張少勇 朱鵬
摘 要:將W.kirk最著名的結(jié)果:具有正規(guī)結(jié)構(gòu)自反的Banach空間關(guān)于非擴(kuò)張映射具有不動(dòng)點(diǎn)性質(zhì),推廣到更加一般的映射形式,即:‖T(x)-T(y)‖≤a1(t)(d(x,y))‖x-y‖+a2(t)(d(x,y))‖x-T(x)‖+a3(t)(d(x,y))‖x-T(y)‖,其中∑3i=1ai(t)≤1,且ai(t):(0,+∞)→(0,1)單調(diào)遞減, 研究了具有正規(guī)結(jié)構(gòu)自反的Banach空間關(guān)于上述映射具有不動(dòng)點(diǎn)性質(zhì)。
關(guān)鍵詞:廣義非擴(kuò)張映射;正規(guī)結(jié)構(gòu);自反性;不動(dòng)點(diǎn)性質(zhì)
DOI:10.15938/j.jhust.2019.05.024
中圖分類號(hào): O177. 3
文獻(xiàn)標(biāo)志碼: A
文章編號(hào): 1007-2683(2019)05-0145-04
Abstract:In this paper, the most famous result by W.kirk is that the non-expansive mapping has the fixed point property in a Banach space with normal structure reflexive is extended to a more general form of mapping,namely:‖T(x)-T(y)‖≤a1(t)(d(x,y))‖x-y‖+a2(t)(d(x,y))‖x-T(x)‖+a3(t)(d(x,y))‖x-T(y)‖, where ai(t):(0,+∞)→(0,1) monotone decreases, a reflexive Banach space X with normal structure has the fixed point property for the mapping mentioned above.
Keywords:generalized non-expansive mapping; normal structure; reflexive; fixed point property
0 引 言
1912年,德國(guó)數(shù)學(xué)家Brouwer在運(yùn)用度理論在拓?fù)鋵W(xué)的基礎(chǔ)上,證明了關(guān)于連續(xù)單值映射的一個(gè)著名的不動(dòng)點(diǎn)定理[1-6]。后來(lái)Schauder, Kakutani等人又相繼對(duì)Brouwer的結(jié)果進(jìn)行推廣[7-9]。
不動(dòng)點(diǎn)理論的研究一直都是數(shù)學(xué)研究的熱門問(wèn)題。許多年來(lái),許多數(shù)學(xué)工作者通過(guò)各種方法不斷豐富不動(dòng)點(diǎn)理論,把單值壓縮映射的不動(dòng)點(diǎn)定理推廣到多值映射的情況[10-15]。20世紀(jì)初,Banach提出了著名的Banach壓縮映射原理。Banach壓縮映射的一種自然推廣是非擴(kuò)張映射,R.de Marr得到了一個(gè)關(guān)于非擴(kuò)張映射不動(dòng)點(diǎn)理論的重要結(jié)果,它是著名的Kakutani-Marko不動(dòng)點(diǎn)定理的推廣[16-19]。此后不久,Brouwer,Kirk,Petryshyn分別討論了定義在距離空間有界閉凸集上的非擴(kuò)張映像不動(dòng)點(diǎn)存在性,將其部分結(jié)果推廣到平均非擴(kuò)張映射的情形[20]。
1 預(yù)備知識(shí)
本文以X表示Banach空間。
定義1[21]? 映像T:X→X,若存在x*∈X,使得x*=T(x*),則稱x*為映像T的不動(dòng)點(diǎn)。
定義2[22]? 若C是X的非空有界閉凸子集,T:C→C。如果是指對(duì)于x,y∈C,有‖Tx-Ty‖≤‖x-y‖,則稱T為C到其自身的非擴(kuò)張映射。
定義3 稱Banach空間X具有不動(dòng)點(diǎn)性質(zhì)(FPP)是指定義在X每一個(gè)非空有界閉凸子集上的非擴(kuò)張自映射具有不動(dòng)點(diǎn)。稱Banach空間X具有弱不動(dòng)點(diǎn)性質(zhì)(WFPP)是指X上的每一個(gè)弱緊凸子集的非擴(kuò)張自映射具有不動(dòng)點(diǎn)。
參 考 文 獻(xiàn):
[1] 崔云安. Banach空間幾何理論及應(yīng)[M].北京:科學(xué)出版社,2011:31.
[2] 陳汝棟. 不動(dòng)點(diǎn)理論及應(yīng)用[M]. 北京:國(guó)防工業(yè)出版社,2012,1:58.
[3] 張石生. 不動(dòng)點(diǎn)理論及應(yīng)用[M]. 重慶: 重慶出版社,1984.
[4] 姚永紅, 陳汝棟, 周海云. 非擴(kuò)張映象不動(dòng)點(diǎn)的迭代算法[J]. 數(shù)學(xué)學(xué)報(bào), 2007, 50(1): 139.
[5] PATHAK H K, CHO Y J, KANG S M. An Application of Fixed Point Theorems in Best Approximation Theory[J]. International Journal of Mathematics & Mathematical Sciences, 2016, 21(3): 467.
[6] CHANDOK S, KHAN M S, RAO KPR. Some Coupled Common Fixed Point Theorems for a Pair of Mappings Satisfying a Contractive Condition of Rational type Withoutmonotonicity[J]. International Journal of Mathematical Analysis, 2016, 7(9): 433.
[7] L. C. ZENG, On the Existence of Fixed Points for Mappings of Asymptotically Nonexpansive Type[J]. J. Systems Sci. Complexity, 2004, 17: 188.
[8] 俞鑫泰. Banach空間幾何理論[M]. 上海: 華東師范大學(xué)出版社, 1986: 1.
[9] GOCKENBACH M S, KHAN AA. Identification of Lame Parameters in Linear Elasticity: a Fixed Point Approach[J]. Journal of Industrial & Management Optimization, 2017, 1(4): 487.
[10]KOHLENBACH U, LEUSTEAN L. Asymptotically Nonexpansive Mappings in Uniformly Convex Hyperbolic Spaces[J]. European Mathematical Society, 2007,12: 71.
[11]SHIMIZU T,TSKAHASHI W. Fixed Points of Multivalued Nonexpansive Mappings in Certain Convex Metric spaces[J]. Topological Methods in Nonlinear Analysis, 1996, 8:197.
[12]ABBAS M, NAZIR T. Fixed Point of Generalized Weakly Contractive Mappings in Ordered Partial metric Spaces[J]. Fixed Point Theory and Applications, 2012, 2012(1): 1.
[13]KOVACS L G, WALL G E.Involutory Automorphisms of Groups of Odd Order and Their Fixed Point Groups[J]. Nagoya Mathematical Journal, 2016, 27(1): 55.
[14]Z GU, Y LI. Approximation Methods for Common Fixed Points of Meannonexpansive Mapping in Banach Spaces[J]. Fixed Point Theory & Applications, 2008, 2008(1): 471.
[15]梁嘉寧, 黎永錦. 平均非擴(kuò)張映射的三種迭代收斂的等價(jià)性[J]. 內(nèi)蒙古師大學(xué)報(bào)(自然漢文版), 2011, 40(6): 575.
[16]KIRK W A. A Fixed Point Theorem for Mappings Which Do Not Increase Distances[J]. American Mathematical Monthly, 1965, 72(9): 1004.
[17]張石生, 黃發(fā)倫. 關(guān)于Banach空間中平均非擴(kuò)張映象的不動(dòng)點(diǎn)理論[J]. 四川大學(xué)學(xué)報(bào): 自然科學(xué)版, 1975(2): 73.
[18]GARCIA FALSET J. Stability and Fixed Point Fornonexpansive Mappings[J]. Houston Journal of Mathematics, 1994, 20(3): 842.
[19]BETIUK-PILARSKA A,WISNICKI A. On the Suzuki Nonexpansive-Type Mappings[J]. Annals of Functional Analysis, 2013, 4(2):72.
[20]BENAVIDES T D. A Geometrical Coefficient Implying the Fixed Point Property and Stability Results[J]. Houston Journal of Mathematics, 1996 , 22(4): 835.
[21]J M Wang, LL Chen, Y A CUI. The Fixed Point Property of Mean Nonexpansive Mapping[J]. Journal of Natural Science of Heilongjiang University, 2006, 23(3): 298.
[22]Z ZUO. Fixed Point Theorems for Meannonexpansive Mappings in Banach Spaces[J]. Abstract and Applied Analysis, 2014, 2014(13): 1.
[23]BETIUK-PILARSKA A, BENAVIDES T D. The Fixed Point Property for Some Generalized Nonexpansive Mappings and Renormings[J]. Journal of Mathematical Analysis and Applications, 2015, 429(2): 800.
[24]KIM JK,PATHAK R P, DASHPUTRE S, et al. Fixed Point Approximation of Generalized Nonexpansive Mappings in Hyperbolic Spaces[J]. International Journal Journal of Mathemtics and Methematical Sciences, 2015, 2015:6.
[25]KRIK W A. Non-expansive Mappings in Product Spaces, Set-valued Mappings and K Uniform Rotundity// Browder F E. Nonlinear Functional Analysis and Its Application. Amer. Math. Soc. Symp. Pure Math, 1986, 45:51.
(編輯:王 萍)