• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      式子的種類

      2018-11-19 08:57徐衛(wèi)東
      新高考·高二數(shù)學 2018年6期
      關(guān)鍵詞:對稱軸式子圖象

      徐衛(wèi)東

      式子是表示普遍事實、規(guī)律、法則或原理的一組符號,這看起來很抽象,但是遍布我們學習的角落,如代數(shù)式、函數(shù)的解析式、方程式、不等式等等,可見式子一直伴隨我們.小學階段,我們學習了式子:1+1,2-1,2×3,3/5……隨著年齡的增長,式子也“增長”了,我們學習了式子:a+b,a-b,a×b,a/b……到了高中,式子也“高”了,我們學習了式子:f(x)+g(x),f(x)- g(x),f(x).g( x),f(x)/g(x)……

      高中是以函數(shù)為主線的,大部分內(nèi)容都與函數(shù)有關(guān),而實際上式子的基本“零件”就是函數(shù)的解析式,因此下面主要以函數(shù)解析式為載體探討式子的種類.

      每一個問題,都是由基本問題組成的,函數(shù)的解析式也不例外.有了基本的解析式,就可以得到比較復(fù)雜的函數(shù)解析式.

      一、基本函數(shù)的解析式

      基本函數(shù)的解析式一般比較簡單,是學好其他式子的基礎(chǔ).下面給出的基本函數(shù),我們應(yīng)該從函數(shù)的表達式的結(jié)構(gòu)、函數(shù)的性質(zhì)和函數(shù)的圖象等視角領(lǐng)悟其本質(zhì),但是限于篇幅,我們僅給出了圖象的一些結(jié)論,以利于同學們直觀地理解基本函數(shù),至于圖象以及函數(shù)的性質(zhì)請同學們認真梳理.

      1.常數(shù)函數(shù):f(x)=c1,c∈R;(圖象是直線,且是水平的,有無數(shù)條對稱軸和無數(shù)個對稱中心)

      2.一次函數(shù):f(x)=ax+b,a,b∈R,a≠0;(圖象是直線,且是傾斜的,有無數(shù)條對稱軸和無數(shù)個對稱中心)

      二、常見的“和、差、積、商函數(shù)”

      和、差、積、商函數(shù)是指由基本函數(shù)通過和、差、積、商而得到的函數(shù).

      1.和函數(shù):f(x)=x+a/x,a∈R,a≠o;(注:實際上,一次函數(shù)、二次函數(shù)、三次函數(shù)等等都是由冪函數(shù)和常數(shù)函數(shù)通過和、差、積、商而得到的)

      2.商函數(shù):tanx=sinx/cosx;(注:我們將正

      切函數(shù)放在這里,主要理由是基本函數(shù)盡可能少一些,但是函數(shù)之間的關(guān)系盡可能明晰一點)

      3.用導(dǎo)數(shù)研究函數(shù):由于一個函數(shù)的導(dǎo)函數(shù)的值的正負零性決定了原函數(shù)的單調(diào)性和極值,因此導(dǎo)函數(shù)的正負零性的判斷就重要起來,下面是一些容易判斷導(dǎo)函數(shù)正負零的比較復(fù)雜的函數(shù):

      c∈R.(此類函數(shù)比較多,這里僅列舉幾個,但是同學們要逐步整理、理解這些函數(shù),同時可借助特殊值、借助草圖幫助理解這類函數(shù)的圖象)

      三、常見的復(fù)合函數(shù)

      由于高考中函數(shù)的重點是一次函數(shù)和二次函數(shù),因此要特別注意一次和二次函數(shù)參與的復(fù)合函數(shù).

      當然,這類復(fù)合函數(shù)很多,通過一些較為基本、重要的復(fù)合函數(shù)就可理解其本質(zhì),其他問題就迎刃而解了.

      四、分段函數(shù)

      日常生活中,一件事往往要分幾段才能完成,用數(shù)學式子來刻畫就是分段函數(shù).

      1.由定義域分類.

      這類函數(shù)比較多,下面是幾種代表.

      2.由函數(shù)值分類.

      這類函數(shù)比較抽象,要注意理解其表達形式.下面也給出幾個代表.

      式子是數(shù)學的靈魂,只有認真梳理式子的類型,在頭腦中形成清晰的式子輪廓,在此基礎(chǔ)上,再逐步進入式子的內(nèi)部.式子的結(jié)構(gòu)熟悉了、理解了,就等于數(shù)學大廈的框架已構(gòu)建好.因此式子在數(shù)學中的地位是非常重要的.

      猜你喜歡
      對稱軸式子圖象
      用一樣的數(shù)字
      一元二次不等式的圖象解法
      《一次函數(shù)》拓展精練
      發(fā)掘?qū)ΨQ關(guān)系,把握求解策略
      研究式子的常用工具
      點擊圖象問題突破圖象瓶頸
      從對稱軸想起
      抓牢對稱軸突破二次函數(shù)
      有幾條對稱軸
      直線運動中的幾個“另類”圖象
      连云港市| 白水县| 丰都县| 广河县| 普格县| 金堂县| 柳州市| 交口县| 鄢陵县| 宁海县| 和田县| 来宾市| 彭阳县| 蓬莱市| 巴青县| 宁都县| 类乌齐县| 郁南县| 江都市| 包头市| 左云县| 蓬莱市| 滨海县| 巩义市| 治县。| 津南区| 香河县| 澄城县| 临清市| 新竹市| 明水县| 乐至县| 教育| 辽阳县| 怀安县| 蓝山县| 永丰县| 盱眙县| 吴川市| 乳源| 启东市|