王野 李峰 王宇 王雁鵬
摘 要:為了充分發(fā)揮擠壓工藝在高性能輕合金制備和成形兩個(gè)層面上的技術(shù)特點(diǎn)與集成優(yōu)勢(shì),輕合金擠壓成形/成性一體化應(yīng)運(yùn)而生并逐漸成為本領(lǐng)域的研究熱點(diǎn)問(wèn)題之一。該類方法的技術(shù)特點(diǎn)在于通過(guò)對(duì)擠壓模的優(yōu)化設(shè)計(jì)、加載形式及坯料結(jié)構(gòu)等的改變,將以往獨(dú)立的細(xì)晶制備工序巧妙融入到擠壓過(guò)程中,在單道次內(nèi)即達(dá)到了對(duì)擠出制品“形/性”雙控的實(shí)效。從研究概況的“縮影”可以看出,與常規(guī)擠壓相比,在降低成形載荷、改善擠出流動(dòng)均勻性、提高制品組織性能等諸多方面都體現(xiàn)出了其綜合優(yōu)勢(shì)。隨著相關(guān)基礎(chǔ)科學(xué)問(wèn)題的解決,藉此為高性能輕合金短流程控形及控性一體化技術(shù)的研究和應(yīng)用提供科學(xué)指導(dǎo)。
關(guān)鍵詞:輕合金;擠壓;控形;控性;組織
DOI:10.15938/j.jhust.2019.05.001
中圖分類號(hào): TG376
文獻(xiàn)標(biāo)志碼: A
文章編號(hào): 1007-2683(2019)05-0001-06
Abstract:Extrusion processes can exert technical characteristics and integration advantages in preparing and forming lightweight high-performance magnesium alloys. The lightweight alloy extrusion integration consisting of forming and modification emerged as the times require, and has gradually become one of the hot topics in extrusion field. The technical characteristics of above processes are that the previous independent fine grain preparation processes is skillfully integrated into the extrusion processes through optimizing extrusion dies, changing loading modes and adjusting the structure of billets, etc. The actual effects of “shapes/properties” dual control of extrusion products have been achieved in a single pass. It can be seen from the microcosm of the research overviews that compared with the conventional extrusion, its comprehensive advantages are reflected in many aspects such as reducing forming load, improving the uniformity of extrusion flow, and improving the microstructure properties of the extruded products. To solve the related basic scientific problems, it provides scientific guidance for the research and application of lightweight high-performance alloy in short process and dual control of shape/performance.
Keywords:light alloys; extrusion; shape control; performance control; microstructure
0 引 言
鋁鎂合金兼具多種優(yōu)異的綜合性能,是航空航天、軌道交通、武器裝備等領(lǐng)域?qū)崿F(xiàn)輕量化的理想首選,具有廣闊的發(fā)展?jié)摿皯?yīng)用前景[1-3]。傳統(tǒng)輕合金構(gòu)件成形多采用鑄造工藝,但鑄件材質(zhì)不夠致密、承載能力及制品性能存在不足之處。比較而言,塑性加工法更利于輕合金構(gòu)件組織和力學(xué)性能的改善。以擠壓工藝為例,成形過(guò)程中變形區(qū)內(nèi)因具有三向受壓應(yīng)力狀態(tài)和可提供較大的剪切變形量而使被加工制品獲得細(xì)晶組織及優(yōu)異的力學(xué)性能[4-6],因此,該工藝逐漸成為鋁鎂等輕質(zhì)合金構(gòu)件主要的加工成形手段[7-9]。
我國(guó)鋁鎂資源儲(chǔ)備非常豐富,但深加工技術(shù)的開發(fā)能力和高附加值制品的產(chǎn)出等方面與國(guó)外發(fā)達(dá)國(guó)家仍存在著明顯差距,是長(zhǎng)期困擾傳統(tǒng)輕合金擠壓技術(shù)快速發(fā)展及拓展應(yīng)用的癥結(jié)所在,更是輕合金高效精確塑性成形前沿研究領(lǐng)域所關(guān)注的關(guān)鍵基礎(chǔ)科學(xué)問(wèn)題之一[10]。
當(dāng)前圍繞輕合金擠壓成形的相關(guān)研究工作主要集中在改性和成形兩個(gè)不同層面上。前者是利用擠壓工藝提供的剪切變形作為細(xì)晶改性手段來(lái)實(shí)施的[11-12],后者則是針對(duì)半成品或成品加工成形的技術(shù)手段[13]。發(fā)展擠壓成形/成性一體化技術(shù)是促進(jìn)輕合金短流程深加工潛能提升的重要途徑。
1 結(jié)構(gòu)設(shè)計(jì)
1.1 模具結(jié)構(gòu)
模具結(jié)構(gòu)是決定擠出流動(dòng)行為、制品組織及力學(xué)性能的重要因素之一,因此,模腔結(jié)構(gòu)的精準(zhǔn)設(shè)計(jì)顯得尤為關(guān)鍵。XU等[14]對(duì)不同模角擠壓成形制品進(jìn)行了對(duì)比研究,結(jié)果表明,芯模半角為45°時(shí)獲得AZ31鎂合金板材內(nèi)部組織較均勻,具有較弱的基面織構(gòu),屈服強(qiáng)度較低,但延展性較好,相對(duì)來(lái)講,其綜合性能仍為最佳。
圖5 鎂合金轉(zhuǎn)模擠壓的晶粒尺寸對(duì)比
Fig.5 The comparison of grain size for magnesium alloy
by extrusion through rotating container
此外,YU等[42]對(duì)反擠壓凹模施加了旋轉(zhuǎn)嘗試,對(duì)擠壓成形管狀制品微觀組織及性能的研究結(jié)果表明:轉(zhuǎn)速與顯微硬度呈反比趨勢(shì)變化;當(dāng)溫度和應(yīng)變速率不變時(shí),晶粒尺寸隨轉(zhuǎn)速的增加而變大,而動(dòng)態(tài)再結(jié)晶細(xì)化和晶粒生長(zhǎng)呈動(dòng)態(tài)競(jìng)爭(zhēng)關(guān)系。
2.3 側(cè)向加載
芯模是決定擠出制品形狀的關(guān)鍵結(jié)構(gòu),研究者們突破了傳統(tǒng)的芯模設(shè)計(jì)理念,將其設(shè)計(jì)成可動(dòng)式結(jié)構(gòu),隨著擠壓過(guò)程的進(jìn)行,可獲得截面連續(xù)變化的擠出制品。
LIN等[43]設(shè)計(jì)了一種可以實(shí)現(xiàn)側(cè)向柔性加載的變截面擠壓成形工藝,即通過(guò)分別調(diào)控固定模和活動(dòng)模獲得沿長(zhǎng)度方向具有變化截面的棒材或管材,原理如圖6所示,擠壓過(guò)程中關(guān)鍵是準(zhǔn)確動(dòng)態(tài)地調(diào)整所圍成形模孔的幾何形狀及尺寸。同時(shí)基于等效體積理論,提出了一種新的動(dòng)模調(diào)控模型,并給出了該模型的數(shù)值計(jì)算方法和程序結(jié)果表明,該運(yùn)動(dòng)控制模型具有足夠的精度和精度,可用于設(shè)計(jì)及參數(shù)計(jì)算。
胡水平等[44]開發(fā)出了一種與電、液、計(jì)算機(jī)技術(shù)融為一體的連續(xù)變斷面擠壓法,原理如圖7所示。以工業(yè)純鋁為研究對(duì)象,通過(guò)調(diào)節(jié)主液壓缸和側(cè)向伺服液壓系統(tǒng)的參數(shù),可以獲得截面尺寸呈連續(xù)規(guī)律變化的擠出構(gòu)件。無(wú)須在擠壓過(guò)程中停機(jī)更換模具,使生產(chǎn)效率大幅度提高。隨后對(duì)連續(xù)變斷面擠壓工藝進(jìn)行了實(shí)驗(yàn),研究結(jié)果表明[45]:沿長(zhǎng)度方向上制品組織很不均勻,晶粒尺寸由試樣外層到中部逐漸變大,需通過(guò)后續(xù)熱處理進(jìn)行調(diào)控。
2.4 交替加載
對(duì)擠壓凸模進(jìn)行離散設(shè)計(jì)并交互下載作用也能達(dá)到節(jié)省載荷和細(xì)化晶粒的效果?;谶@種思想,LI等[46]提出了交替擠壓法,原理如圖8所示。該工藝采用分體式凸模代替整體式結(jié)構(gòu),交替向下施加載荷。以兩半分體凸模結(jié)構(gòu)為例,加載模式可分為遞進(jìn)式和交互式。
LIU等[47]將常規(guī)擠壓法與交替擠壓法進(jìn)行了對(duì)比研究,結(jié)果表明,交替擠壓過(guò)程中除擠壓??谥車猓惶嫦滦屑虞d過(guò)程中不同分體沖頭之間交界面處可產(chǎn)生了持續(xù)劇烈的附加剪切變形作用,促進(jìn)了低塑性鎂合金內(nèi)部組織的深度細(xì)化,利于擠出制品綜合力學(xué)性能的改善及質(zhì)量的提高。
3 結(jié)論及展望
1)輕合金擠壓成形/成性一體化是高效精確塑性成形前沿研究領(lǐng)域所關(guān)注的重要基礎(chǔ)科學(xué)問(wèn)題之一。為解決本領(lǐng)域長(zhǎng)期存在的生產(chǎn)效率低、形狀尺寸精度和組織性能協(xié)同控制難度大等難題提供了一種新思路;
2)輕合金擠壓成形/成性一體化雖具有一定的改性優(yōu)勢(shì),但與大塑性變形技術(shù)有著本質(zhì)區(qū)別,不能混淆。如不具備重復(fù)多次加載、獲得超細(xì)晶組織等技術(shù)特征,與大塑性變形技術(shù)相比,更易于在生產(chǎn)實(shí)際中推廣應(yīng)用;
3)高效低耗地進(jìn)行制品形狀和性能的短流程精確調(diào)控是改善輕合金擠壓件綜合質(zhì)量、提高生產(chǎn)效率及擴(kuò)大適用范圍的根本“良方”之一。隨著使用需求的日益增高,輕合金擠壓成形/成性一體化的“奇思妙想”仍在不斷涌現(xiàn)并與時(shí)俱進(jìn)地發(fā)展。
參 考 文 獻(xiàn):
[1] 丁文江, 吳玉娟, 彭立明. 高性能鎂合金研究及應(yīng)用的新進(jìn)展[J]. 中國(guó)材料進(jìn)展, 2010, 29(8):37.
[2] 王凱鋒, 馮義成, 張靖, 等. 等溫處理對(duì)Mg-3Al-2Ca- 2Nd組織和性能的影響[J]. 哈爾濱理工大學(xué)學(xué)報(bào), 2018,23(1):35.
[3] 馮義成,王琴,楊建輝,等. Ca 對(duì) Mg-6Al-1Nd 合金顯微組織 和性能的影響[J]. 哈爾濱理工大學(xué)學(xué)報(bào), 2014, 19(5):10.
[4] HSIANG SU-HAI, LIN YI-WEI, LAI JHONG-WEI. Optimization of Hot Extrusion Process for AZ61 Magnesium Alloy Carriers[J]. International Journal of Material Forming, 2012,5(3):259.
[5] YU Z J, HUANG Y D, QIU X, et al. Fabrication of Magnesium Alloy with High Strength and Heat-resistance by Hot Extrusionand Ageing[J]. Materials Science and Engineering: A, 2013,578:346.
[6] 陳增奎, 蔣清, 周衛(wèi)衛(wèi), 等. AZ31鎂合金薄壁管材擠壓技術(shù)研究[J]. 精密成形工程, 2016(3):34.
[7] 董媛媛, 張存生, 趙國(guó)群, 等. 7×××系空心鋁型材擠壓橫向焊縫的研究[J]. 精密成形工程, 2017,9(5):98.
[8] LI N, HUANG G, XIN R, et al. Effect of Initial Texture on Dynamic Recrystallization and Deformation Mechanisms in AZ31 Mg Alloy Extruded at 573K[J]. Materials Science and Engineering: A, 2013, 569:18.
[9] 李落星, 周佳, 張輝. 車身用鋁、鎂合金先進(jìn)擠壓成形技術(shù)及應(yīng)用[J]. 機(jī)械工程學(xué)報(bào), 2012, 48(18):35.
[10]楊合, 李落星, 王渠東, 等. 輕合金成形領(lǐng)域科學(xué)技術(shù)發(fā)展研究[J]. 機(jī)械工程學(xué)報(bào), 2010, 46(12): 31.
[11]CHEN Y J, WANG Q D, ROVEN H J, et al. Microstructure Evolution in Magnesium Alloy AZ31 During Cyclic Extrusion Compression[J]. Journal of Alloys and Compounds, 2008,462(1/2):192.
[12]STRSK JITKA, JANEEK MILO, EK JAKUB, et al. Microstructure Stability of Ultra-Fine Grained Magnesium Alloy AZ31 Processed by Extrusion and Equal-Channel Angular Pressing (EX-ECAP)[J]. Materials Characterization, 2014, 94:69.
[13]LI L, ZHANG H, ZHOU J, et al. Numerical and Experimental Study on the Extrusion Through a Porthole Die to Produce a Hollow Magnesium Profile with Longitudinal Weld Seams[J]. Materials and Design, 2008,29:1190.
[14]XU J, YANG T H, JIANG B, et al. Improved Mechanical Properties of Mg-3Al-1Zn Alloy Sheets by Optimizing the Extrusion Die Angles: Microstructural and Texture Evolution [J]. Journal of Alloys and Compounds, 2018, 762: 719.
[15]YANG Q S, JIANG B, HE J J, et al. Tailoring Texture and Refining Grain of Magnesium Alloy by Differential Speed Extrusion Process[J]. Materials Science and Engineering: A, 2014, 612:187.
[16]WANG Q , SONG J , JIANG B , et al. An Investigation on Microstructure, Texture and Formability of AZ31 Sheet Processed by Asymmetric Porthole Die Extrusion[J]. Materials Science and Engineering: A, 2018, 720:85.
[17]ORLOV D, RAAB G, LAMARK T T, et al. Improvement of Mechanical Properties of Magnesium Alloy ZK60 by Integrated Extrusion and Equal Channel Angular Pressing[J]. Acta Materialia, 2011,59:375.
[18]ORLOV D, RALSTON K D, BIRBILIS N, et al. Enhanced Corrosion Resistance of Mg Alloy ZK60 after Processing by Integrated Extrusion and Equal Channel Angular Pressing[J]. Acta Materialia, 2011, 59(1):6176.
[19]HU H J, WANG H, ZHAI Z Y, et al. Effects of Channel Angles on Extrusion-shear for AZ31 Magnesium Alloy Modeling and Experiments[J]. The International Journal of Advanced Manufacturing Technology, 2015,76(9/12): 1621.
[20]KHODDAM S, FARHOUMAND A, HODGSON P D. Axi-symmetric Forward Spiral Extrusion, a Kinematic and Experimental Study[J]. Materials Science and Engineering: A, 2011, 528(3): 1023.
[21]SHAHBAZ M, PARDIS N, KIM J G, et al. Experimental and Finite Element Analyses of Plastic Deformation Behavior in Vortex Extrusion[J]. Materials Science and Engineering: A, 2016, 674: 472.
[22]LU L W, LIU C, ZHAO J, et al. Modification of Grain Refinement and Texture in AZ31 Mg Alloy by a New Plastic Deformation Method[J]. Journal of Alloys and Compounds, 2015,628:130.
[23]LI F, ZENG X, BIAN N. Microstructure of AZ31 Magnesium Alloy Produced by Continuous Variable Cross-section Direct Extrusion(CVCDE)[J]. Materials Letters, 2014,135:79.
[24]LI F, ZENG X, CAO G J. Investigation of Microstructure Characteristics of the CVCDEed AZ31 Magnesium Alloy[J]. Materials Science and Engineering A, 2015, 639:395.
[25]MLLER S, DENKS I, MLLER K, et al. Extrusion of Magnesium Profiles and Microstructure Characterization[C]// Magnesium: Proceedings of the 6th International Conference Magnesium Alloys and Their Applications, December, 2003:254.
[26]WANG Y P, LI F, SHI W Y, et al. Dynamic Recrystallization and Metal Flow Behavior of AZ31 Magnesium Alloy Bending Products Processed by Staggered Extrusion[J]. Journal of Materials Engineering and Performance, 2019,28(6): 3551.
[27]WANG Q S, JIANG B, CHAI Y F, et al. Tailoring the Textures and Mechanical Properties of AZ31 alloy Sheets Using Asymmetric Composite Extrusion [J]. Materials Science and Engineering: A, 2016, 673: 606.
[28]PAN F S, WANG Q H, JIANG B, et al. An Effective Approach Called the Composite Extrusion to Improve the Mechanical Properties of AZ31 Magnesium Alloy Sheets [J]. Materials Science and Engineering:A,2016, 655: 339.
[29]MLLER, KLAUS B. Indirect Extrusion with Active Friction(ISA)[J]. Key Engineering Materials, 2002(233/236):323.
[30]SOCACIU T. Experimental Study Regarding Variation of Force in Inverse Extrusion Using Active Friction[J]. Procedia Technology, 2015, 19:85.
[31]MA X, BARNETT M R, KIM Y H. Forward Extrusion Through Steadily Rotating Conical Dies. Part I: Experiments[J]. International Journal of Mechanical Sciences,2004,46(3):449.
[32]MA X, BARNETT M R, KIM Y H. Forward Extrusion Through Steadily Rotating Conical Dies.Part II: Theoretical Analysis[J]. International Journal of Mechanical Sciences, 2004, 46(3):465.
[33]Kong L X, Lin L, Hodgson P D. Material Properties under Drawing and Extrusion with Cyclic Torsion[J]. Materials Science and Engineering A,2001,308(1/2):209.
[34]MACIEJEWSKI J, MRóZ Z. An Upper-bound Analysis of Axisymmetric Extrusion Assisted by Cyclic Torsion[J]. Journal of Materials Processing Technology,2008,206 (1/3):333.
[35]JAHEDI M, PAYDAR M H. Study on the Feasibility of the Torsion Extrusion(TE) Process as a Severe Plastic Deformation Method for Consolidation of Al Powder[J]. Materials Science and Engineering A,2010,527(20): 5273.
[36]YASUMASA C, HUANG X, KAZUTAKA S, et al. Texture and Mechanical Properties of Mg-3Al-lZn-0.5Mn-l.5Ca Alloy Produced by Torsion Extrusion[J]. Materials Transactions, 2010, 51(5):872.
[37]CHINO Y , SASSA K , MABUCHI M. Enhancement of Tensile Ductility of Magnesium Alloy Produced by Torsion Extrusion[J]. Scripta Materialia, 2008,59(4):399.
[38]WANG J, ZHANG D, LI Y, et al. Effect of Initial Orientation on the Microstructure and Mechanical Properties of Textured AZ31 Mg Alloy During Torsion and Annealing[J]. Materials and Design, 2015, 86: 526.
[39]WANG J, YANG XY, LI Y , et al. Enhanced Ductility and Reduced Asymmetry of Mg-2Al-1Zn Alloy Plate Processed by Torsion and Annealing[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(12): 3928.
[40]LI F, CHU G N, LIU E L, et al. Investigation of Metal Extrusion Forming Through Steadily Rotating Container[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2011,225(12):2927.
[41]LI F, BIAN N, XU Y C, et al. Theoretical Analysis of Extrusion Through Rotating Container: Torque and Twist Angle[J]. Computational Materials Science, 2014, 88(6): 37.
[42]YU J M, ZHANG Z M, WANG Q, et al. Rotary Extrusion as a Novel Severe Plastic Deformation Method for Cylindrical Tubes[J]. Materials Letters,2018,215:195.
[43]LIN J, XIA X, CHEN Q. An Investigation of the Variable Cross-section Extrusion Process[J]. International Journal of Advanced Manufacturing Technology, 2017, 91(1/4): 453.
[44]胡水平, 李少鋒, 任學(xué)平, 等. 連續(xù)變斷面擠壓工藝的開發(fā)[J]. 機(jī)械工程學(xué)報(bào), 2005,41 (12):173.
[45]胡水平, 高曉丹, 任學(xué)平, 等. 連續(xù)變斷面擠壓制品組織的變化規(guī)律[J]. 北京科技大學(xué)學(xué)報(bào), 2008,30(7): 751.
[46]LI F, JIANG H W, CHEN Q, et al. New Extrusion Method for Reducing Load and Refining Grains for Magnesium Alloy[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1/4):73.
[47]LIU Y, LI F, JIANG H W. Microstructural Analysis and Mechanical Properties of AZ31 Magnesium Alloy Prepared by Alternate Extrusion (AE)[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(9/12): 4293.
(編輯:溫澤宇)