• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      5個基因在小尾寒羊和蘇尼特羊性腺軸相關(guān)組織中表達(dá)分析

      2018-12-27 02:06:04張壯彪狄冉劉秋月胡文萍王翔宇田志龍張效生張金龍儲明星
      中國農(nóng)業(yè)科學(xué) 2018年24期
      關(guān)鍵詞:蘇尼特繁殖力小尾寒羊

      張壯彪,狄冉,劉秋月,胡文萍,王翔宇,田志龍,張效生,張金龍, 儲明星

      ?

      5個基因在小尾寒羊和蘇尼特羊性腺軸相關(guān)組織中表達(dá)分析

      張壯彪1,狄冉1,劉秋月1,胡文萍1,王翔宇1,田志龍1,張效生2,張金龍2, 儲明星1

      (1中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所/農(nóng)業(yè)部動物遺傳育種與繁殖重點(diǎn)實(shí)驗(yàn)室,北京 100193;2天津市畜牧獸醫(yī)研究所,天津 300381)

      【背景】隨著人們生活水平不斷提高,蛋白含量豐富、膽固醇含量較少的羊肉在日常生活中越來越受青睞,羊肉總體消費(fèi)需求呈逐年增長趨勢。但是近年來以羊肉為主的羊產(chǎn)品短缺,導(dǎo)致羊肉的價格一直居高不下,造成羊肉供需之間的矛盾。在早期對綿羊各項(xiàng)生產(chǎn)性能研究中發(fā)現(xiàn),其繁殖性能高低對羊肉生產(chǎn)有重要影響。因此,提高綿羊繁殖力對改變我國肉羊生產(chǎn)周轉(zhuǎn)慢、效益差的局面有重要意義。產(chǎn)羔數(shù)是最重要的繁殖性狀,但產(chǎn)羔數(shù)是一個低遺傳力的數(shù)量性狀,且受微效多基因的控制,故傳統(tǒng)的育種方法難以快速改良產(chǎn)羔數(shù)性狀。近年來隨著分子標(biāo)記技術(shù)的出現(xiàn),研究人員發(fā)現(xiàn)了一些影響綿羊繁殖力的主效基因,比如、等,所以后期人們開始利用常規(guī)育種結(jié)合這些分子標(biāo)記進(jìn)行高繁殖力綿羊品種選育。研究表明除了這些已經(jīng)發(fā)現(xiàn)的主效基因外,仍有一些基因?qū)d羊的繁殖力具有一定的調(diào)控作用?!灸康摹刻骄坑绊懢d羊繁殖力的候選基因、、、和在小尾寒羊和蘇尼特羊性腺軸相關(guān)組織(大腦、小腦、下丘腦、垂體、子宮、卵巢、輸卵管)的表達(dá)差異,為闡明綿羊高繁殖力機(jī)理提供參考?!痉椒ā恳援a(chǎn)多羔的小尾寒羊和產(chǎn)單羔的蘇尼特羊?yàn)閷ο螅脤?shí)時熒光定量PCR檢測上述5個基因在兩個綿羊品種與性腺軸相關(guān)的7種組織中的表達(dá)差異。【結(jié)果】在小尾寒羊和蘇尼特羊的性腺軸7種組織中均有表達(dá),在小尾寒羊下丘腦中的表達(dá)量高于蘇尼特羊(<0.05),在小尾寒羊輸卵管、卵巢、垂體、小腦的表達(dá)量高于蘇尼特羊(<0.01),但該基因在2種綿羊的大腦和子宮中表達(dá)量差異并不顯著(>0.05);在小尾寒羊垂體和卵巢以及輸卵管中表達(dá)量高于蘇尼特羊(<0.01),雖然該基因在小尾寒羊的下丘腦、子宮中的表達(dá)量高于蘇尼特羊,但其表達(dá)差異并不顯著(0.05);在小尾寒羊垂體、大腦的表達(dá)量高于蘇尼特羊<0.05),在小尾寒羊下丘腦、輸卵管、卵巢中的表達(dá)量高于蘇尼特羊(<0.01),但該基因在小尾寒羊和蘇尼特羊的小腦和子宮中表達(dá)量差異并不顯著(>0.05);在小尾寒羊和蘇尼特羊的下丘腦、垂體中呈痕量表達(dá),在其它組織中均有較高表達(dá)量,其在小尾寒羊輸卵管和子宮中的表達(dá)量高于蘇尼特羊(<0.01),但在小尾寒羊和蘇尼特羊大腦中的表達(dá)量幾乎相同(>0.05);在2種綿羊下丘腦中有較高表達(dá)量,在蘇尼特羊垂體中的表達(dá)量高于小尾寒羊(<0.05),在小尾寒羊大腦中的表達(dá)量高于蘇尼特羊(0.01),而該基因在2種綿羊其它組織中的表達(dá)量差異并不顯著(>0.05)?!窘Y(jié)論】暗示這5個基因可能對綿羊繁殖力具有一定的調(diào)控作用。

      綿羊;產(chǎn)羔數(shù);候選基因;性腺軸;組織表達(dá)

      0 引言

      【研究意義】對于綿羊來說,排卵數(shù)[1]和產(chǎn)羔數(shù)是衡量繁殖力高低的兩個重要因素。不同物種之間的后代數(shù)和排卵數(shù)差別很大,比如人和牛一般被認(rèn)為是胎產(chǎn)單個后代的物種,而小鼠和豬一般被看作窩產(chǎn)多仔的物種。綿羊排卵數(shù)一般僅有1—2個,但其有較大的“可塑性”。有研究表明某些羊的排卵數(shù)可達(dá)10個左右[2]。綿羊繁殖力受營養(yǎng)、羊群公母比例等多種因素調(diào)控,其中遺傳因素對綿羊的繁殖力影響較大。如的發(fā)現(xiàn),攜帶該基因的母羊在排卵數(shù)方面存在劑量效應(yīng),即每增加一個拷貝數(shù)其排卵數(shù)可增加1.5個,產(chǎn)羔數(shù)可增加1—1.5個左右[3,4],該基因的發(fā)現(xiàn)為選育高繁殖力母羊提供了科學(xué)依據(jù)。但近年來隨著研究不斷深入,研究人員發(fā)現(xiàn)還有一些其他基因比如骨形態(tài)發(fā)生蛋白2、6、7(bone morphogenetic protein 2、6、7,2、6、7)、鈣蛋白酶抑制蛋白(calpastatin,)和可卡因-苯丙胺調(diào)節(jié)轉(zhuǎn)錄肽(cocaine and amphetamine regulated transcript,)[1, 5-7]可以影響綿羊的繁殖力。探究這些基因在單羔、多羔羊性腺軸相關(guān)組織中的表達(dá)差異對于闡明相關(guān)分子機(jī)理具有重要意義。【前人研究進(jìn)展】BMPs家族屬于轉(zhuǎn)化生子因子亞家族的成員[8],其發(fā)揮作用主要是通過BMP II型受體(BMPR-II)以及BMPR IA或IB型受體形成異低聚物的形式發(fā)揮信號轉(zhuǎn)導(dǎo)作用。這種復(fù)合體會使II型受體磷酸化I型受體,進(jìn)而導(dǎo)致Smad蛋白磷酸化,形成異二聚體之后導(dǎo)致靶基因轉(zhuǎn)錄改變[9-10],從而影響母羊的繁殖力。該家族對哺乳動物繁殖力影響首先是在1999年由SHIMASAKI等[11]報道的。研究表明在哺乳動物生殖系統(tǒng)中,組織特異性表達(dá)的BMPs家族成員能夠影響某些結(jié)構(gòu)和器官的形成以及其生物學(xué)功能的發(fā)揮[10]。LOCHAB 等[12]發(fā)現(xiàn)在原始生殖細(xì)胞向配子發(fā)育的過程中BMPs家族起主要調(diào)控作用。在動物顆粒細(xì)胞中它主要是通過調(diào)控促性腺激素誘導(dǎo)的生成類固醇以及有絲分裂發(fā)揮其調(diào)控作用[13]。研究表明BMPs家族成員能明顯促進(jìn)牛、羊的卵泡發(fā)育[5,14-16],也有研究發(fā)現(xiàn)該家族成員與閉鎖卵泡[17]有一定的關(guān)系。CCS (calpain-calpastatin system)是機(jī)體內(nèi)重要的系統(tǒng)之一,該系統(tǒng)對包括T細(xì)胞[18]等多種細(xì)胞或系統(tǒng)具有一定的調(diào)控作用。該系統(tǒng)是由鈣蛋白酶(calpain)(m和μ型鈣蛋白)和組成。作為該系統(tǒng)的重要成員,基因編碼鈣蛋白酶抑制蛋白,它能專一性地識別相應(yīng)蛋白酶與鈣離子結(jié)合后構(gòu)像的變化,從而發(fā)揮蛋白酶抑制劑的調(diào)控作用。研究發(fā)現(xiàn)它對一些產(chǎn)肉性狀比如肌肉形成、初生重、斷奶重以及后期肉品質(zhì)的質(zhì)量起重要作用[7,19-21]。該基因?qū)d羊繁殖性能[7,21]以及牛卵泡封閉[22]也有一定影響。前人研究已經(jīng)證明腦垂體中的性腺激素對于卵巢的卵泡發(fā)育和排卵具有重要作用[23-24],故之前研究的關(guān)注點(diǎn)是與繁殖相關(guān)的性腺激素。但是隨著科技的進(jìn)步和人們對繁殖機(jī)理研究的不斷深入,越來越多的證據(jù)證明對排卵數(shù)有明顯影響的卵巢局部調(diào)節(jié)因子[25-27]。作為一種卵巢的局部調(diào)節(jié)因子在2004年由KOBAYASHI等首先發(fā)現(xiàn)[28-29],當(dāng)時研究人員發(fā)現(xiàn)它是一種與體增重和某些神經(jīng)反應(yīng)有關(guān)的神經(jīng)因子的存在[30]。該基因?qū)ε!⒀蝮w內(nèi)的某些激素如雌激素具有一定的抑制作用[31-32],對于牛卵巢、卵泡的發(fā)育以及卵泡的閉鎖具有重要影響[33-35]。該基因在動物采食活動、液體平衡、感官刺激傳導(dǎo)以及免疫反應(yīng)[36-38]中也發(fā)揮重要作用?!颈狙芯壳腥朦c(diǎn)】家族、、對綿羊繁殖具有一定的調(diào)控作用,目前關(guān)于這些基因在蘇尼特羊、小尾寒羊性腺軸相關(guān)組織中表達(dá)情況還沒有文獻(xiàn)詳細(xì)報道?!緮M解決的關(guān)鍵問題】故本文選用家族中具有代表性的、、以及、作為研究對象,以期通過表達(dá)譜的方式說明其在單羔、多羔綿羊性腺軸各組織表達(dá)量的差異情況,為進(jìn)一步闡明上述5個基因影響綿羊繁殖力的分子機(jī)理提供一定的參考,為“分子編寫育種”[39]提供一定的遺傳學(xué)材料。

      1 材料與方法

      1.1 試驗(yàn)時間、地點(diǎn)

      本研究室內(nèi)試驗(yàn)于2017年12月至2018年3月在中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所肉羊遺傳育種科研團(tuán)隊(duì)實(shí)驗(yàn)室進(jìn)行。

      1.2 實(shí)驗(yàn)樣品的采集和保存

      隨機(jī)選取2—3周歲健康、經(jīng)產(chǎn)的空懷蘇尼特母羊和小尾寒羊母羊各3只,于2017年10月飼養(yǎng)于天津市畜牧獸醫(yī)研究所試驗(yàn)羊場,所有試驗(yàn)羊的飼養(yǎng)環(huán)境和飼料均相同。2017年11月進(jìn)行屠宰,取其大腦、小腦、下丘腦、垂體、子宮、卵巢、輸卵管,取樣后迅速裝入1.8mLRNase-Free凍存管中(最大樣品量為凍存管體積的2/3)。所有樣品采集要在半小時內(nèi)完成,樣品采完后迅速放入液氮中冷凍保存,用干冰帶回實(shí)驗(yàn)室,放入-80℃冰箱冷凍保存,備用。

      1.3 RNA的提取及質(zhì)量檢測

      將采集的小尾寒羊和蘇尼特羊性腺軸7種相關(guān)組織研磨后,用Trizol(Invitrogen,美國)進(jìn)行裂解,之后按照動物組織RNA提取試劑盒(天根,北京)的說明進(jìn)行總RNA的提取,用1.0%瓊脂糖凝膠電泳和NANODROP2000檢測提取RNA的質(zhì)量和濃度。經(jīng)檢驗(yàn)合格的組織總RNA置于-80℃保存?zhèn)溆谩?/p>

      1.4 引物設(shè)計

      參考文獻(xiàn)中已報道的[40]、[40]、[41]、[1]基因序列并結(jié)合Primer Premier 5.0進(jìn)行引物的合成(NCBI的登錄號分別為XM_ 004014353.3、NM_001308564.1、XM_015102858.1、XM_015101190.1)。根據(jù)GenBank提供的綿羊、基因序列(登錄號分別為NM_001009788.1、NM_001009784)信息并用Primer Premier5.0軟件進(jìn)行引物設(shè)計,其中作為內(nèi)參基因。引物由北京天一輝遠(yuǎn)生物科技有限公司合成。各引物濃度均為10 μmol·L-1,其他詳細(xì)信息見表1。

      1.5 cDNA的合成

      利用反轉(zhuǎn)錄試劑盒合成cDNA,反轉(zhuǎn)錄體系和反應(yīng)條件見表2,全程在冰上操作。將反轉(zhuǎn)錄完成之后的cDNA產(chǎn)物稀釋后,用持家基因進(jìn)行PCR檢測,質(zhì)量合格后-20℃保存以備檢測基因mRNA表達(dá)。

      1.6 實(shí)時熒光定量PCR

      1.6.1 實(shí)時熒光定量PCR體系和程序 反應(yīng)體系總體積為20 μL,具體各試劑用量見表3。PCR程序:95℃預(yù)變性5min ,95℃變性5 s,60℃ 30 s,40個循環(huán);反應(yīng)結(jié)束后進(jìn)行熔解曲線分析。

      表1 引物的序列、擴(kuò)增片段大小及退火溫度

      表2 反轉(zhuǎn)錄體系

      1.6.2 標(biāo)準(zhǔn)曲線的建立 將cDNA樣本5倍稀釋后,進(jìn)行2倍梯度稀釋獲得5個濃度梯度(1、1/2、1/4、1/8、1/16)的cDNA樣品。用這些cDNA作為模板對目的基因和持家基因進(jìn)行熒光定量PCR,以濃度梯度的對數(shù)值(10為底數(shù))為橫坐標(biāo),以檢測所得Ct值為縱坐標(biāo),繪制目的基因和持家基因標(biāo)準(zhǔn)曲線。

      表3 實(shí)時熒光定量PCR體系

      1.6.3 實(shí)時熒光定量檢測與數(shù)據(jù)分析 使用Roche Light Cycler?480Ⅱ型熒光定量PCR儀進(jìn)行熒光定量檢測,采用Excel進(jìn)行數(shù)據(jù)處理,用2-△△Ct的方法計算基因的相對表達(dá)量。獲得的表達(dá)量數(shù)據(jù)用SPSS19.0進(jìn)行單因素方差分析(One-way ANOVA),分為差異顯著(<0.05);差異極顯著(<0.01)。

      2 結(jié)果

      2.1 RNA的提取

      提取后的總RNA用1%瓊脂糖凝膠電泳進(jìn)行檢測,其完整性如圖1。結(jié)果發(fā)現(xiàn)28S條帶明顯亮于18S條帶,條帶完整性較好,表明該RNA質(zhì)量合格,可用于后續(xù)試驗(yàn)。

      2.2 BMP2、BMP6、BMP7、CAST、CART組織表達(dá)分析

      2.2.1組織表達(dá)分析 從圖2中可以看出該基因在7種組織中均有表達(dá),其中在小尾寒羊的輸卵管表達(dá)量最高;在小尾寒羊輸卵管、卵巢、垂體和小腦該基因的表達(dá)量極顯著高于蘇尼特羊(<0.01);該基因在小尾寒羊下丘腦的表達(dá)量顯著高于蘇尼特羊(<0.05);其他組織差異均不顯著(>0.05)。

      圖1 RNA電泳檢測

      *(P<0.05); **(P<0.01)。其中上述1-7分別代表大腦、小腦、下丘腦、垂體、子宮、卵巢、輸卵管。下同

      2.2.2組織表達(dá)分析 由圖3可見,在兩種綿羊的7種組織中,該基因在小尾寒羊的卵巢中表達(dá)量最高;該基因在小尾寒羊卵巢、輸卵管、垂體的表達(dá)量極顯著高于蘇尼特羊(<0.01);該基因在蘇尼特羊垂體和卵巢表達(dá)量很少或基本不表達(dá),其他組織差異都不顯著(>0.05)。

      圖3 BMP6在小尾寒羊和蘇尼特羊各組織中的表達(dá)

      2.2.3基因組織表達(dá)分析 如圖4所示,該基因在小尾寒羊垂體中表達(dá)量最高;該基因在小尾寒羊下丘腦、輸卵管和卵巢中的表達(dá)量極顯著高于蘇尼特羊(<0.01);在小尾寒羊垂體中該基因的表達(dá)量顯著高于蘇尼特羊(<0.05),在蘇尼特羊大腦中該基因的表達(dá)量顯著高于小尾寒羊(<0.05);其他組織差異均不顯著(>0.05)。

      圖4 BMP7在小尾寒羊和蘇尼特羊各組織中的表達(dá)

      2.2.4組織表達(dá)分析 如圖5所示在小尾寒羊輸卵管和子宮中的表達(dá)量極顯著高于蘇尼特羊(<0.01);在蘇尼特羊小腦中該基因的表達(dá)量顯著高于小尾寒羊(<0.05);而該基因在兩種綿羊的下丘腦、垂體中均呈痕量表達(dá)。

      2.2.5組織表達(dá)分析 如圖6所示,該基因在兩種綿羊下丘腦表達(dá)量最高;該基因在小尾寒羊大腦中表達(dá)量極顯著高于蘇尼特羊(<0.01);在蘇尼特羊垂體中該基因的表達(dá)量顯著高于小尾寒羊(<0.05);該基因在小尾寒羊和蘇尼特羊卵巢、子宮和輸卵管均呈痕量表達(dá)。

      圖5 CAST在小尾寒羊和蘇尼特羊各組織中的表達(dá)

      圖6 CART在小尾寒羊和蘇尼特羊各組織中的表達(dá)

      3 討論

      3.1 BMPs家族對繁殖的調(diào)控

      卵巢、子宮等是動物最重要的繁殖器官,探究影響繁殖相關(guān)基因在這些組織中的表達(dá)的差異對于闡明產(chǎn)羔數(shù)差異和繁殖力的高低具有一定的促進(jìn)作用。研究表明不同的BMPs家族成員在不同的物種體內(nèi)均有表達(dá)[8,42-46],說明該基因家族可能在動物體內(nèi)發(fā)揮著重要調(diào)控作用。有研究表明在綿羊卵巢的卵母細(xì)胞、顆粒細(xì)胞、膜細(xì)胞均存在BMPs受體,說明BMPs家族可能會在卵巢發(fā)揮其局部調(diào)節(jié)因子的作用,從而影響綿羊的繁殖活動[4,47]。鄺美倩等[48]研究表明在產(chǎn)羔數(shù)較高的湖羊的子宮中有較高表達(dá)量。在本實(shí)驗(yàn)中,不僅在產(chǎn)多羔的小尾寒羊的子宮有一定的表達(dá)量,而且在蘇尼特羊也有一定的表達(dá)量,但二者差異不顯著(>0.05)。徐業(yè)芬等[40]在湖羊的相關(guān)組織表達(dá)譜中發(fā)現(xiàn)在卵巢和輸卵管有表達(dá),但在子宮中不表達(dá);、在卵巢組織中有表達(dá),但是上述3個基因在單、雙羔湖羊的卵巢表達(dá)差異并不顯著(>0.05)。本研究顯示不僅在卵巢和輸卵管中有表達(dá),而且在小尾寒羊(多羔)和蘇尼特羊(單羔)的子宮中均有表達(dá);并且3個基因在小尾寒羊(多羔)卵巢中均有表達(dá)且表達(dá)量極顯著高于蘇尼特羊(單羔)(<0.01)。也有研究發(fā)現(xiàn)當(dāng)卵巢發(fā)生某些病變?nèi)缒[性卵巢疾病時,BMPs家族的、等的表達(dá)量會發(fā)生改變[49],所以說某些卵巢的病變也有可能是導(dǎo)致其基因表達(dá)量差異的重要原因。

      在動物的繁殖周期中,激素是一類非常重要的調(diào)控發(fā)情或繁殖的因素。BMPs家族基因?qū)Ψ敝诚嚓P(guān)的激素具有重要調(diào)控作用。LIU等[50]研究發(fā)現(xiàn)在雞胚胎的下丘腦大量表達(dá)。TAKEDA等[51]研究表明BMPs家族成員在人垂體中有表達(dá)。也有研究表明家族成員在湖羊的子宮[39,48]和卵巢[40]中有表達(dá)。VINODKUMAR等[52]研究發(fā)現(xiàn)在哺乳動物的輸卵管上皮細(xì)胞中存在BMPs家族成員的相關(guān)受體。上述文獻(xiàn)結(jié)果表明BMPs家族成員在生物體性腺軸相關(guān)組織有一定的表達(dá)量。在本試驗(yàn)中與激素分泌相關(guān)的下丘腦、垂體、卵巢等組織中均有表達(dá)。OTSUKA等[53]在小鼠體內(nèi)研究發(fā)現(xiàn),能夠抑制孕酮含量的上升。綿羊的體外實(shí)驗(yàn)研究表明直接卵巢灌注會導(dǎo)致抑制素A、孕酮和雌激素含量的快速變化以及排卵前LH峰的提前[5]。VINOD等[54]在體外直接培養(yǎng)綿羊顆粒細(xì)胞并用不同劑量處理顆粒細(xì)胞,發(fā)現(xiàn)不同的劑量均能增加雌激素含量。上述文獻(xiàn)表明BMPs家族的成員對動物各種激素或激素受體都有較明顯的調(diào)控作用。綜上,由于BMPs家族基因在分泌性激素的垂體、下丘腦等組織中有表達(dá),且該基因家族對激素具有調(diào)控作用,故推測對綿羊繁殖力具有一定的調(diào)控作用。

      3.2 CART和CAST對動物繁殖的調(diào)控

      研究發(fā)現(xiàn)在蛋雞[55]、豬[56]以及小鼠[57]的下丘腦中有表達(dá);在體外培養(yǎng)的小鼠垂體細(xì)胞中也發(fā)現(xiàn)了的表達(dá),同時研究人員也發(fā)現(xiàn)該基因的不同劑量可以明顯影響PRL/ACTH/TSH和GH的含量[58]。在本試驗(yàn)中在小尾寒羊和蘇尼特羊的下丘腦和垂體中均有表達(dá),并且該基因在蘇尼特羊(單羔)兩種組織的表達(dá)量均高于小尾寒羊(多羔)。李鵬飛等[58-59]研究發(fā)現(xiàn)該基因?qū)SH誘導(dǎo)的卵泡細(xì)胞中的雌激素含量具有一定的抑制作用,由于下丘腦和垂體是性腺軸兩個重要的促性腺激素分泌組織,結(jié)合本試驗(yàn)結(jié)果,進(jìn)一步為抑制雌激素的分泌提供了證據(jù)。若在蛋雞中導(dǎo)入干擾表達(dá)的dsRNA,發(fā)現(xiàn)其對卵泡細(xì)胞分泌雌激素具有促進(jìn)作用[60]。綜上推測該基因與雌激素的分泌呈一定的負(fù)相關(guān)。李鵬飛等[60]研究發(fā)現(xiàn)該基因在蛋雞卵巢中有表達(dá),在本試驗(yàn)中,在兩種綿羊的卵巢組織中該基因均呈痕量表達(dá),但JONES等[57]研究發(fā)現(xiàn)該基因在小鼠的卵巢內(nèi)不表達(dá)。其可能原因是物種之間的差異,或者所處的生理?xiàng)l件不同。

      張菊等[61]利用半定量RT-PCR方法研究發(fā)現(xiàn)的2型轉(zhuǎn)錄本在陶賽特羊卵巢和大腦中有表達(dá)。在本實(shí)驗(yàn)中在兩種綿羊的大腦中均有表達(dá),且該基因在小尾寒羊卵巢中的表達(dá)量顯著高于蘇尼特羊(<0.01),與上述文獻(xiàn)結(jié)果基本一致。KAPPES等[62,63]研究發(fā)現(xiàn)位于??苿游锏?號染色體上,并且在該區(qū)域存在潛在的與產(chǎn)雙羔相關(guān)的基因座。BYUN等[64]通過對大群體統(tǒng)計分析,發(fā)現(xiàn)與奶牛繁殖活動以及壽命長短有關(guān);但是GARCIA等[65]研究發(fā)現(xiàn),該基因與羅姆尼羊、美利奴羊、考力代羊的繁殖力以及壽命不存在明顯的相關(guān)性。在本研究中在小尾寒羊和蘇尼特羊子宮、卵巢、輸卵管中表達(dá)量較高,并且在小尾寒羊子宮和輸卵管中的表達(dá)量極顯著高于蘇尼特羊(<0.01),故推測該基因?qū)d羊的繁殖力具有一定的影響。目前,關(guān)于該基因影響動物繁殖力相關(guān)的研究幾乎處于空白,所以對該基因影響綿羊繁殖力的機(jī)制需要進(jìn)一步探究。

      4 結(jié)論

      本試驗(yàn)利用實(shí)時熒光定量PCR探究了、、、和在產(chǎn)多羔的小尾寒羊和產(chǎn)單羔的蘇尼特羊與性腺軸相關(guān)的7種組織中的表達(dá)量差異,研究結(jié)果表明上述5個基因在單、多羔性腺軸相關(guān)組織中的表達(dá)有較大差異,暗示這5個基因可能對綿羊繁殖力具有一定的調(diào)控作用,為進(jìn)一步闡明綿羊高繁殖力的分子機(jī)理提供了新的思路。

      [1] JUENGEL J L, FRENCH M C, QUIRKE L D, KAUFF A, SMITH G W, JOHNSTONE P D. Differential expression of CART in ewes with differing ovulation rates., 2017, 9(23):471-479.

      [2] JUENGEL J L, DAVIS G H, MCNATTY K P. Using sheep lines with mutations in single genes to better understand ovarian function., 2013, 146(4):111-123.

      [3] MULSANT P, LECERF F, FABRE S,FRéDéRIC L, STéPHANE F,LAURENT S, PHILIPPE M, ISABELLE L, CLAUDINE P, JULIETTE R, DANIELLE M, ISABELLE C, EDMOND C, JACQUES T, JACQUES T, LOYS B, YVES C, NOUR C, JEAN-MICHEL E. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes., 2001, 98(9):5104-5109.

      [4] WILSON T, WU X Y, JUENGEL J L, ROSS I K, LUMSDEN J M, LORD E A, DODDS K G, WALLING G A, MCEWAN J C, O'CONNELL A R, MCNATTY K P, MONTGOMERY G W. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells., 2001, 64(4):1225-1235.

      [5] CAMPBELLB K, KENDALLN R, BAIRD D T. Effect of direct ovarian infusion of bone morphogenetic protein 6 (BMP6) on ovarian function in sheep., 2009, 81(5):1016-1023.

      [6] JUENGEL J L, FRENCH M C, QUIRKE L D, KAUFF A, SMITH G W, JOHNSTONE P D. The role of bone morphogenetic proteins 2, 4, 6 and 7 during ovarian follicular development in sheep: contrast to rat., 2006,131(3): 501-513..

      [7] DEHNAVI E, AZARI M A, HASANI S, NASSIRY M R, MOHAJER M, AHMADI A. Genetic variability of calpastatin and calpain genes in Iranian Zel sheep using PCR-RFLP and PCR-SSCP methods., 2012, 10(2):136-139.

      [8] SHIMASAKI S, ZACHOW R J, LI D, KIM H, IEMURA S, UENO N, SAMPATH K, CHANG R J, ERICKSON G F. A functional bone morphogenetic protein system in the ovary., 1999, 96(6):7282-7287.

      [9] MASSAGUE J. TGFβ signaling: receptors, transducers, and Mad proteins.,1996, 85(7):947-950.

      [10] MIYAZONO K, MAEDA S, IMAMURA T. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk ., 2005, 16(3):251-263.

      [11] SHIMASAKI S, MOORE K, OTSUKA F, ERICKSON G F. The bone morphogenetic protein system in mammalian reproduction., 2004, 25(1):72-101.

      [12] LOCHAB A K, EXTAVOUR C G. Bone morphogenetic protein (BMP) signaling in animal reproductive system development and function., 2017, 427(2):258-269.

      [13] LIU Z, SHEN J, PU K, KATUS H A, PL?GER F, TIEFENBACHER C P, CHEN X, BRAUN T. GDF5 and BMP2 inhibit apoptosis via activation of BMPR2 and subsequent stabilization of XIAP., 2009, 1793(12):1819-1827.

      [14] OTSUKA F, YAO Z, LEE T, YAMAMOTO S, ERICKSON G F, SHIMASAKI S. Bone morphogenetic protein-15-Identification of target cells and biological functions., 2000, 275(50):39523-39528.

      [15] ROSSIRO D A, CUNHA E V, PORTELA A M, PASSOS J R, COSTA J J, SILVA A W, SARAIVA M V, PEIXOTO C A, DONATO M A, VAN D R, SILVA J R. Influence of BMP-2 on early follicular development and mRNA expression of oocyte specific genes in bovine preantral follicles cultured., 2016, 31(3):339-348.

      [16] DA C E, LRF M, SOUSA G B, ARA?oJO V R, VASCONCELOS G L, AWB S, SILVA J. Effect of bone morphogenetic proteins 2 and 4 on survival and development of bovine secondary follicles cultured., 2018, 110(1):44-51.

      [17] FOROUGHINIA G, FAZILEH A, EGHBALSAIED S. Expression of genes involved in BMP and estrogen signaling and AMPK production can be important factors affecting total number of antral follicles in ewes., 2017, 91(5):36-43.

      [18] MIKOSIK A, JASIULEWICZ A, DACA A, HENC I, FR?CKOWIAK J E. Roles of calpain-calpastatin system (CCS) in human T cell activation., 2016, 7(47):76479-76495.

      [19] MOHAMMADI M, NASIRI M B, ALAMI-SAEID K, FAYAZI J, MAMOEE M, SADR A. Polymorphism of calpastatin gene in Arabic sheep using PCR-RFLP., 2008, 7(15):2682-2684.

      [20] CHUNG H, DAVIS M. PCR-RFLP of the ovine calpastatin and its association with growth., 2012, 7(8):641-652.

      [21] RANJBARI M, HASHEMI A, MARDANI K, DARVISHZADEH R. Allelic polymorphism of Makoei sheep calpastatin gene identified by polymerase chain reaction and single strand conformation polymorphism., 2012, 14(3):533-538.

      [22] TAIT R G, CUSHMAN R A, MCNEEL A K, CASAS E, SMITH T P, FREETLY H C, BENNETT G L.μ-Calpain (CAPN1), calpastatin (CAST), and growth hormone receptor (GHR) genetic effects on Angus beef heifer performance traits and reproduction., 2018, 113(3):1-7.

      [23] MIHM M, EVANS A C. Mechanisms for dominant follicle selection in monovulatory species: a comparison of morphological, endocrine and intraovarian events in cows, mares and women., 2008, 43(Suppl.2):48-56.

      [24] WEBB R, CAMPBELL B K. Development of the dominant follicle: mechanisms of selection and maintenance of oocyte quality., 2007, 64(1):141-163.

      [25] GILCHRIST R B, RITTER L J, ARMSTRONG D T. Oocyte-somatic cell interactions during follicle development in mammals., 2004, 82-83:431-446.

      [26] JUENGEL J L, MCNATTY K P. The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development., 2005, 11(2):143-160.

      [27] SILVA J R, FIGUEIREDO J R, VAN D H. Involvement of growth hormone (GH) and insulin-like growth factor (IGF) system in ovarian folliculogenesis., 2009, 71(8):1193-1208.

      [28] KOBAYASHI Y, JIMENEZ-KRASSEL F, LI Q, YAO J, HUANG R, IRELAND J J, COUSSENS P M, SMITH G W. Evidence that cocaine- and amphetamine-regulated transcript is a novel intraovarian regulator of follicular atresia., 2004, 145(11): 5373-5383.

      [29] YAO J, REN X, IRELAND J J, COUSSENS P M, SMITH T P, SMITH G W. Generation of a bovine oocyte cDNA library and microarray: resources for identification of genes important for follicular development and early embryogenesis., 2005, 19(1):84-92.

      [30] ROGGE G, JONES D, HUBERT G W, LIN Y, KUHAR M J. CART peptides: regulators of body weight, reward and other functions ., 2010,11(3):218.

      [31] KOBAYASHI Y, JIMENEZ-KRASSEL F, IRELAND J J, SMITH G W.Evidence of a local negative role for cocaine and amphetamine regulated transcript (CART), inhibins and low molecular weight insulin like growth factor binding proteins in regulation of granulosa cell estradiol production during follicular waves in cattle., 2006, 4(1):22-31.

      [32] HUANG Y, YAO X L, MENG J Z, LIU Y, JIANG X L, CHEN J W, LI P F, REN Y S, LIU W Z, YAO J B, FOLGER J K, SMITH G W, LV L H.Intrafollicular expression and potential regulatory role of cocaine- and amphetamine-regulated transcript in the ovine ovary., 2016, 54(1):30-36.

      [33] SEN A, BETTEGOWDA A, JIMENEZKRASSEL F, IRELAND J J, SMITH G W. Cocaine- and amphetamine-regulated transcript regulation of follicle-stimulating hormone signal transduction in bovine granulosa cells., 2007, 148(9):4400-4410.

      [34] LV L, JIMENEZ-KRASSEL F, SEN A, BETTEGOWDA A, MONDAL M, FOLGER J K, LEE K B, IRELAND J J, SMITH G W. Evidence supporting a role for cocaine- and amphetamine-regulated transcript (CARTPT) in control of granulosa cell estradiol production associated with dominant follicle selection in cattle., 2009, 81(3):580-586.

      [35] KOBAYASHI Y, JIMENEZ K F Q, YAO J, HUANG R, IRELAND J J, COUSSENS P M, SMITH G W. Evidence that cocaine- and amphetamine-regulated transcript is a novel intraovarian regulator of follicular atresia., 2004, 145(11):5373-5383.

      [36] HIM L, KRISTENSEN P, LARSEN P J, WULFF B S. CART, a new anorectic peptide., 1998, 30(12):1281-1284.

      [37] MAKOWSKA K, GONKOWSKI S. Cocaine-and amphetamine- regulated transcript (cart) peptide in mammals gastrointestinal system–a review., 2017, 17(1):3-21.

      [38] VICENTIC A, JONES D C. The CART (cocaine-and amphetamine- regulated transcript) system in appetite and drug addition., 2007, 320(2): 499-506.

      [39] 劉志國,王冰源,牟玉蓮,魏泓,陳俊海,李奎.分子編寫育種——動物育種的發(fā)展方向.中國農(nóng)業(yè)科學(xué),2018(12):2398-2409.Liu Z G, Wang B Y, Yan Y l, Wei W, Chen J H, Li K. Breeding by Molecular Writing (BMW): the Future Development of Animal Breeding., 2018(12): 2398-2409.

      [40] 徐業(yè)芬,李齊發(fā),李二林. 湖羊BMP2、BMP4、BMP6 和BMP7 基因mRNA 表達(dá)水平與排卵數(shù)關(guān)系的研究. 中國農(nóng)業(yè)科學(xué), 2009, 42(10):3655-3661.XU Y F, LI Q F, LI E L. Relationship between mRNA Expression of BMP2, BMP4, BMP6 and BMP7 genes and number of ovulation in Hu sheep., 2009, 42(10):3655-3661. (in Chinese)

      [41] 楊燕燕,杜文,劉永斌. BMP6基因在單、雙羔蒙古羊不同生理時期卵巢組織中的差異表達(dá)及分析. 畜牧與飼料科學(xué),2017, 38(3):25-27.YANG Y Y, DU W, LIU Y B. Difference expression and analysis of BMP6 gene in ovary tissues of single and double lamb Mongolian sheep at different physiological stages. Animal Husbandry And feed Science, 2017, 38(3):25-27. (in Chinese)

      [42] DUBE J L, WANG P, ELVIN J, LYONS K M, CELESTE A J, MATZUK M M. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes., 1998, 12(12):1809-1817.

      [43] HINO J, TAKAO M, TAKESHITA N, KONNO Y, NISHIZAWA T, MATSUO H, KANGAWA K. cDNA cloning and genomic structure of human bone morphogenetic protein-3B (BMP-3b)., 1996, 223(2):304-310.

      [44] JAATINEN R, ROSEN V, TUURI T, RITVOS O. Identification of ovarian granulosa cells as a novel site of expression for bone morphogenetic protein-3 (BMP-3/osteogenin) and regulation of BMP-3 messenger ribonucleic acids by chorionic gonadotropin in cultured human granulosa-luteal cells., 1996, 81(11):3877-3882.

      [45] LYONS K M, PELTON R W, HOGAN B L. Patterns of expression of murine Vgr-1 and BMP-2a RNA suggest that transforming growth factor-beta-like genes coordinately regulate aspects of embryonic development., 1989, 3(11):1657-1668.

      [46] TAKAO M, HINO J, TAKESHITA N, KONNO Y, NISHIZAWA T, MATSUO H, KANGAWA K. Identification of rat bone morphogenetic protein-3b (BMP-3b), a new member of BMP-3.ns, 1996, 219(2): 656-662.

      [47] SOUZA C J, CAMPBELL B K, MCNEILLY A S, BAIRD D T. Effect of bone morphogenetic protein2 (BMP2) on oestradiol and inhibin A production by sheep granulosa cells, and localization of BMP receptors in the ovary by immunohistochemistry., 2002, 123(3): 363-370.

      [48] 鄺美倩, 金鵬錦, 王若丞, 孫玲偉,王鋒,李鵬,成志軍,茆達(dá)干. 限飼對湖羊子宮RGMb基因及BMP系統(tǒng)成員表達(dá)的影響. 畜牧獸醫(yī)學(xué)報, 2017, 48(5):863-870.RUAN M Q, JIN P J, WANG R J, SUN L W, WANG F, LI P, CHENG Z J, MAO D G. Effect of feed restriction on expression of RGMb gene and BMP system members in Huyang uterus., 2017, 48(5):863-870. (in Chinese)

      [49] DíAZ P U, HEIN G J, BELOTTI E M, RODRíGUEZ F M, REY F, AMWEG A N, MATILLER V, BARAVALLE M E, ORTEGAH H, SALVETTI N R. BMP2, 4 and 6 and BMPR1B are altered from early stages of bovine cystic ovarian disease development., 2016, 152(4):333-350.

      [50] LIU F, PLACZEK M. Axon guidance effects of classical morphogens Shh and BMP7 in the hypothalamo-pituitary system., 2013, 553(8):104-109.

      [51] TAKEDA M, OTSUKA F, SUZUKI J, KISHIDA M, OGURA T, TAMIYA T, MAKINO H. Involvement of activin/BMP system in development of human pituitary gonadotropinomas and nonfunctioning adenomas., 2003, 306(4):812-818.

      [52] VALDECANTOS P A, MIANA R D C B, GARCíA E V, GARCíA D C, ROLDáN-OLARTE M, MICELI D C. Expression of bone morphogenetic protein receptors in bovine oviductal epithelial cells: Evidence of autocrine BMP signaling., 2017, 185(10):89-96.

      [53] OTSUKA F, MOORE R K, SHIMASAKI S. Biological function and cellular mechanism of bone morphogenetic protein-6 in the ovary., 2001, 276(35):32889-32895.

      [54] VINOD K D, GULZAR R, SELVARAJU S, NAZAR S, PARTHIPAN S, PRASAD R V, JAMUNA K V, RAVINDRA J P. Effect of bone morphogenetic protein-2 (bmp-2) on sheep granulosa cell steriodogenic function.2014, 14(2):4233-4236.

      [55] 于雪靜, 龐鈺瑩, 賀俊平, 姜曉龍, 呂麗華. 蛋雞下丘腦CART mRNA序列測定及分析. 畜牧獸醫(yī)科技信息, 2013, (4):21-23. YU X J, PANG Y Y, HE J P, JIANG X L, LV L H. Determination and analysis of CART mRNA sequence in hypothalamus of laying hens., 2013, (4):21-23. (in Chinese)

      [56] 李鵬飛, 李富祿, 于秀菊,呂麗華. 豬CART mRNA全CDS區(qū)序列的克隆與表達(dá)載體的構(gòu)建. 福建農(nóng)林大學(xué)學(xué)報(自然科學(xué)版), 2011, 40(6):52-55.LI P F, LI F L, YU X J, Lü L H. Cloning of the full CDS region of pig CART mRNA and construction of its expression vector., 2011, 40(6):52-55. (in Chinese)

      [57] JONES D C, KUHAR M J. Cocaine-amphetamine-regulated transcript expression in the rat nucleus accumbens is regulated by adenylyl cyclase and the cyclic adenosine 5′-monophosphate/protein kinase a second messenger system., 2006, 317(1):454-461.

      [58] CHMIELOWSKA M, BARANOWSKA B, WOLINSKA-WITORT E, MARTYNSKA L, KALISZ M, LITWINIUK A, BIK W. The effect of Cart on pituitary hormones release from cultured pituitary cells: harvested from fasted and fed ad libitum male rats., 2017, 9(1): 20-25.

      [59] 李鵬飛, 岳文斌, 黃洋, 孫晉艷, 李曉明, 龐鈺瑩, 于學(xué)靜, 賀俊平, 孟金柱, 任有蛇, 呂麗華. 可卡因-苯丙胺調(diào)控轉(zhuǎn)錄肽對綿羊卵巢卵泡顆粒細(xì)胞雌激素產(chǎn)生的影響. 畜牧獸醫(yī)學(xué)報, 2013, 44(6): 853-857.LI P F, YUE W B, HUANG Y,SUN J Y, LI X M, PANG Y Y,YU X J, HE J P, MENG J Z, REN Y S, LV L H. Effect of cocaine- amphetamine-controlled transcription peptide on estrogen production of ovarian follicle granulosa cells in sheep., 2013, 44(6):853-857. (in Chinese)

      [60] 李鵬飛, 孟金柱, 于雪靜, 龐鈺瑩, 杜海燕, 李曉明, 姚曉磊, 趙妙妙, 呂麗華. 外源性dsRNA對蛋雞卵泡CART基因表達(dá)及雌激素和孕酮分泌的影響. 畜牧獸醫(yī)學(xué)報, 2016, 47(3):515-520.LI P F, MENG J Z, YU X J, PANG Y Y, DU H Y, LI X M, YAO X L, ZHAO M M, LV L H. Effects of exogenous dsRNA on CART gene expression and estrogen and progesterone secretion in follicles of laying hens., 2016, 47(3):515-520. (in Chinese)

      [61] 張菊. 綿羊CAST、MC4R和BTGl基因的克隆、組織表達(dá)和遺傳多態(tài)性分析[D]. 中國農(nóng)業(yè)科學(xué)院, 2009.ZHANG J. Cloning, tissue expression and genetic polymorphism analysis of CAST, MC4R and BTG1 genes in sheep [D]., 2009.

      [62] KAPPES S M, BENNETT G L, KEELE J W, ECHTERNKAMP S E, GREGORY K E, THALLMAN R M. Initial results of genomic scans for ovulation rate in a cattle population selected for increased twinning rate., 2000, 78(12):3053-3059.

      [63] LIEN S, KARLSEN A, KLEMETSDAL G, V?GE D I, OLSAKER I, KLUNGLAND H, AASLAND M, HERINGSTAD B, RUANE J, GOMEZ-RAYA L. A primary screen of the bovine genome for quantitative trait loci affecting twinning rate., 2000, 11(10):877-882.

      [64] GARCIA M D, MICHAL J J, GASKINS C T, REEVES J J, OTT T L, LIU Y, JIANG Z. Significant association of the calpastatin gene with fertility and longevity in dairy cattle., 2006, 37(3):確良304-305.

      [65] BYUN S O, ZHOU H, FRAMPTON C M, HICKFORD J G. No association between variation in the ovine calpastatin gene and either longevity or fertility in sheep., 2009, 41(2): 222-224.

      Expression Analysis of Five Genes in the Gonadal Axis of Small Tail Han Sheep and Sunite Sheep

      ZHANG ZhuangBiao1, DI Ran1, LIU QiuYue1, HU WenPing1, WANG XiangYu1, TIAN ZhiLong1,ZHANG XiaoSheng2, ZHANG JinLong2, CHU MingXing1

      (1Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture/ Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193;2Tianjin Institute of Animal Sciences, Tianjin 300381)

      【Background】With the continuous improvement of living standard, mutton with rich protein and low cholesterol content is increasingly favored in daily life, and the overall consumption demand of mutton is increasing year by year. However, in recent years, the shortage of mutton-based sheep products has caused the price of mutton to remain high, resulting in a contradiction between supply and demand of mutton. In the early researches on the performance of sheep, it was found that the reproductive performance had an important impact on the mutton production. Therefore, improving the fecundity of sheep is of great significance for changing the situation of slow turnaround and poor efficiency of meat sheep production in China. The litter size is the most important reproductive trait, but the litter size is a quantitative trait of low heritability and is controlled by micro-multiple genes. Therefore, traditional breeding methods are difficult to rapidly improve litter size. In recent years, with the advent of molecular marker technology, researchers have discovered some major genes that affect the fertility of sheep, such as,,and other genes, afterwards, researches began to use conventional breeding methods combined with these molecular markers to cultivate new sheep breeds with high fecundity. Studies have shown that in addition to these major genes that have been discovered, there are still some genes that have a certain regulatory effect on the fecundity of sheep. Based on this situation, the purpose of this study was to explore the differential expression of candidate genes which may affect the fertility of sheep. 【Objective】,,,and, in the tissues associated with the gonadal axis (brain, cerebellum, hypothalamus, pituitary, uterus, ovary and oviduct) in Small Tail Han sheep and Sunite sheep, which would provide a reference for clarifying the mechanism of high fecundity of sheep. 【Method】 Polytocous Small Tail Han sheep and monotocous Sunitesheep were used as the experimental animals, and real-time fluorescence quantitative PCR was performed to detect the expression difference of these five genes in seven gonadal-related tissues in two sheep breeds. 【Result】 The results showed thatgene was expressed in all seven tissues of the gonadal axis. The expression of<0.05). The expression of<0.01), however, the expression difference of this gene in the brain and uterus of the two sheep breeds was not significant (>0.05). The expression of<0.01), although the expression level of this gene in the hypothalamus and uterus of Small Tail Han sheep was higher than that of Sunite sheep, however, the expression difference was not significant (>0.05). The expression of<0.05), the expression of<0.01), but there was no significant difference in the expression of this gene in the cerebellum and uterus of Small Tail Han sheep and Sunite sheep (>0.05). The trace expression ofwas found in hypothalamus and pituitary, and the higher expression in other tissues in two sheep breeds, the expression ofgene in oviduct and uterus of Small Tail Han sheep was higher than that of Sunite sheep (<0.01), however, the expression levels of this gene in the brains of Small Tail Han sheep and Sunite sheep were almost the same (>0.05). Thewas highly expressed in hypothalamus of two sheep breeds. The expression ofgene in pituitary of Sunite sheep was higher than that of Small Tail Han sheep<0.05), and the expression ofin brain of Small Tail Han sheep was higher than that of Sunite sheep (<0.01), whereas, there was no significant difference in the expression of this gene in other tissues used in this experiment of two sheep breeds (>0.05). 【Conclusion】These results implied that the five genes may have some regulatory roles on sheep fertility.

      sheep; litter size; candidate genes; gonadal axis; tissue expression

      2018-04-18;

      2018-07-07

      國家自然科學(xué)基金(31772580);國家轉(zhuǎn)基因科技重大專項(xiàng)(2016ZX08009-003-006和2016ZX08010-005-003);國家肉羊產(chǎn)業(yè)技術(shù)體系專項(xiàng)(CARS-38);中央級公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)(Y2017JC24、2017ywf-zd-13);中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(ASTIP-IAS13、CAAS-XTCX2016010-01-03、CAAS-XTCX2016010-03-03、CAAS-XTCX2016011-02-02);寧夏農(nóng)林科學(xué)院科技創(chuàng)新先導(dǎo)資金(DWJLC-2016001);內(nèi)蒙古自治區(qū)科技重大專項(xiàng);農(nóng)業(yè)科研杰出人才及其創(chuàng)新團(tuán)隊(duì)項(xiàng)目(農(nóng)辦人[2015]62號);國家萬人計劃科技創(chuàng)新領(lǐng)軍人才項(xiàng)目(W02020274);天津市科技計劃項(xiàng)目(16ZXZYNC00050);天津市農(nóng)業(yè)科技成果轉(zhuǎn)化與推廣項(xiàng)目(201704020)

      張壯彪,E-mail:zhangzhuangbiao18@163.com。

      儲明星,E-mail:mxchu@263.net

      10.3864/j.issn.0578-1752.2018.24.011

      (責(zé)任編輯 林鑒非)

      猜你喜歡
      蘇尼特繁殖力小尾寒羊
      巨盜龍珊珊的荒漠探險
      頭足類鞘亞綱繁殖力研究進(jìn)展
      湖南沅水下游繁殖期內(nèi)繁殖力和卵徑的變化研究
      通過營養(yǎng)改善母豬繁殖力的要點(diǎn)
      小尾寒羊產(chǎn)前癱瘓的診療
      引進(jìn)小尾寒羊暴發(fā)羊痘病
      蘇尼特午后的那一刻
      鹿鳴(2015年7期)2015-05-30 23:48:50
      蘇尼特羊肉
      小尾寒羊養(yǎng)殖技術(shù)
      飼養(yǎng)小尾寒羊的幾項(xiàng)措施
      淮滨县| 清远市| 昂仁县| 定安县| 广宗县| 如东县| 左云县| 屏山县| 南康市| 电白县| 黄大仙区| 宣武区| 曲阜市| 赤城县| 武城县| 临漳县| 通许县| 招远市| 赤峰市| 沾益县| 咸丰县| 亚东县| 临泉县| 贡觉县| 玉山县| 天台县| 宜川县| 怀来县| 阜康市| 伽师县| 湖北省| 岳池县| 双江| 屏边| 北碚区| 龙口市| 贵溪市| 茂名市| 玉溪市| 遵义县| 江安县|