何強(qiáng) 張培華
[摘要]外泌體是細(xì)胞分泌的直徑30~100nm的脂質(zhì)雙層膜囊泡。間充質(zhì)干細(xì)胞的許多功能可通過其旁分泌的外泌體發(fā)揮作用。研究表明,間充質(zhì)干細(xì)胞來源外泌體能通過有效轉(zhuǎn)運(yùn)母細(xì)胞來源的特異性蛋白質(zhì)、mRNA、microRNA、脂質(zhì)等生物活性物質(zhì)進(jìn)入靶細(xì)胞,調(diào)控創(chuàng)面愈合過程中炎癥反應(yīng)、細(xì)胞增殖、遷移、分化、血管生成與基質(zhì)重建等多個階段,促進(jìn)創(chuàng)面愈合與抑制瘢痕形成,提升創(chuàng)面修復(fù)能力,具有良好的臨床應(yīng)用前景。本文就間充質(zhì)干細(xì)胞來源外泌體在創(chuàng)面修復(fù)中作用及機(jī)制進(jìn)行綜述。
[關(guān)鍵詞]外泌體;間充質(zhì)干細(xì)胞;創(chuàng)面修復(fù);促進(jìn)愈合;抑制瘢痕
[中圖分類號]R641 [文獻(xiàn)標(biāo)志碼]A [文章編號]1008-6455(2018)09-0143-06
Progress of Exosomes Derived from Mesenchymal Stem Cells
in Repair of Cutaneous Wound in Relation to Function and Mechanism
HE Qiang, ZHANG Pei-hua
(Department of Plastic Surgery,Guangdong Medical University, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000,Guangdong,China)
Abstract: Exosomes are lipid membrane-enclosed vesicles whose diameter is 30-100 nm secreted by various cell types, and mesenchymal stem cells (MSCs) function via the paracrine pathway--exosomes. Recently, several studies have demonstrated that exosomes derived from MSCs can effectively carry bioactive substance into recipient cells, such as specific proteins, mRNAs, microRNAs and lipids derived from the parental cells. These mocular cargoes can regulate many biological processes in the repair of cutaneous wound, such as the inflammatory response, cell proliferation, cell migration, cell differentiation, blood vessel tube formation and matrix reconstruction, which not only promote wound healing but also inhibit the development of scar to enhance the capacity for wound repair. Therefore, exosomes derived from MSCs have a good clinical application prospect. This review will discuss the current literature regarding the role of exosomes derived from MSCs in cutaneous wound repair, especially the function and mechanism.
Key words: exosomes; mesenchymal stem cells; cutaneous wound repair; improvement of healing; inhibition of scar
外泌體(Exo,exosomes)是一種經(jīng)細(xì)胞內(nèi)體途徑生成并釋放到細(xì)胞外的囊性小泡,直徑介于30~100nm,由磷脂雙層膜包被,其內(nèi)包裹脂質(zhì)、蛋白質(zhì)、核酸等多種生物活性物質(zhì),電鏡下觀察呈杯狀,是參與細(xì)胞間物質(zhì)轉(zhuǎn)運(yùn)與信息傳遞的重要角色[1]。1983年,Pan等在觀察綿羊網(wǎng)織紅細(xì)胞成熟過程中首次發(fā)現(xiàn)包裹代謝終產(chǎn)物并釋放到細(xì)胞外的小囊泡,1987年Johnstone等將其正式命名為“外泌體”[2-3]。此后發(fā)現(xiàn),包括間充質(zhì)干細(xì)胞(MSCs,mesenchymal stem cells)在內(nèi)的幾乎所有細(xì)胞都能分泌外泌體,并釋放入細(xì)胞外環(huán)境中,如細(xì)胞培養(yǎng)上清液,以及各種體液,包括血液、淋巴液、腦脊液、唾液、尿液、羊水等[4]。
新近研究表明,外泌體在細(xì)胞間信號通訊中發(fā)揮重要作用,具有免疫調(diào)節(jié)、促進(jìn)血管再生、以及介導(dǎo)細(xì)胞增殖、分化、遷移、凋亡等功能,維持機(jī)體的正常生理狀態(tài)與參與疾病進(jìn)程[5]。其中間充質(zhì)干細(xì)胞來源外泌體具有來源細(xì)胞特性,能促進(jìn)受損區(qū)域細(xì)胞自我修復(fù)與組織再生,恢復(fù)組織內(nèi)穩(wěn)態(tài),加速創(chuàng)面修復(fù)[6]。本文即對近年來間充質(zhì)干細(xì)胞來源外泌體在創(chuàng)面修復(fù)中作用及其機(jī)制的研究新進(jìn)展綜述如下。
1 外泌體的構(gòu)成
外泌體是經(jīng)由內(nèi)體途徑形成的。首先,細(xì)胞質(zhì)膜多處凹陷,向內(nèi)出芽形成初級核內(nèi)體,母細(xì)胞釋放顆粒物質(zhì)進(jìn)入初級核內(nèi)體中并繼續(xù)凹陷出芽形成含有多個管腔狀囊泡的多囊泡體(MVB,multivesicular body)。其次,MVB與胞膜融合,其內(nèi)的管腔狀囊泡再次凹陷出芽形成顆粒狀小囊泡,并釋放到胞外,這些釋放到胞外的顆粒狀小囊泡即為外泌體[1]。
相關(guān)研究表明,外泌體富含多種生物活性物質(zhì),包括脂質(zhì)、蛋白質(zhì)、核酸等:①脂質(zhì)構(gòu)成了外泌體的膜結(jié)構(gòu),主要成分有神經(jīng)酰胺、磷脂酰絲氨酸、鞘磷脂和膽固醇,為外泌體提供了結(jié)構(gòu)穩(wěn)定性;②蛋白質(zhì)是發(fā)揮外泌體功能的重要載體,其主要分為兩類:一類是與來源細(xì)胞類型有關(guān)的特異性蛋白,它們決定了不同來源細(xì)胞功能上的差異;另一類與來源細(xì)胞類型無關(guān),是大多數(shù)細(xì)胞所共有的蛋白,主要來源于細(xì)胞的核內(nèi)體、質(zhì)膜、胞質(zhì)液,包括四跨膜蛋白超家族(CD63、CD81、CD9)等黏附蛋白,細(xì)胞信號分子,內(nèi)吞體分揀轉(zhuǎn)運(yùn)復(fù)合物(ESCRT),膜聯(lián)蛋白、Rab、flotillin等介導(dǎo)膜融合相關(guān)蛋白,主要組織相容性復(fù)合體(MHC)等表面抗原,細(xì)胞骨架蛋白,代謝酶,熱休克蛋白70(HSP70),Alix,腫瘤易感基因101(TSG101),以及其他胞漿蛋白、跨膜蛋白。其中膜聯(lián)蛋白和flotillin 有助外泌體的運(yùn)輸與融合,四跨膜蛋白超家族參與細(xì)胞靶向作用,Alix和TSG101參與了MVB的形成過程等;③核酸是外泌體的主要信息傳遞物質(zhì),包括DNA、mRNA、microRNA、lncRNA、circRNA等,參與細(xì)胞間的通訊與調(diào)控受體細(xì)胞功能[7]。
外泌體在蛋白質(zhì)、mRNA、miRNA的分子多樣性,使外泌體具有向受體細(xì)胞提供多種不同的調(diào)節(jié)方式,如蛋白質(zhì)在外泌體釋放時直接發(fā)揮生物效應(yīng)、mRNA翻譯為更高水平的蛋白質(zhì)、miRNA調(diào)節(jié)蛋白質(zhì)的翻譯與受體細(xì)胞內(nèi)mRNA的種類等,提升了外泌體對受體細(xì)胞的作用能力[8]。
2 間充質(zhì)干細(xì)胞來源外泌體在創(chuàng)面修復(fù)中的作用
慢性創(chuàng)面及瘢痕疙瘩是創(chuàng)面修復(fù)領(lǐng)域的兩大難題,而慢性創(chuàng)面主要包括燒傷、外傷后殘余創(chuàng)面、糖尿病皮膚潰瘍、靜脈性潰瘍、褥瘡、放射性損傷等。目前,針對慢性創(chuàng)面的治療主要為皮瓣移植、生長因子療法、負(fù)壓輔助封閉療法、高壓氧療法、電磁療法、干細(xì)胞與組織工程療法等,但皮瓣移植治療過程痛苦、療程長,生長因子療法作用靶點(diǎn)單一,而其他輔助療法也僅通過維持創(chuàng)面處于穩(wěn)定狀態(tài),而不能通過主動激活傷口愈合機(jī)制從而促進(jìn)創(chuàng)面修復(fù)。此外,針對瘢痕疙瘩主要采用手術(shù)、瘢痕內(nèi)注射、激光、冷凍療法等綜合治療,手術(shù)療法很難根除瘢痕疙瘩,瘢痕內(nèi)注射、激光、冷凍療法等常常不能達(dá)到預(yù)期效果。干細(xì)胞與組織工程療法作為創(chuàng)面修復(fù)的新技術(shù),備受期待,但干細(xì)胞的應(yīng)用同樣存在倫理輿論、致畸致瘤、免疫排斥、移植率低、存活率低等諸多風(fēng)險。
MSCs具有自我更新及分化能力,能促進(jìn)組織修復(fù)與再生[9]。有研究表明,外泌體是細(xì)胞間的重要信號載體,其特性與其來源細(xì)胞密切相關(guān)。因此,間充質(zhì)干細(xì)胞來源外泌體(MSCs-Exo)作為其親代細(xì)胞的旁分泌途徑載體,如骨髓間充質(zhì)干細(xì)胞來源外泌體(BMSCs-Exo,exosomes derived from bone marrow mesenchymal stem cells)、臍帶間充質(zhì)干細(xì)胞來源外泌體(uMSCs-Exo,exosomes derived from umbilical cord mesenchymal stem cells)、脂肪間充質(zhì)干細(xì)胞來源外泌體(ADSCs-Exo,exosomes derived from adipose mesenchymal stem cells)等,在治療慢性創(chuàng)面方面取得了一定進(jìn)展,有望通過標(biāo)準(zhǔn)化、規(guī)?;慕M織工程開展進(jìn)一步的臨床治療研究。
大量動物實(shí)驗(yàn)表明,MSCs-Exo能顯著促進(jìn)創(chuàng)面愈合。在深Ⅱ度燒傷大鼠模型中,uMSC-Exo能促進(jìn)表皮、真皮細(xì)胞再生及血管新生,從而加速創(chuàng)面愈合[10-11]。在深度外傷創(chuàng)面大鼠模型中,誘導(dǎo)多能MSCs-Exo能提升創(chuàng)面閉合率,提升再上皮能力,減少瘢痕寬度,增加膠原蛋白的成熟度,促進(jìn)皮脂腺與毛囊形成,新生血管與成熟血管密度均上升[12]。在糖尿病大鼠模型中,牙齦干細(xì)胞來源外泌體(GMSCs-Exo,exosomes derived from gingival mesenchymal stem cells)與多孔的殼聚糖/絲素凝膠海綿聯(lián)合應(yīng)用,能促進(jìn)創(chuàng)面區(qū)再上皮化,促進(jìn)胞外基質(zhì)的產(chǎn)生,以及促進(jìn)創(chuàng)面血管的新生[13]。也有文獻(xiàn)表明,ADSCs-Exo能降低輻射損傷[14],使被輻射的隱窩再生,改善小鼠腸內(nèi)器官功能及顯著提升生存率,進(jìn)一步研究可驗(yàn)證MSCs-Exo對皮膚創(chuàng)面的治療效用。
此外,在一定條件下,外泌體功能會得到一定程度的調(diào)控。在深Ⅱ度燒傷大鼠模型中,3,3'-二吲哚甲烷處理后的uMSC-Exo比未處理的uMSC-Exo能進(jìn)一步促進(jìn)創(chuàng)面愈合[15]。有研究人員將miR-126-3p過表達(dá)滑膜間充質(zhì)干細(xì)胞來源外泌體包入羥基磷灰石/殼聚糖復(fù)合水凝膠中,使外泌體具有受控釋放的特性,促進(jìn)傷口表面的再上皮化,加速血管生成,以及加速膠原蛋白的成熟[16]。但是,一定條件下外泌體功能也會受損,如肥胖會損傷外泌體的促血管生成能力[17]。
3 間充質(zhì)干細(xì)胞來源外泌體在瘢痕治療中的作用
MSCs-Exo除了能加速創(chuàng)面愈合,還能從三方面抑制瘢痕形成。一方面,GMSC-Exos能抑制炎癥反應(yīng),其外泌體源IL-1RA起關(guān)鍵性作用,IL-1RA敲除后小鼠創(chuàng)面愈合時間延遲,而將重組IL-1RA阿那白滯素注射進(jìn)敲除小鼠可縮短愈合時間,且GMSC-Exos注射到創(chuàng)面能預(yù)防瘢痕形成[18]。另一方面,uMSC-Exo能通過抑制成纖維細(xì)胞向肌成纖維細(xì)胞的分化,預(yù)防創(chuàng)面瘢痕形成[19]。此外,在深度外傷創(chuàng)面小鼠模型中,ADSCs-Exo能減少膠原蛋白沉積[20],或提升Ⅲ型/I型膠原蛋白比值,從而減少瘢痕形成[11]。瘢痕形成是一個頑固的病理進(jìn)程,很難逆轉(zhuǎn),MSC-Exo為解決瘢痕形成問題提供了新的解決途徑。
4 間充質(zhì)干細(xì)胞來源外泌體在創(chuàng)面修復(fù)中作用機(jī)制的研究進(jìn)展
皮膚創(chuàng)面修復(fù)是肉芽組織、皮膚及其周圍組織再生,甚至瘢痕組織形成的復(fù)雜機(jī)體修復(fù)過程,經(jīng)歷止血期、炎癥反應(yīng)期、細(xì)胞增殖期、基質(zhì)重塑期等四個階段。它需要上皮細(xì)胞、內(nèi)皮細(xì)胞、成纖維細(xì)胞等多種細(xì)胞的協(xié)同作用,包括細(xì)胞的增殖、遷移和基質(zhì)合成,以及各種生長因子相關(guān)信號的傳遞。創(chuàng)面修復(fù)出現(xiàn)異常時,將可能向慢性創(chuàng)面及瘢痕疙瘩兩個病理進(jìn)程發(fā)展,成為創(chuàng)面修復(fù)研究的難題[21-22]。MSCs-Exo通過向靶細(xì)胞轉(zhuǎn)運(yùn)特異性蛋白、脂質(zhì)、mRNA、microRNA等信號分子,調(diào)控創(chuàng)面愈合過程中炎癥反應(yīng)、細(xì)胞增殖、遷移、血管生成與基質(zhì)重建等多個階段,從而促進(jìn)創(chuàng)面愈合,抑制瘢痕形成[23-24]。
4.1 調(diào)控炎癥反應(yīng):炎癥是協(xié)調(diào)創(chuàng)面修復(fù)的重要階段。粒細(xì)胞、單核細(xì)胞、淋巴細(xì)胞等炎癥細(xì)胞以及腫瘤壞死因子-α(TNF-α,tumor necrosis factor-α)、白細(xì)胞介素-1β(IL-1β,interleukin-1β)等炎癥因子協(xié)同參與炎癥反應(yīng),對抗感染及清除細(xì)胞碎片。適度炎癥有利傷口愈合,過度炎癥可能導(dǎo)致多器官衰竭甚至死亡。MSCs-Exo能調(diào)控炎癥反應(yīng),保護(hù)受損組織,降低炎癥毒性傷害并提升組織耐受性[25],尤其外泌體中富含miRNA,在調(diào)控炎癥過程中起著重要作用。
研究表明,uMSCs-Exo能抑制炎癥反應(yīng),達(dá)到加速創(chuàng)面愈合與預(yù)防疤痕雙重作用。其內(nèi)源性miR-181c能抑制TLR4信號通路,減弱脂多糖介導(dǎo)的炎癥反應(yīng),使中性粒細(xì)胞、巨噬細(xì)胞等炎癥細(xì)胞數(shù)量減少,TNF-α、IL-1β等炎癥因子表達(dá)下降,IL-10抗炎癥因子表達(dá)升高[26]。而BMSCs-Exo能調(diào)控炎癥反應(yīng),其包裹的miR-155能促進(jìn)內(nèi)毒素誘導(dǎo)的炎癥反應(yīng),而miR-146a則抑制內(nèi)毒素,兩者協(xié)同調(diào)控炎癥基因的表達(dá)[27]。最新研究表明,F(xiàn)as能夠與Fas相關(guān)磷酸酶-1(Fap-1)和小窩蛋白-1(Cav-1)相結(jié)合,激活可溶性N-乙基馬來酰亞胺敏感因子(NSF)相關(guān)附著蛋白受體(SNARE)介導(dǎo)的膜融合機(jī)制,即Fas / Fap-1 / Cav-1復(fù)合體激活SNARE,從而刺激GMSCs-Exo的釋放。同時,GMSCs-Exo能通過Fas/Fap-1/Cav-1級聯(lián)反應(yīng)對白細(xì)胞介素-1受體拮抗劑(IL-1RA,IL-1 receptor antagonist)進(jìn)行表達(dá),而TNF-α能夠作為激活劑通過NF-κB途徑上調(diào)Fas和Fap-1表達(dá)以促進(jìn)IL-1RA釋放,抑制炎癥反應(yīng),促進(jìn)創(chuàng)面愈合[18]。
4.2 細(xì)胞增殖與遷移:細(xì)胞的增殖與遷移構(gòu)成了創(chuàng)面修復(fù)的基礎(chǔ)。傷口愈合不僅需要多種生長因子、細(xì)胞因子調(diào)控各類創(chuàng)面細(xì)胞的細(xì)胞周期,也需要上皮細(xì)胞、成纖維細(xì)胞、內(nèi)皮細(xì)胞等遷移到傷口部位執(zhí)行特定功能,如成纖維細(xì)胞填補(bǔ)組織缺損與合成細(xì)胞外基質(zhì)、內(nèi)皮細(xì)胞促進(jìn)血管生成、上皮細(xì)胞逐漸覆蓋創(chuàng)面等[28]。MSCs-Exo能被受體細(xì)胞內(nèi)化并將其內(nèi)容物轉(zhuǎn)運(yùn)進(jìn)入細(xì)胞,如蛋白質(zhì)、RNA等,實(shí)現(xiàn)對受體細(xì)胞增殖、遷移的調(diào)控。
已有研究證明,MSCs-Exo能通過調(diào)節(jié)生長因子及相關(guān)基因表達(dá),調(diào)控成纖維細(xì)胞的增殖與遷移[20,29-30],從而參與肉芽組織的形成,以及合成為傷口修復(fù)提供結(jié)構(gòu)的膠原蛋白[21,31]。其中,BMSCs-Exo能激活A(yù)KT、STAT3和ERK1/2信號通路,誘導(dǎo)成纖維細(xì)胞增殖與遷移,具體機(jī)制可能與信號通路激活后,使肝細(xì)胞生長因子(HGF,hepatocyte growth factor)、白細(xì)胞介素-6(IL-6)、胰島素樣生長因子1(IGF1,insulin-like growth factor)、神經(jīng)生長因子(NGF,nerve growth factor)、基質(zhì)細(xì)胞衍生因子1(SDF1,stromal cel derived factor-1)等多種生長因子表達(dá)上調(diào)有關(guān)[17]。CD63+的BMSCs-Exo能增強(qiáng)攝取外源性Wnt3a的能力,并將其進(jìn)入成纖維細(xì)胞,通過Wnt/β-catenin信號通路促進(jìn)成纖維細(xì)胞的增殖與遷移。ADSCs-Exo也能通過上調(diào)神經(jīng)鈣黏素(N-cadherin)、細(xì)胞周期素-1(cyclin-1)、增殖細(xì)胞核抗原(PCNA,proliferative cell nuclear antigen)等增殖相關(guān)基因的表達(dá),促進(jìn)成纖維細(xì)胞增殖[20]。另一方面,Bin等認(rèn)為,uMSCs-Exo在高細(xì)胞密度情況下,外泌體源的蛋白質(zhì)14-3-3ζ通過誘導(dǎo)YAP磷酸化,激活Hippo-YAP從而反向作用Wnt/β-catenin信號通路,抑制成纖維細(xì)胞的增殖與遷移,以防組織過度增殖[10]。而且,Wang等[11]認(rèn)為,ADSCs-Exo能通過作用于成纖維細(xì)胞,調(diào)整Ⅲ型/I型膠原蛋白比值,抑制瘢痕形成。以上研究表明,MSCs-Exo對成纖維細(xì)胞的調(diào)控功能在創(chuàng)面修復(fù)過程中,可以發(fā)揮促進(jìn)傷口愈合與抑制瘢痕形成的雙重作用。
有學(xué)者認(rèn)為,uMSC-Exo也能促進(jìn)人永生化表皮細(xì)胞(HaCaT)的增殖與遷移,并通過凋亡誘導(dǎo)因子(AIF,apoptotic induction factor)轉(zhuǎn)位入核,下調(diào)多聚ADP聚合酶-1(PARP-1)和聚ADP核糖(PAR)的表達(dá),抑制Caspase非依賴的線粒體凋亡信號通路,進(jìn)而抑制HaCaT的凋亡,促進(jìn)皮膚創(chuàng)面的修復(fù)[32]。同時,MSCs-Exo也能通過激活信號通路,調(diào)節(jié)生長因子、細(xì)胞因子表達(dá)水平,對內(nèi)皮細(xì)胞的增殖與遷移同樣具有促進(jìn)作用。
4.3 血管生成:新的血管形成是傷口愈合的關(guān)鍵。血管新生需要內(nèi)皮細(xì)胞的增殖,內(nèi)皮細(xì)胞之間的相互作用,血管生成因子,如血管內(nèi)皮細(xì)胞生長因子(VEGF,vascular endothelial growth factor)和成纖維細(xì)胞生長因子(FGF,fibroblast growth factor)等,以及其周圍細(xì)胞外基質(zhì)(ECM,extracellular matrix)蛋白的共同參與。在趨化作用下,內(nèi)皮細(xì)胞穿透底層血管基底膜,侵襲ECM基質(zhì),形成管狀結(jié)構(gòu),并繼續(xù)擴(kuò)展、形成分支和創(chuàng)建網(wǎng)絡(luò)的結(jié)構(gòu)[33-34]。MSCs-Exo通過直接作用于內(nèi)皮細(xì)胞,或上調(diào)血管生成相關(guān)的生長因子、細(xì)胞因子、趨化因子等的表達(dá)水平,間接作用于內(nèi)皮細(xì)胞,從而提升內(nèi)皮細(xì)胞增殖并遷移到傷口區(qū)域的能力,有助于促進(jìn)血管形成,為新生組織提供營養(yǎng)和氧氣。
有研究者認(rèn)為,uMSCs-Exo能轉(zhuǎn)運(yùn)信號蛋白Wnt4進(jìn)入內(nèi)皮細(xì)胞,激活Wnt/β-catenin信號通路,介導(dǎo)PCNA、N-cadherin、細(xì)胞周期素D3(cyclin D3)等表達(dá)水平上調(diào)與上皮細(xì)胞鈣黏蛋白(E- cadherin)表達(dá)水平下調(diào),促進(jìn)內(nèi)皮細(xì)胞增殖、遷移,并形成毛細(xì)血管狀管腔[35-38]。此外,uMSC-Exo能通過轉(zhuǎn)運(yùn)miR-30家族,如miR-30b、miR-30c、miR-424、miR-let-7f等促血管形成的microRNA,抑制Notch信號家族中血管生成抑制劑DLL4,動員內(nèi)皮細(xì)胞進(jìn)入基質(zhì)并使血量增加,從而促進(jìn)血管萌發(fā)及擴(kuò)張[39]。同時,BMSC-Exo能激活A(yù)KT、STAT3和ERK1/2等創(chuàng)面愈合過程中重要的幾個信號通路及血管形成相關(guān)的NF-κB信號通路,誘導(dǎo)HGF、IGF1、NGF、SDF1,以及血小板衍生生長因子(PDGF,platelet derivative growth factor),表皮生長因子(EGF,epidermal growth factor),F(xiàn)GF等多種生長因子表達(dá)上調(diào)[29,40]。這些作用能促進(jìn)血管平滑肌、內(nèi)皮細(xì)胞增殖和遷移,調(diào)節(jié)血管重塑和動脈內(nèi)皮細(xì)胞的轉(zhuǎn)歸等,參與促血管再生過程[10,41-42]。
ADSCs-Exo也能通過轉(zhuǎn)運(yùn)多種microRNA (miR-31、miR-125a)與蛋白質(zhì)進(jìn)入內(nèi)皮細(xì)胞,促進(jìn)內(nèi)皮細(xì)胞參與血管生成。miR-31能促進(jìn)內(nèi)皮細(xì)胞與內(nèi)皮祖細(xì)胞的增殖、遷移并通過抑制FIH誘導(dǎo)血管生成。miR-125a能抑制血管生成抑制劑DDL4的表達(dá),促進(jìn)內(nèi)皮頂端細(xì)胞的形成從而調(diào)節(jié)血管形成[43]。外泌體的釋放也會受其他因素的影響,Lopatina等認(rèn)為,PDGF能促進(jìn)ADSCs-Exo 生成[44],而Togliatto 等認(rèn)為肥胖會使ADSCs-Exo中miR-126含量下降,降低其促進(jìn)血管生成的能力[17,45]。除了外泌體對內(nèi)皮細(xì)胞具有調(diào)控作用外,Liu等發(fā)現(xiàn)脂肪間充質(zhì)干細(xì)胞來源細(xì)胞外囊泡能通過調(diào)節(jié)血管平滑肌細(xì)胞的增殖與遷移、巨噬細(xì)胞遷移、炎癥因子表達(dá)水平及相關(guān)信號通路,抑制血管內(nèi)膜新生[46]。
4.4 細(xì)胞分化:細(xì)胞分化是基因在特定條件下選擇性表達(dá)的結(jié)果。一方面干細(xì)胞持續(xù)分化產(chǎn)生新的細(xì)胞,以替代衰老、死亡的細(xì)胞;另一方面當(dāng)皮膚組織受損時會刺激干細(xì)胞分化,為創(chuàng)面修復(fù)提供所需的多種類型細(xì)胞,如間充質(zhì)干細(xì)胞成脂分化形成脂肪組織、成內(nèi)皮分化形成血管、成上皮分化形成表皮,成纖維細(xì)胞向肌成纖維細(xì)胞分化,基底細(xì)胞向表皮細(xì)胞分化等,從而促進(jìn)傷口愈合。
ADSCs-Exo富含大量具有調(diào)節(jié)MSC分化能力的miRNA,如miR-378、miR-222等,可能作用于靶基因STK17B和TET2,調(diào)節(jié)MSC的增殖以及調(diào)控RICTOR蛋白。而RICTOR是mTOR黏蛋白復(fù)合物-2的銜接蛋白,能調(diào)節(jié)MSC的分化,在缺氧條件下維持MSC生存及促進(jìn)成血管能力,或調(diào)節(jié)細(xì)胞周期蛋白的表達(dá)、內(nèi)皮細(xì)胞的功能及促進(jìn)其增殖與成血管,修復(fù)受損MSC的血管新生能力[47]。而在脂肪組織來源外泌體中,其富含多種成脂miRNA,其中miR-450a-5p能通過抑制WISP2表達(dá)水平,進(jìn)而調(diào)控ZNF423復(fù)合物與PPARγ-2轉(zhuǎn)錄激活因子的合成,以及Wnt信號通路,調(diào)節(jié)BMP4依賴性的成脂分化過程,促進(jìn)脂肪干細(xì)胞的成脂分化[48-49]。雖然,成纖維細(xì)胞是參與傷口修復(fù)的主要細(xì)胞,但是肌成纖維細(xì)胞聚集會導(dǎo)致過度的瘢痕形成。有研究表明,uMSC-Exo富含miR-21、miR-23a、miR-125b、miR-145等microRNA,通過抑制TGF β2/SMAD2信號通路,抑制成纖維細(xì)胞向肌成纖維細(xì)胞分化,從而在傷口愈合過程中預(yù)防瘢痕形成[19]。維持MSCs的干細(xì)胞特性,即細(xì)胞的高增殖、低分化和自我更新能力,對創(chuàng)面修復(fù)也很重要,有研究表明,3,3'-二吲哚甲烷能刺激uMSC-Exo中Wnt11自分泌信號通路,上調(diào)GM-CSF、IL-6、MCP-2和VEGF的表達(dá)水平,增強(qiáng)MSCs的干細(xì)胞特性[15]。
4.5 細(xì)胞外基質(zhì)重建:細(xì)胞外基質(zhì)(ECM)主要包括膠原蛋白、纖連蛋白、蛋白聚糖、層蛋白、彈性蛋白、透明質(zhì)酸和糖蛋白等,其重構(gòu)關(guān)鍵是膠原蛋白的合成與降解。ECM形成不足或過度形成會導(dǎo)致創(chuàng)面不愈合或瘢痕形成,MSCs-Exo除了參與上述細(xì)胞效應(yīng)外,也被證明可以調(diào)節(jié)ECM。
最近研究表明,uMSC-Exo能促進(jìn)I型膠原蛋白及彈性蛋白的合成[30],誘導(dǎo)多能MSCs-Exo能促進(jìn)I型、Ⅲ型膠原蛋白及彈性蛋白的合成[12],表明MSCs-Exo能增加ECM的形成,促進(jìn)創(chuàng)面愈合。同時,ADSCs-Exo通過阻止成纖維細(xì)胞向肌成纖維細(xì)胞分化,提高膠原蛋白Ⅲ/膠原蛋白I、TGFβ3/TGFβ1、MMP3/TIMP1的比值,從而抑制瘢痕形成[11]。此外,ADSCs-Exo還能通過在傷口愈合的不同階段調(diào)節(jié)膠原的合成,在傷口愈合早期階段通過增加I型和Ⅲ型膠原的產(chǎn)量促進(jìn)創(chuàng)面的愈合,而在晚期可以抑制膠原的合成從而減少瘢痕的形成[18]。以上研究提示外泌體在創(chuàng)傷愈合的ECM重構(gòu)階段起關(guān)鍵作用。
5 展望
生長因子療法、負(fù)壓輔助封閉療法等創(chuàng)面修復(fù)的傳統(tǒng)方法,雖然能取得一定療效,但存在調(diào)控機(jī)制單一或只改善創(chuàng)面愈合環(huán)境而未主動參與創(chuàng)面修復(fù)機(jī)制等不足。間充質(zhì)干細(xì)胞來源外泌體在保留干細(xì)胞療效的同時還能避免干細(xì)胞應(yīng)用中免疫排斥、致瘤致畸、倫理輿論等問題,并具有可長期儲存的高穩(wěn)定性、可定量使用的精確性、可向損傷區(qū)富集的高效性與可監(jiān)測并判斷愈后的可控性等優(yōu)勢,還有研究表明外泌體可作為藥物載體特異性作用于受體細(xì)胞,在分子、基因水平提供新的治療手段。
間充質(zhì)干細(xì)胞來源外泌體富含多種蛋白質(zhì)和RNA,能通過參與創(chuàng)面炎癥反應(yīng),促進(jìn)細(xì)胞增殖、遷移及分化,加速血管形成與ECM重建,發(fā)揮促進(jìn)創(chuàng)面愈合與抑制瘢痕形成的雙重功效,具有良好的再生修復(fù)潛能,但仍有諸多問題阻礙其臨床應(yīng)用。一方面是對外泌體自身的研究。外泌體內(nèi)容物受細(xì)胞類型和所處環(huán)境影響,相關(guān)信號通路錯綜復(fù)雜,其物質(zhì)轉(zhuǎn)運(yùn)與信息傳遞的機(jī)制尚未完全明確。另一方面是對外泌體臨床應(yīng)用的深化。外泌體的分離在過去由于設(shè)備要求高、操作流程復(fù)雜,而不具備大量制備與提純的技術(shù)。但近年取得突破,Waston等研發(fā)出一套cGMP級別的方法用于外泌體的大規(guī)模生產(chǎn)、濃縮和分離,主要依靠生物反應(yīng)器培養(yǎng),再使用差速離心純化、分子排阻色譜法與切向流過濾,批量生產(chǎn)外泌體,且不會顯著改變顆粒產(chǎn)量或尺寸、形態(tài)和密度的變化[50]。然而其給藥途徑、最佳作用濃度與劑量、藥效半衰期等臨床應(yīng)用問題還需進(jìn)一步探索。
相信隨著對外泌體發(fā)揮生物效應(yīng)機(jī)制的深入研究,以及外泌體制備與純化技術(shù)的不斷革新,在控制安全性的同時提升外泌體治療效率,未來將在再生修復(fù)領(lǐng)域取得矚目的療效。
[參考文獻(xiàn)]
[1]Kourembanas S.Exosomes vehicles of intercellular signaling,biomarkers,and vectors of cell therapy[J].Annu Rev Physiol,2015,77(1):13-27.
[2]Pan BT, Johnstone RM.Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro:selective externalization of the receptor[J].Cell, 1983,33(3):967-978.
[3]Johnstone RM,Adam M,Hammond JR,et al.Vesicle formation during reticulocyte maturation.Association of plasma membrane activities with released vesicles (exosomes)[J].J Biol Chem,1987,262(19):9412-9420.
[4]Raposo G,Stoorvogel W.Extracellular vesicles:exosomes,microvesicles,and friends[J].J Cell Biol,2013,200(4):373-383.
[5]Tkach M,Thery C.Communication by extracellular vesicles:where we are and where we need to go[J].Cell,2016,164(6):1226-1232.
[6]Lai RC,Yeo RW,Lim SK.Mesenchymal stem cell exosomes[J].Semin Cell Dev Biol,2015,40:82-88.
[7]Colombo M,Raposo G,Thery C.Biogenesis,secretion,and intercellular interactions of exosomes and other extracellular vesicles[J].Annu Rev Cell Dev Biol,2014,30:255-289.
[8]Eirin A,Zhu XY,Puranik AS,et al.Integrated transcriptomic and proteomic analysis of the molecular cargo of extracellular vesicles derived from porcine adipose tissue-derived mesenchymal stem cells[J].PLoS One,2017,12(3):e174303.
[9]Naderi N,Combellack EJ,Griffin M,et al.The regenerative role of adipose-derived stem cells (ADSC) in plastic and reconstructive surgery[J].Int Wound J,2017,14(1):112-124.
[10]Zhang B,Shi Y,Gong A,et al.HucMSC exosome-delivered 14-3-3ζ orchestrates self-control of the wnt response via modulation of yap during cutaneous regeneration[J].Stem Cells,2016,34(10):2485-2500.
[11]Wang L,Hu L,Zhou X,et al.Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling[J].Sci Rep,2017,7(1):13321.
[12]Zhang J,Guan J,Niu X,et al.Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis[J].J Transl Med,2015,13:49.
[13]時權(quán).牙齦間充質(zhì)干細(xì)胞外泌體聯(lián)合殼聚糖/絲素凝膠海綿促進(jìn)糖尿病大鼠創(chuàng)面修復(fù)研究[C].南京:第十一次全國口腔修復(fù)學(xué)學(xué)術(shù)會議,2017.
[14]Baliga S,Aiyer A,Duddempudi P,et al.Exosomes from adipose derived stromal cells mitigate acute radiation injury in mice[J].Int J Radiat Oncol,2017,99(2):S75.
[15]Shi H,Xu X,Zhang B,et al.3,3'-Diindolylmethane stimulates exosomal Wnt11 autocrine signaling in human umbilical cord mesenchymal stem cells to enhance wound healing[J].Theranostics,2017,7(6):1674-1688.
[16]Li M,Ke Q,Tao S,et al.Fabrication of hydroxyapatite/chitosan composite hydrogels loaded with exosomes derived from miR-126-3p overexpressed synovial mesenchymal stem cells for diabetic chronic wound healing[J].J Mate Chem B,2016,4(42):6830-6841.
[17]Togliatto G,Dentelli P,Gili M,et al.Obesity reduces the pro-angiogenic potential of adipose tissue stem cell-derived extracellular vesicles (EVs) by impairing miR-126 content:impact on clinical applications[J].Int J Obes (Lond),2016,40(1):102-111.
[18]Kou X ,Xu X,Chen C,et al.The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing[J].Sci Transl Med,2018,10:432.
[19]Fang S,Xu C,Zhang Y,et al.Umbilical cord-derived mesenchymal stem cell-derived exosomal micrornas suppress myofibroblast differentiation by inhibiting the transforming growth factor-beta/smad2 pathway during wound healing[J].Stem Cells Transl Med,2016,5(10):1425-1439.
[20]Hu L,Wang J,Zhou X,et al.Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts[J].Sci Rep,2016,6:32993.
[21]Guo S,Dipietro LA.Factors affecting wound healing[J].J Dent Res,2010,89(3):219-229.
[22]Wu P, Zhang B,Shi H,et al.MSC-exosome:a novel cell-free therapy for cutaneous regeneration[J].Cytotherapy,2018,20(3):291-301.
[23]Singla DK.Stem cells and exosomes in cardiac repair[J].Curr Opin Pharmacol,2016,27:19-23.
[24]Than U,Guanzon D,Leavesley D,et al.Association of extracellular membrane vesicles with cutaneous wound healing[J].Int J Mol Sci,2017,18(5):956.
[25]Wang X,Gu H,Qin D,et al.Exosomal miR-223 contributes to mesenchymal stem cell-elicited cardioprotection in polymicrobial sepsis[J].Sci Rep,2015,5(13721):13721.
[26]Li X,Liu L,Yang J,et al.Exosome derived from human umbilical cord mesenchymal stem cell mediates mir-181c attenuating burn-induced excessive inflammation[J]. Bio Medicine,2016,8:72-82.
[27]Alexander M,Hu R,Runtsch M C,et al.Exosome-delivered microRNAs modulate the inflammatory response to endotoxin[J].Nat Commun,2015,6:7321.
[28]Singer AJ,Clark RA.Cutaneous wound healing[J].N Engl J Med,1999,341(10):738-746.
[29]Shabbir A,Cox A,Rodriguez-Menocal L,et al.Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts,and enhance angiogenesis in vitro[J].Stem Cells Dev,2015,24(14):1635-1647.
[30]Kim YJ,Yoo SM,Park H H,et al.Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulates rejuvenation of human skin[J].Biochem Biophys Res Commun,2017,493(2):1102-1108.
[31]Gospodarowicz D.Biological activities of fibroblast growth factors[J].Ann N Y Acad Sci,1991,638:1-8.
[32]趙貴芳.臍帶間充質(zhì)干細(xì)胞及其來源外泌體修復(fù)皮膚損傷的機(jī)制研究[D].吉林:吉林大學(xué),2016.
[33]Liekens S,De Clercq E,Neyts J.Angiogenesis:regulators and clinical applications[J].Biochem Pharmacol,2001,61(3):253-270.
[34]Hughes CC.Endothelial-stromal interactions in angiogenesis[J].Curr Opin Hematol,2008,15(3):204-209.
[35]Zhang B,Wu X,Zhang X,et al.Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/beta-catenin pathway[J].Stem Cells Transl Med,2015,4(5):513-522.
[36]Zhang L,Wrana JL.The emerging role of exosomes in wnt secretion and transport[J].Curr Opin Genet Dev,2014,27(2):14-19.
[37]Dostert G,Willemin A S,Jouan-Hureaux V,et al.Evaluation of the pro-angiogenic effect of nanoscale extracellular vesicles derived from human umbilical cord mesenchymal stem cells[J].Biomed Mater Eng,2017,28(s1):S75-S79.
[38]Zhang B,Wang M,Gong A,et al.HucMSC-exosome mediated-wnt4 signaling is required for cutaneous wound healing[J].Stem Cells,2015,33(7):2158-2168.
[39]Gong M, Yu B,Wang J,et al.Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis[J].Oncotarget,2017,8(28):45200-45212.
[40]Anderson JD,Johansson HJ,Graham CS,et al.Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappab signaling[J].Stem Cells,2016,34(3):601-613.
[41]Teng X,Chen L,Chen W,et al.Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation[J].Cell Physiol Biochem,2015,37(6):2415-2424.
[42]Tan CY, Lai RC,Wong W,et al.Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models[J].Stem Cell Res Ther,2014,5(3):76.
[43]Liang X,Zhang L,Wang S,et al.Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a[J].J Cell Sci,2016,129(11):2182-2189.
[44]Lopatina T,Bruno S,Tetta C,et al.Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential[J].Cell Commun Signal,2014,12:26.
[45]Luo Q,Guo D,Liu G,et al.Exosomes from MiR-126-Overexpressing adscs are therapeutic in relieving acute myocardial ischaemic injury[J].Cell Physiol Biochem,2017,44(6):2105-2116.
[46]Liu R,Shen H,Ma J,et al.Extracellular vesicles derived from adipose mesenchymal stem cells regulate the phenotype of smooth muscle cells to limit intimal hyperplasia[J].Cardiovasc Drugs Ther,2016,30(2):111-118.
[47]Eirin A,Zhu XY, Puranik AS,et al.Integrated transcriptomic and proteomic analysis of the molecular cargo of extracellular vesicles derived from porcine adipose tissue-derived mesenchymal stem cells[J].PLoS One,2017,12(3):e174303.
[48]Dai M,Yu M,Zhang Y,et al.Exosome-like vesicles derived from adipose tissue provide biochemical cues for adipose tissue regeneration[J].Tissue Eng Part A,2017,23(21-22):1221-1230.
[49]Zhang Y,Yu M,Dai M,et al.miR-450a-5p within rat adipose tissue exosome-like vesicles promotes adipogenic differentiation by targeting WISP2[J].J Cell Sci,2017,130(6):1158-1168.
[50]Watson DC,Yung BC,Bergamaschi C,et al.Scalable,cGMP-compatible purification of extracellular vesicles carrying bioactive human heterodimeric IL-15/lactadherin complexes[J].J Extracell Vesicles,2018,7(1):1442088.
[收稿日期]2018-03-12 [修回日期]2018-06-28
編輯/李陽利