喬 瑋,姜萌萌,趙 婧,Wandera S.M,董仁杰,3※
?
中溫和高溫環(huán)境下乙酸和丙酸厭氧發(fā)酵產(chǎn)甲烷動力學特征
喬 瑋1,2,姜萌萌1,2,趙 婧1,4,Wandera S.M1,2,董仁杰1,2,3※
(1. 中國農(nóng)業(yè)大學工學院,北京 100083;2. 國家能源生物燃氣高效制備及綜合利用技術研發(fā)(實驗)中心,北京 100083; 3. 中國農(nóng)業(yè)大學煙臺研究院,煙臺 264670;4. 荷蘭格羅寧根大學科學與工程學院,9747 AG,格羅寧根)
采用不同濃度的乙酸和丙酸在中高溫下進行厭氧發(fā)酵批次試驗,采用修正的Gompertz模型和產(chǎn)甲烷的一級動力學模型分析,研究酸濃度和溫度對發(fā)酵產(chǎn)氣動力學的影響。研究表明,當乙酸和丙酸濃度較低時降解較快,高濃度酸抑制產(chǎn)氣。乙酸在中溫條件下降解較快,質量濃度為5 000 mg/L時中溫反應有最大產(chǎn)甲烷速率101 mL/d;質量濃度為10 000 mg/L時高溫條件下有最大產(chǎn)甲烷速率77 mL/d,隨酸濃度增加,最大產(chǎn)甲烷速率減小,高溫反應器對酸的耐受度較高。丙酸在高溫條件下更易降解,濃度為4 000 mg/L時,中高溫反應均有最大產(chǎn)氣速率:78 mL/d(中溫)和96 mL/d(高溫)。另外,高濃度乙酸和丙酸厭氧降解產(chǎn)氣具有滯后性,且隨酸濃度的增加滯后期延長,降解過程受到抑制,一級動力學常數(shù)減小。溫度對厭氧降解的影響大于酸濃度對厭氧降解的影響。
甲烷;動力學;溫度;厭氧發(fā)酵;乙酸;丙酸
厭氧發(fā)酵過程中,有機物通過4個連續(xù)階段降解產(chǎn)生甲烷[1]。厭氧發(fā)酵受溫度的影響較大[2-3],當反應溫度過高時,反應器中易出現(xiàn)揮發(fā)性有機酸的積累現(xiàn)象,尤其是乙酸和丙酸的積累[4-6],導致甲烷產(chǎn)量降低[7]。有研究表明,厭氧發(fā)酵中系統(tǒng)對乙酸的承受能力在10 000 mg/L以上,而當丙酸質量濃度為1 000 mg/L便出現(xiàn)抑制產(chǎn)氣的現(xiàn)象[8];也有研究發(fā)現(xiàn)反應器對丙酸質量濃度承受范圍為800~3 000 mg/L[9]。前期研究發(fā)現(xiàn),在中溫條件下乙酸與丙酸的最適質量濃度都為5 000 mg/L,且乙酸活性大于丙酸,但高溫條件下丙酸質量濃度大于3 000 mg/L時甲烷菌活性被抑制,而乙酸質量濃度大于8000 mg/L時污泥活性降低[10]。目前針對發(fā)酵動力學的研究主要針對同一或不同溫度下的固定酸濃度[11-13],或在實際廢棄物厭氧產(chǎn)甲烷過程中進行研究[14-16],得到的酸抑制濃度和溫度也各有差異。而針對不同溫度下不同濃度酸的產(chǎn)氣動力學研究較少。前期報道[17]主要討論了溫度和基質濃度對揮發(fā)性有機酸降解的影響,未深入進行動力學特征討論。因而,對不同溫度及酸濃度下的基質產(chǎn)甲烷動力學進行研究,對現(xiàn)實的厭氧發(fā)酵工程應用具有重要意義。
本研究采用咖啡伴侶中高溫長期發(fā)酵液為接種物,采用不同濃度的乙酸和丙酸進行厭氧發(fā)酵批式試驗,利用修正的Gompertz模型和一級動力學模型進行產(chǎn)甲烷動力學分析,研究中溫和高溫條件下乙酸和丙酸的產(chǎn)氣動力學特征。
接種物分別取自采用咖啡伴侶為進料基質的中溫(37±1)℃、高溫(55±1)℃連續(xù)發(fā)酵試驗出料的污泥,其含有2%蛋白質,34%脂肪,56%碳水化合物。
批次試驗裝置為總容積為120 mL的血清瓶。發(fā)酵罐取出的新鮮出料污泥先放入中溫(37±1)℃和高溫(55±1)℃水浴鍋中繼續(xù)發(fā)酵產(chǎn)氣3 d,至不產(chǎn)氣后使用。
每個血清瓶中添加70 mL的接種污泥,然后加入乙酸和丙酸,使血清瓶中的乙酸質量濃度分別達到0、2000、5 000、10 000和20 000 mg/L,丙酸質量濃度達到0、500、1 000、2 000、4 000和8 000 mg/L,采用氫氧化鈉調(diào)節(jié)pH值范圍在7.2~7.6。每個濃度設置3個平行。向發(fā)酵瓶中充入足量N2,排出殘留空氣,蓋上瓶塞,并用鋁蓋壓緊,標號后置于水浴鍋中。每天都將瓶內(nèi)的液體混勻,使瓶內(nèi)的微生物與乙酸或丙酸充分接觸。每0.5~3 d用玻璃注射器測產(chǎn)氣量。
TS、VS、SS、VSS的測定采用重量法[18];pH值用Mettler-Toledo酸度計測定;COD采用重鉻酸鉀法[19]測定;沼氣成分(CH4與CO2)由SP2100氣相色譜儀測出,色譜柱為 2 m×10 mm不銹鋼色譜柱。沼氣成分檢測條件:氫氣分壓為0.6 MPa,流速為60 mL/min,進樣口溫度、柱溫及檢測器(TCD)溫度分別為150、230和150℃,進樣量為0.5 mL。
累積產(chǎn)氣用修正的Gompertz模型擬合得到,如式(1)所示。
式中為時刻的累積產(chǎn)氣量,mL;0為最大產(chǎn)甲烷潛能,mL,max為最大產(chǎn)甲烷速率,mL/d;為遲滯期,d;為試驗持續(xù)時間,d;為常數(shù)。
厭氧發(fā)酵的一級動力學模型如式(2)所示。
式中C0是最大產(chǎn)氣量,mL;C為最大產(chǎn)氣量減去時刻的累積產(chǎn)氣量,mL;為速率常數(shù),d–1。
2.1.1 Gompertz模型計算的產(chǎn)氣動力學特征
批次試驗得到的產(chǎn)氣量如圖1所示,表1為擬合參數(shù),2均大于0.99,判斷擬合效果較好。
注:圖中實線為修正的Gompertz模型擬合曲線。
由圖1可看出,乙酸雖是產(chǎn)甲烷菌的直接底物,但是中高溫條件下高濃度乙酸對厭氧發(fā)酵速率都有抑制作用,且乙酸濃度越高,產(chǎn)氣持續(xù)時間越長。中溫條件下,當反應器內(nèi)乙酸質量濃度分別為2 000和5 000 mg/L時反應器產(chǎn)氣較快,分別在前3 天和前4 天完成90%的產(chǎn)氣量。隨著乙酸濃度增加,產(chǎn)氣速率逐漸變慢,厭氧發(fā)酵滯后明顯,結合表1可看出產(chǎn)氣遲滯期由0.4 d逐漸增加到3.5 d。高溫條件下抑制產(chǎn)氣的效果更加明顯,當乙酸的質量濃度增加到20 000 mg/L時,產(chǎn)氣遲滯期為5.1 d,即前5天幾乎不產(chǎn)氣。但乙酸質量濃度為10 000 mg/L的反應器產(chǎn)氣恢復較快,在反應前9天就幾乎完成90%的產(chǎn)氣。
由表1可看出各濃度乙酸在中溫下的產(chǎn)甲烷速率max較大,高溫下的產(chǎn)氣遲滯期比中溫長20%~33%,且隨酸濃度增加而延長。中溫條件下,當乙酸質量濃度為5 000 mg/L時出現(xiàn)最大產(chǎn)甲烷速率101 mL/d,這與Li等[10]的研究一致,但本研究中所得max值較大。乙酸質量濃度為10 000與20 000 mg/L時最大產(chǎn)甲烷速率與5 000 mg/L時相比分別下降了23.8%和51.5%。高溫條件下最大產(chǎn)氣速率較低,當乙酸質量濃度為10 000 mg/L時具有最大產(chǎn)甲烷速率77 mL/d,與中溫條件下的最大產(chǎn)甲烷速率101 mL/d相比降低了23.8%。乙酸質量濃度為20 000 mg/L時產(chǎn)甲烷速率僅為34%。雖然高濃度乙酸對厭氧發(fā)酵產(chǎn)氣速率具有抑制作用,但就2 000~10 000 mg/L的乙酸質量濃度來說,高溫厭氧發(fā)酵系統(tǒng)與中溫系統(tǒng)相比可承受的酸濃度更大一些。
表1 乙酸降解的修正Gompertz模型擬合參數(shù)
注:0為最大產(chǎn)甲烷潛能,mL;max為最大產(chǎn)甲烷速率,mL·d-1;為試驗持續(xù)時間,d;為遲滯期,d。下同。
Note:0is max methane production potential, mL;maxis the max methane production rate, mL·d-1;is duration time of the batch experiment;is lag phase, d. Same as below.
在相同乙酸濃度下,高溫反應滯后于中溫。有文獻報道,中高溫條件下乙酸分解途徑可能不同,乙酸裂解產(chǎn)甲烷途徑與互營乙酸氧化產(chǎn)甲烷2種途徑[20]中,互營乙酸氧化產(chǎn)甲烷途徑在高溫條件下占主導[21],且該途徑受乙酸濃度、溫度、甲烷菌群等影響[22],因此,高溫發(fā)酵產(chǎn)氣出現(xiàn)滯后,可能是高溫條件下乙酸會先分解為氫氣和二氧化碳,然后再生成甲烷,前期報道[17]中也通過試驗分析驗證了這一可能性。
2.1.2 乙酸降解的一級動力學特征
圖2描述了乙酸質量濃度對中高溫厭氧發(fā)酵的一級動力學的影響。
由圖2一級動力學方程可看出,中溫條件下速率常數(shù)均大于高溫,這一結果與Gompertz模型得到的max結果相同。隨著反應器中乙酸濃度的增加值逐漸減小,與2 000 mg/L乙酸質量濃度相比,隨著乙酸質量濃度由5 000增加到10 000 mg/L時,值分別降低了27.8%和64.7%,可見乙酸濃度越高對中溫厭氧發(fā)酵的影響越大。
在高溫厭氧反應時,厭氧發(fā)酵的一級速率常數(shù)的變化規(guī)律與中溫的變化規(guī)律相似。與2 000 mg/L乙酸質量濃度的值相比,乙酸質量濃度由5 000逐漸增加到10 000 mg/L時,值分別降低了8.1%和44.4%,與中溫反應時值降低的幅度相比較小,可見高溫反應對乙酸的耐受能力在一定程度上要強于中溫反應。
注:Cs0是最大產(chǎn)氣量,mL;Cs為最大產(chǎn)氣量減去t時刻的累積產(chǎn)氣量,mL。下同。
當乙酸質量濃度為2 000 mg/L時,中溫時的一級速率常數(shù)=1.151 d–1,而高溫時的速率常數(shù)只有中溫時的一半為0.615 d–1,這比中溫時的乙酸質量濃度為5 000 mg/L的速率常數(shù)=0.831 d–1還小??梢娫谝欢ǔ潭壬蠝囟葘捬醢l(fā)酵的影響要大于乙酸濃度的影響。
2.2.1 中高溫不同濃度丙酸產(chǎn)氣
圖3為不同質量濃度丙酸在中高溫下的累積產(chǎn)氣及修正Gompertz擬合曲線。由圖3可看出,中高溫條件下丙酸質量濃度較高時產(chǎn)氣均比較滯后。隨丙酸質量濃度增加,產(chǎn)氣遲滯期變長,說明高濃度丙酸對中高溫反應均有一定的影響。
圖3 丙酸濃度對厭氧發(fā)酵累積甲烷產(chǎn)量的影響
表2總結了Gompertz模型擬合的參數(shù)??梢钥闯鲋袦貤l件下,隨丙酸質量濃度的增加,max逐漸增加,即產(chǎn)甲烷速率逐漸增加。在丙酸質量濃度為4 000 mg/L時具有最大產(chǎn)甲烷速率為78 mL/d,與Li等[10]的研究中所得的丙酸質量濃度3 000 mg/L即達到抑制有所不同,遠高于Wang等[23]研究得到的中溫條件下900 mg/L的抑制濃度。本研究中丙酸質量濃度為8 000 mg/L時max降低為70 mL/d,說明該丙酸質量濃度對發(fā)酵產(chǎn)生了抑制。
表2 丙酸降解的修正Gompertz模型擬合參數(shù)
2.2.2 丙酸降解的一級動力學特征
高溫條件下,也是在丙酸質量濃度為4 000 mg/L時有最大產(chǎn)甲烷速率96 mL/d,丙酸質量濃度過高或過低都會影響丙酸的降解速率。由此說明,質量濃度4 000 mg/L是丙酸厭氧發(fā)酵反應的最佳濃度,丙酸濃度過低則不夠微生物利用,過高則抑制微生物的生長代謝。中溫條件下產(chǎn)氣遲滯期受丙酸質量濃度的影響較大,在丙酸質量濃度從500增加到4 000 mg/L時,遲滯期增加了1倍,而高溫只增加了0.5倍,可見丙酸的高溫降解受丙酸濃度的影響要小于中溫降解。圖4是中高溫下不同質量濃度丙酸降解的一級動力學模型。
圖4 丙酸濃度對中高溫厭氧發(fā)酵一級動力學的影響
由圖4可看出,隨著丙酸濃度的增加,速率常數(shù)逐漸降低。各濃度下高溫時的值大于中溫時,說明高溫條件下丙酸產(chǎn)氣速率快,這一結果與Siegrist等[12]和Ge等[11]利用乙酸進行降解研究所得結論一致。中高溫試驗中,當丙酸質量濃度為500 mg/L時反應器速率常數(shù)分別為0.655和0.699 d–1,隨丙酸質量濃度逐漸增加,與500 mg/L乙酸質量濃度相比,值分別下降了36.3%、21.5%、32.8%、70.7%(中溫)和28.5%、10.2%、28.9%、62.1%(高溫)。相同丙酸質量濃度下,高溫厭氧發(fā)酵值減少的百分比均小于中溫厭氧發(fā)酵,說明丙酸高溫降解較好,與前文Gompertz模型擬合結論一致。
乙酸在中溫條件下降解速率較快,一級動力學常數(shù)大于高溫條件。在乙酸質量濃度分別為5 000和10 000 mg/L時具有最大產(chǎn)甲烷速率max101 mL/d(中溫)和77 mL/d(高溫)。乙酸質量濃度越高,對中溫厭氧發(fā)酵影響越大,而高溫反應對高濃度乙酸的耐受度則高于中溫。丙酸在高溫條件下降解速率較快,一級動力學常數(shù)大于中溫。質量濃度為4 000 mg/L時有最大產(chǎn)甲烷速率max78 mL/d(中溫)和96 mL/d(高溫),丙酸濃度過高或過低都會影響發(fā)酵產(chǎn)氣。高溫條件下丙酸的降解受酸濃度影響較中溫小。高濃度乙酸及丙酸對厭氧發(fā)酵產(chǎn)氣具有抑制作用,隨著酸濃度的增加產(chǎn)氣遲滯期變長,一級動力學常數(shù)減小。溫度對厭氧發(fā)酵的影響在一定程度上大于酸濃度對厭氧發(fā)酵的影響。
[1] 野池達野. 甲烷發(fā)酵[M]. 北京:化學工業(yè)出版社,2014.
[2] Veeken A, Hamelers B. Effect of temperature on hydrolysis rates of selected biowaste components [J]. Bioresource Technology, 1999, 69(3): 249-254.
[3] 吳美容,張瑞,周俊,等. 溫度對產(chǎn)甲烷菌代謝途徑和優(yōu)勢菌群結構的影響[J]. 化工學報, 2014,65(5):1602-1606. Wu Meirong, Zhang Rui, Zhou Jun, et al. Effect of temperature on methanogens metabolic pathway and structures of predominant bacteria[J]. Ciesc Journal, 2014, 65(5): 1602-1606. (in Chinese with English abstract)
[4] Weiland P. Biogas production: Current state and perspectives[J]. Applied Microbiology & Biotechnology, 2010, 85(4): 849-860.
[5] Westerholm M, Hansson M, Schnürer A. Improved biogas production from whole stillage by co-digestion with cattle manure[J]. Bioresource Technology, 2012, 114(3): 314-319.
[6] Gray D M D, Hake J M, Ghosh S. Influence of staging, mean cell residence time, and thermophilic temperature on the thermophilic anaerobic digestion process[J]. Water Environment Research A Research Publication of the Water Environment Federation, 2006, 78(5): 497-509.
[7] 張萬欽. 微量元素添加對餐廚垃圾和雞糞厭氧消化性能的調(diào)控研究[D]. 北京:中國農(nóng)業(yè)大學, 2016.
Zhang Wanqin. Effect of Trace Element Addition on the Anaerobic Digestion Performance of Food Waste and Chicken Manure[D]. Beijing: China Agricultural University, 2016.
[8] 周曉臣. 城鎮(zhèn)有機垃圾厭氧發(fā)酵中有機酸及氨氮抑制效應研究[D]. 重慶:重慶大學,2006.
Zhou Xiaochen. Study on Inhibition of Volatile Fatty Acid and Ammonia-Nitrogen in Anaerobic Digestion for Urban Organic Wastes[D]. Chongqing: Chongqing University, 2006.
[9] Felchner-Zwirello M. Interspecies distances between propionic acid degraders and methanogens in syntrophic consortia for optimal hydrogen transfer[J]. Applied Microbiology & Biotechnology, 2013, 97(20): 9193-9205.
[10] Li Q, Qiao W, Wang X, et al. Kinetic characterization of thermophilic and mesophilic anaerobic digestion for coffee grounds and waste activated sludge[J]. Waste Management, 2015, 36: 77-85.
[11] Ge H, Jensen P D, Batstone D J. Relative kinetics of anaerobic digestion under thermophilic and mesophilic conditions. [J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2011, 64(4): 848.
[12] Siegrist H, Vogt D, And J L, et al. Mathematical model for meso- and thermophilic anaerobic sewage sludge digestion[J]. Environmental Science & Technology, 2002, 36(5): 1113-1123.
[13] Pan X, Angelidaki I, Alvarado-Morales M, et al. Methane production from formate, acetate and H2/CO2; Focusing on kinetics and microbial characterization[J]. Bioresource Technology, 2016, 218: 796-806.
[14] 喬瑋,畢少杰,尹冬敏,等. 雞糞中高溫厭氧甲烷發(fā)酵產(chǎn)氣潛能與動力學特性[J]. 中國環(huán)境科學,2018,38(1):234-243. Qiao Wei, Bi Shaojie, Yin Dongmin, et al. Biogas production potential and kinetics of chicken manure methane fermentation under mesophilic and thermophilic conditions[J]. China Environmental Science, 2018, 38(1): 234-243. (in Chinese with English abstract)
[15] 李建昌,孫可偉,何娟,等. 應用Modified Gompertz模型對城市生活垃圾沼氣發(fā)酵的擬合研究[J]. 環(huán)境科學,2011,32(6):1843-1850. Li Jianchang, Sun Kewei, He Juan, et al. Application of modified Gompertz model to study on anaerobic digestion of organic fraction of municipal solid waste[J]. Environmental Science, 2011, 32(6): 1843-1850. (in Chinese with English abstract)
[16] Ebrahimi A, Hashemi H, Eslami H, et al. Kinetics of biogas production and chemical oxygen demand removal from compost leachate in an anaerobic migrating blanket reactor[J]. Journal of Environmental Management, 2017, 206: 707-714.
[17] Zhao J, Westerholm M, Qiao W, et al. Impact of temperature and substrate concentration on degradation rates of acetate, propionate and hydrogen and their links to microbial community structure. [J]. Bioresour Technol, 2018, 256: 44-52.
[18] Clesceri L S, Grenberg A, Eaton A D, et al. Standard methods for the examination of waters and wastewaters[J]. Health Laboratory Science, 2005, 4(3): 137.
[19] Güng?rdemi?Rci? G, Demi?Rer G N. Effect of initial COD concentration, nutrient addition, temperature and microbial acclimation on anaerobic treatability of broiler and cattle manure. [J]. Bioresource Technology, 2004, 93(2): 109-117.
[20] 吳偉,鄭珍珍,麻婷婷,等. 互營乙酸氧化菌研究進展[J]. 中國沼氣,2016,34(2):3-8. Wu Wei, Zheng Zhenzhen, Ma Tingting, et al. Recent advances on syntrophic acetate oxidation bacteria[J]. China Biogas, 2016, 34(2): 3-8. (in Chinese with English abstract)
[21] Ho D. A high-rate High Temperature Anaerobic Digestion System for Sludge Treatment[D]. Queensland: The University of Queensland, 2014.
[22] Westerholm M. Biogas production through the syntrophic acetate-oxidising pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 104(42): 16633-16638.
[23] Wang Y, Zhang Y, Wang J, et al. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria [J]. Biomass & Bioenergy, 2009, 33(5): 848-853.
Methanogenesis kinetics of anaerobic digestion of acetate and propionate at mesophilic and thermophilic conditions
Qiao Wei1,2, Jiang Mengmeng1,2, Zhao Jing1,4, Wandera S.M1,2, Dong Renjie1,2,3※
(1.100083,; 2.(),100083,; 3.264670,; 4.9747 AG)
During anaerobic fermentation is strongly influenced by temperature and volatile fatty acids (VFAs). When the temperature in anaerobic reactors is too high, the VFAs are easy to accumulate, especially acetate and propionate. High VFAs will inhibit the activity of methanogens, the fermentation process as well as the methane yield will become unstable even make the anaerobic system failed. In order to investigate the ability of adapting different concentration of acids and temperature, batch experiments with different concentrations of acetate and propionate were carried out at both mesophilic and thermophilic conditions. Modified Gompertz model and first order model were used to analyze the methane production kinetics. The inoculum was got from coffee mate anaerobic digestion, because coffee mate contains 2% protein, 34% fat and 56% carbohydrates, which can simulate the real ingredients in anaerobic fermentation. The concentrations of acetate acid were set for 0, 2 000, 5 000, 10 000 and 20 000 mg/L; and the concentrations of propionate were set for 0, 500, 1 000, 2 000, 4 000 and 8 000 mg/L. In addition, sodium hydroxide was used to adjust the pH value in a range of 7.2-7.6 in every batch bottle, and every concentration had 3 parallels to ensure the veracity of this experiment. The result showed that both of acetate and propionate degradation faster at the lower concentration. Acetate was easily degraded at mesophilic condition, when the concentration of acetate was 5 000 mg/L; mesophilic reactors had the maximum methane production rate which was 101 mL/d, while the thermophilic reactor had the maximum methane production rate which was 77 mL/d when the acetate concentration was 10 000 mg/L. With the acid concentration increasing, methane production rate decreased and the thermophilic reactor had a higher tolerance for the acetate concentration. In contrast, propionate was easily decomposed under the thermophilic condition and the lag phase under mesophilic was greatly affected by the acid concentration; when the propionate concentration increased from 500 to 4 000 mg/L, the lag phase doubled under the mesophilic condition while a half fold increase under the thermophilic condition. The maximum methane production rate was 96 mL/d when the concentration of propionate was 4 000 mg/L, while the maximum methane production rate under mesophilic condition was 75 mL/d when the concentration of propionate was 4 000 mg/L as well. The lag phase of gas production was longer at higher acid concentration, while the first-order kinetic constants reduced. In addition, the degradation rate constant of both mesophilic and thermophilic under same acid condition showed that the effect of temperature on anaerobic degradation is greater than that of acid concentration to some extent.
methane; kinetics; temperature; anaerobic digestion; acetate; propionate
10.11975/j.issn.1002-6819.2018.21.029
X712
A
1002-6819(2018)-21-0234-05
2018-06-02
2018-09-08
“十三五”國家重點研發(fā)計劃課題(2016YFD0501403);國家自然科學基金課題(51778616、51408599);北京市自然科學基金(6182017)
喬 瑋,副教授,博士,博士生導師,主要從事廢水和廢棄物的厭氧生物處理研究。Email:qiaowei@cau.edu.cn
董仁杰,教授,博士,博士生導師,主要從事生物質能源與環(huán)境保護方面研究。Email:rjdong@cau.edu.cn
喬瑋,姜萌萌,趙婧,Wandera S.M,董仁杰. 中溫和高溫環(huán)境下乙酸和丙酸厭氧發(fā)酵產(chǎn)甲烷動力學特征[J]. 農(nóng)業(yè)工程學報,2018,34(21):234-238. doi:10.11975/j.issn.1002-6819.2018.21.029 http://www.tcsae.org
Qiao Wei, Jiang Mengmeng, Zhao Jing, Wandera S.M, Dong Renjie. Methanogenesis kinetics of anaerobic digestion of acetate and propionate at mesophilic and thermophilic conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 234-238. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.21.029 http://www.tcsae.org