì)作進一步分析。
有機酸及其組分、氨氮是厭氧發(fā)酵過程中重要的水解產(chǎn)物,其累積濃度決定甲烷生產(chǎn)效率[6]。從圖3有機酸質(zhì)量濃度可以看出,發(fā)酵前期(11 d)總有機酸質(zhì)量濃度維持在1 302~1 956 mg/L,接種量為20%時,有機酸積累質(zhì)量濃度變化不明顯,基本維持在1 481 mg/L,而接種量為10%處理有機酸累積質(zhì)量濃度達到1 718 mg/L,進一步提高接種量,加速了對有機酸的消耗,接種量為30%的處理比10%和20%的處理有機酸積累濃度降低了7.3%~25.3%。干發(fā)酵體系有機酸質(zhì)量濃度升高可直接影響了沼氣產(chǎn)量和甲烷含量,第2.1節(jié)和2.2節(jié)研究指出,接種量為10%時,沼氣產(chǎn)量明顯低于接種量為20%和30%處理。噴淋次數(shù)提高,有機酸質(zhì)量濃度呈現(xiàn)先降低再升高的趨勢,噴淋次數(shù)在3~6次/d時,有機酸質(zhì)量濃度差異不顯著(>0.05),當噴淋次數(shù)達到12次/d時,有機酸發(fā)生明顯的積累,接種量為10%和20%條件下噴淋次數(shù)為12次/d與3~6次/d相比,有機酸質(zhì)量濃度提高了19.4%和14.9%。提高噴淋次數(shù)可加速底物的水解,提高水解酸化細菌的反應(yīng)速率(第2.3節(jié)),但是,對于甲烷生產(chǎn)而言,噴淋次數(shù)過高加速了有機酸的積累,特別在接種量為10%時,噴淋頻率增加導致有機酸質(zhì)量濃度從1 510 mg/L提高到1 956 mg/L,繼續(xù)轉(zhuǎn)化受到抑制,體系pH值下降至5.9,導致沼氣產(chǎn)量也隨之下降,適宜的噴淋次數(shù)和增加接種量,有利于有機酸的快速消耗,使pH值保持在中性,提高了產(chǎn)氣效率(2.1節(jié)、2.2節(jié))。從有機酸組成情況可以看出,乙酸、丁酸、戊酸質(zhì)量濃度較低,平均維持在142 mg/L左右,丙酸積累是干發(fā)酵體系的顯著特點,發(fā)酵前期丙酸含量占總有機酸含量的58.2%~79.9%,最高質(zhì)量濃度達到1 563 mg/L(接種量為10%,噴淋間隔為12次/d)。Zahedi 等[25-26]對干法厭氧發(fā)酵產(chǎn)酸特性研究時均發(fā)現(xiàn)明顯的丙酸累積現(xiàn)象。任南琪等[27]研究表明,導致厭氧發(fā)酵體系丙酸積累的原因可能和NADPH的濃度有關(guān),當微生物細胞轉(zhuǎn)化NADPH受到阻礙,易導致丙酸濃度上升。發(fā)酵后期,有機酸幾乎被微生物利用完全。pH值變化與有機酸含量呈現(xiàn)顯著的負相關(guān)性(<0.05)。
氨氮質(zhì)量濃度的變化如圖3所示,在發(fā)酵前期(11 d),氨氮質(zhì)量濃度保持在214.7~375.3 mg/L,增加噴淋次數(shù),氨氮質(zhì)量濃度明顯提高。增加噴淋次數(shù),提高干發(fā)酵體系水解效率的同時,也促進了原料蛋白質(zhì)組分的分解,而接種量對氨氮質(zhì)量濃度并無規(guī)律性影響。發(fā)酵后期,氨氮與發(fā)酵前期相比平均提高了47.9%,氨氮質(zhì)量濃度隨接種量的增加而提高,最高達到527.3 mg/L,沼氣產(chǎn)量和甲烷含量均下降明顯(2.1和2.2節(jié)),可能與體系發(fā)生氨抑制現(xiàn)象有關(guān)。在干發(fā)酵體系中,由于底物含固率高,與濕法厭氧發(fā)酵相比,發(fā)生氨抑制的閾值較低,干法厭氧發(fā)酵的氨抑制質(zhì)量濃度閾值約為濕法厭氧發(fā)酵的1/3~1/5[9,23],徐則等[28]利用豬糞進行干發(fā)酵中試試驗表明,當體系氨氮質(zhì)量濃度高于400 mg/L時,易引發(fā)氨抑制。
注:10%、20%、30%為接種量,3、4、6、12為噴淋次數(shù),單位為次·d-1。
從本研究結(jié)果可以看出,利用序批式干法厭氧發(fā)酵處理以秸稈為主的農(nóng)業(yè)廢棄物,關(guān)鍵在于中間水解產(chǎn)物的快速轉(zhuǎn)化,水解速率的提高對促進甲烷生產(chǎn)的作用并不顯著。通過增加接種量、適當降低噴淋次數(shù)可促進有機酸和氨氮的轉(zhuǎn)化,并使pH值維持中性,提高了沼氣產(chǎn)量和產(chǎn)甲烷速率。但是,發(fā)酵后期產(chǎn)甲烷能力下降,可能受到氨抑制的影響,導致產(chǎn)甲烷菌活性降低。過去對于噴淋次數(shù)的研究范圍較窄,通常為0~6次/d,提高噴淋次數(shù)可明顯改善干發(fā)酵質(zhì)量,提高產(chǎn)氣效率[18-20]。然而,本研究將噴淋次數(shù)提高至12次/d時,將不再促進甲烷產(chǎn)量??梢?,干發(fā)酵體系不僅要保持充足的接種物數(shù)量,還應(yīng)保持微生物(接種物)群落結(jié)構(gòu)的穩(wěn)定,減少滲濾液對菌群沖刷作用[29],當接種量為30%,噴淋次數(shù)為4次/d時,可達到最佳產(chǎn)氣效果。本文可為以秸稈為主要原料的序批式干法厭氧發(fā)酵關(guān)鍵技術(shù)優(yōu)化提供理論指導。
1)噴淋次數(shù)和接種量顯著影響沼氣產(chǎn)量(<0.05),噴淋次數(shù)過低(3次/d)或過高(12次/d)均不利于沼氣生產(chǎn),接種量不應(yīng)低于20%。噴淋次數(shù)為4次/d、接種量為30%時,沼氣產(chǎn)量達到251.6 L/kg。
2)甲烷體積分數(shù)在發(fā)酵前10~20 d逐漸上升,產(chǎn)氣高峰期甲烷體積分數(shù)在55%左右,20 d后,甲烷體積分數(shù)呈下降趨勢,40 d試驗結(jié)束甲烷體積分數(shù)下降到約10%左右。
3)增加噴淋次數(shù)和接種量有利于底物水解效率的提高。甲烷產(chǎn)量、最大甲烷產(chǎn)率變化與沼氣產(chǎn)量變化規(guī)律相同??刂茋娏艽螖?shù)為4次/d,提高接種量可使產(chǎn)甲烷延滯期減少到約5 d。
4)發(fā)酵前期有機酸累積質(zhì)量濃度1 302~1 956 mg/L,優(yōu)化噴淋頻率和接種量加速了有機酸的轉(zhuǎn)化,pH值為中性,丙酸組分占58.2%~79.9%。發(fā)酵后期,有機酸消耗殆盡,氨氮濃度與發(fā)酵前期相比上升了47.9%,最高達到527.3 mg/L。
對秸稈類原料而言,在優(yōu)化水解效率的同時,應(yīng)加強對水解產(chǎn)物高效轉(zhuǎn)化方面的研究,是提高序批式干法厭氧發(fā)酵產(chǎn)氣效率的關(guān)鍵因素。
[1] 石祖梁,賈濤,王亞靜,等. 我國農(nóng)作物秸稈綜合利用現(xiàn)狀及焚燒碳排放估算[J]. 中國農(nóng)業(yè)資源與區(qū)劃,2017,38(9):32-37. Shi Zuliang, Jia Tao, Wang Yajing, et al. Comprehensive utilization status of crop straw and estimation of carbon from burning in China[J]. China Journal of Agricultural Resources and Regional Planning, 2017, 38(9): 32-37. (in Chinese with English abstract)
[2] Scarlat N, Dallemand J F, Fahl F. Biogas: Developments and perspectives in Europe[J]. Renewable Energy, 2018. doi: 10.1016/ j.renene.2018.03.006.
[3] Brown D, Shi J, Li Y. Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production[J]. Bioresource Technology, 2012, 124(11): 379-386.
[4] 趙野. 難易降解高含固率物料兩相分區(qū)一體工藝下的高效產(chǎn)甲烷機制[D]. 北京:中國農(nóng)業(yè)大學,2017. Zhao Ye. The Efficient Methane-Production Mechanism of a Single Vertical Reactor Integrating Two-Phase Fed with Difficultly and Easily Biodegradable High-Solid Substrates [D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract)
[5] Deng Lingwei, Liu Yi, Zheng Dan, et al. Application and development of biogas technology for the treatment of waste in China[J]. Renewable and Sustainable Energy Reviews, 2016, 70: 845-851.
[6] Kothari R, Pandey A K, Kumar S, et al. Different aspects of dry anaerobic digestion for bio-energy: An overview[J]. Renewable and Sustainable Energy Reviews, 2014, 39(6): 174-195.
[7] Kusch S L. Effect of various leachate recirculation strategies on batch anaerobic digestion of solid substrates[J]. International Journal of Environment and Waste Management, 2012, 9(1/2): 69-88.
[8] 李超,周瀛,劉剛金,等. 基于滲濾液回流的干式厭氧發(fā)酵研究進展[J]. 可再生能源,2016,34(11):1727-1738. Li Chao, Zhou Ying, Liu Gangjin, et al. Progress research on leachate recirculation in dry anaerobic digestion[J]. Renewable Energy Resources, 2016, 34(11): 1727-1738. (in Chinese with English abstract)
[9] Yang L C, Xu F Q, Ge X M, et al. Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 824-834.
[10] 井良霄,邱凌,李自林,等. 接種物對秸稈豬糞混合干式厭氧發(fā)酵產(chǎn)沼氣的影響[J]. 農(nóng)機化研究,2013(7):237-240. Jing Liangxiao, Qiu Ling, Li Zilin, et al. The influence of inoculum on high-solids anaerobic digestion about corn wastes and pig manure for biogas production[J]. Journal of Agricultural Mechanization Research, 2013(7): 237-240. (in Chinese with English abstract)
[11] Neshat S A, Mohammadi M, Najafpour G D, et al. Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 308-322.
[12] 趙立欣,孟海波,沈玉君,等. 中國北方平原地區(qū)種養(yǎng)循環(huán)農(nóng)業(yè)現(xiàn)狀調(diào)研與發(fā)展分析[J]. 農(nóng)業(yè)工程學報,2017,33(18):1-10.Zhao Lixin, Meng Haibo, Shen Yujun, et al. Investigation and development analysis of planting-breeding circulating agriculture ecosystem in northern plains in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(18): 1-10. (in Chinese with English abstract)
[13] APHA. Standard Methods for the Examination of Water and Wastewater[M]. Washington D C: American Public Health Association, 2005.
[14] Yuan X, Ma L, Wen B, et al. Enhancing anaerobic digestion of cotton stalk by pretreatment with a microbial consortium (MC1)[J]. Bioresource Technology, 2016, 207: 293-301.
[15] Yu Liang, Bule M, Ma Jingwei, et al. Enhancing volatile fatty acid (VFA) and bio-methane production from lawn grass with pretreatment[J]. Bioresource Technology, 2014, 162(6): 243-249.
[16] Zhang W, Wei Q, Wu S, et al. Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions[J]. Applied Energy, 2014, 128(3): 175-183.
[17] Lay J J, Li Y Y, Noike T, et al. Analysis of environmental factors affecting methane production from high solids organic waste[J]. Water Science Technology, 1997, 36(6/7): 493-500.
[18] Pezzolla D, Maria F D, Zadra C, et al. Optimization of solid-state anaerobic digestion through the percolate recirculation[J]. Biomass and Bioenergy, 2017, 96: 112-118.
[19] 蘭梅. 秸稈干法厭氧發(fā)酵工藝條件優(yōu)化研究[D]. 成都:四川農(nóng)業(yè)大學,2014. Lan Mei. The Optimized Study on the Process Conditions of Straw Dry Fermentation Technology[D]. Chengdu: Si Chuan Agricultural University, 2014. (in Chinese with English abstract)
[20] Degueurce A, Trémier A, Peu P. Dynamic effect of leachate recirculation on batch mode solid state anaerobic digestion: Influence of recirculated volume, leachate to substrate ratio and recirculation periodicity[J]. Bioresource Technology, 2016, 216: 553-561.
[21] Meng L, Xie L, Kinh C T, et al. Influence of feedstock- to-inoculum ratio on performance and microbial community succession during solid-state thermophilic anaerobic co- digestion of pig urine and rice straw[J]. Bioresource Technology, 2017, 252: 127-133.
[22] Riggio S, Torrijos M, Vives G, et al. Leachate flush strategies for managing volatile fatty acids accumulation in leach-bed reactors[J]. Bioresource Technology, 2017, 232: 93-102.
[23] Peng X, Zhang S, Li L, et al. Long-term high-solids anaerobic digestion of food waste: Effects of ammonia on process performance and microbial community[J]. Bioresource Technology, 2018, 262: 148-158.
[24] Abbassi Guendouz, Amel Trably, Eric Dumas, et al. Effect of mass transfer in dry anaerobic digestion systems[R]. World Congress on Anaerobic Digestion (AD14),2015.
[25] Zahedi S, Sales D, Romero L I, et al. Optimisation of single-phase dry-thermophilic anaerobic digestion under high organic loading rates of industrial municipal solid waste: population dynamics.[J]. Bioresource Technology, 2013, 146(10): 109-117.
[26] 鄧玉營,黃振興,阮文權(quán),等. 沼液回流比與有機負荷對秸稈厭氧發(fā)酵特性的影響[J]. 農(nóng)業(yè)機械學報,2016,47(11):198-206. Deng Yuying, Huang Zhenxing, Ruan Wenquan, et al.Effect of digestate recirculation ratio and organic loading rate on fermentation characteristics for anaerobic digestion of straw[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11): 198-206. (in Chinese with English abstract)
[27] 任南琪,趙丹,陳曉蕾,等. 厭氧生物處理丙酸產(chǎn)生和積累的原因及控制對策[J]. 中國科學(B輯),2002,32(1):83-89. Ren Nanqi, Zhao Dan, Chen Xiaolei, et al. Causes and control measures of propionic acid production and accumulation in anaerobic biological treatment[J]. Chinese Science, 2002, 32(1):83-89. (in Chinese with English abstract)
[28] 徐則,鄧良偉,王伸,等. 豬糞干式沼氣發(fā)酵中試研究[J]. 中國沼氣,2016,34(6): 3-8. Xu Ze, Deng Liangwei, Wang Shen, et al. A pilot experiment of dry fermentation of swine waste for biogas production[J]. China Biogas, 2016, 34(6): 3-8. (in Chinese with English abstract)
[29] André L, Durante M, Pauss A, et al. Quantifying physical structure changes and non-uniform water flow in cattle manure during dry anaerobic digestion process at lab scale: Implication for biogas production[J]. Bioresource Technology, 2015, 192(2): 660-669.
Effect of spray times and inoculum content on biogas production performance of sequencing batch dry anaerobic digestion with mixed straw and cow dung
Yu Jiadong, Zhao Lixin※, Feng Jing, Yao Zonglu, Huang Kaiming, Luo Juan, Wei Shimeng
(100125,)
The Chinese large-scale biogas engineering is generally based on wet anaerobic fermentation technology, the solid content of feedstock is about 6%, but treating the high solid content of agricultural waste still have a series of problems. Using the sequencing batch dry anaerobic digestion technology (SBD-AD) for treating agricultural wastes not only increases the amount of feedstock, increases the volumetric biogas production rate, but also reduces the slurry production and the cost of post-treatment. A stable technical model has been formed in European Union countries. However, the development of the SBD-AD biogas engineering using agricultural wastes as feedstock in China is slow. Further research is needed to promote the efficiency of the SBD-AD according to the characteristics of local agricultural wastes, such as cornstalks and cow dung. Cornstalk is rich in lignocellulose, and it is difficult to digest. And no systematic research has been taken on the performance of the SBD-AD with straw as the main feedstock. Moreover, previous studies have shown that the spray times and inoculum content were the key factors affecting the methane production efficiency of the SBD-AD process. This paper studied the biogas production characteristics of SBD-AD using corn stalks as main feedstock by controlling spray time and inoculum content, and explored factors that affect the hydrolysis and methane production using methods of model fitting and hydrolysate analysis. The results showed that both of the spray times and inoculum content had significant effects on biogas production (<0.05). Low (3 times per day) and high spray times (12 times per day) were not conducive to biogas production, and the inoculum content should not be less than 20%, and the most biogas yield reached 251.6 L/kg, when the spray times and inoculum content was 4 times/d and ≥20% (/),respectively. Moreover, the methane content was about 55% at the peak stage of biogas production and rapid decline after 20 day. Increasing the inoculum content and spray times could promote substrate hydrolysis efficiency ranging 20%-30%. However, the methane yield and the maximum methane production rate increased first and then decreased, it was limited obviously by the accumulation of organic acid, which the organic acid concentration reached 1 302-1 956 mg/L in the fermentation prophase, and propionic acid concentration accounts for 58.2%-79.9%. In addition, the system had inhibition risk of ammoniacal nitrogen (527.3 mg/L). The conversion efficient of hydrolysate played an important role in improving biogas production efficiency. This study can provide theoretical guidance for improving process optimization quality of SBD-AD based on straw waste.
straw; methane; hydrolysis; sequencing batch dry anaerobic digestion; spray times; inoculum content
10.11975/j.issn.1002-6819.2018.21.028
X712
A
1002-6819(2018)-21-0228-06
2018-06-22
2018-09-14
現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系專項資金資助(CARS-02);中國博士后科學基金資助項目(2017M620717)
于佳動,工程師,博士,主要從事農(nóng)業(yè)廢棄物厭氧發(fā)酵技術(shù)裝備研究。Email:yujiadong010@163.com
趙立欣,研究員,主要從事農(nóng)業(yè)廢棄物能源化研究。 Email:zhaolixin5092@163.com
于佳動,趙立欣,馮 晶,姚宗路,黃開明,羅 娟,魏世萌. 噴淋次數(shù)和接種量對序批式秸稈牛糞混合干發(fā)酵產(chǎn)氣性能的影響[J]. 農(nóng)業(yè)工程學報,2018,34(21):228-233. doi:10.11975/j.issn.1002-6819.2018.21.028 http://www.tcsae.org
Yu Jiadong, Zhao Lixin, Feng Jing, Yao Zonglu, Huang Kaiming, Luo Juan, Wei Shimeng. Effect of spray times and inoculum content on biogas production performance of sequencing batch dry anaerobic digestion with mixed straw and cow dung[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 228-233. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.21.028 http://www.tcsae.org