王?為,張立靜,孟?旭,王益成
?
高飽和磁化強(qiáng)度的Fe3O4磁性顆粒的制備與研究
王?為,張立靜,孟?旭,王益成
(天津大學(xué)化工學(xué)院,天津 300350)
采用水熱法,以檸檬酸(Cit)為配位劑,使之與溶液中的亞鐵離子形成配合物,通過改變水熱反應(yīng)時(shí)間合成出具有不同形貌和高飽和磁化強(qiáng)度的Fe3O4磁性粉體,以研究水熱反應(yīng)時(shí)間對合成Fe3O4磁性顆粒形貌及其磁性能的影響,從而確定最佳合成工藝.XRD衍射譜圖分析結(jié)果表明檸檬酸配位體系水熱合成產(chǎn)物為具有高純度的面心立方結(jié)構(gòu)的Fe3O4粉末;SEM圖分析結(jié)果表明,隨著反應(yīng)時(shí)間的增加,F(xiàn)e3O4的形狀由正八面體消失,并先擇優(yōu)取向橫向生長成納米片結(jié)構(gòu),隨后逐漸趨向于縱向生長,使片狀生長為塊狀,最終生長為不規(guī)則的多面體結(jié)構(gòu).FT-IR分析結(jié)果表明,在檸檬酸體系合成Fe3O4的過程中,檸檬酸分子在合成的Fe3O4顆粒表面以配位狀態(tài)存在.磁滯曲線分析結(jié)果表明,合成的Fe3O4樣品具有超順磁性,且當(dāng)水熱反應(yīng)時(shí)間為14h時(shí),合成的Fe3O4粉體在300K條件下飽和磁化強(qiáng)度高達(dá)97emu/g,相比目前文獻(xiàn)報(bào)道的最高的塊狀結(jié)構(gòu)Fe3O4顆粒飽和磁化強(qiáng)度提高7.78%.
Fe3O4顆粒;水熱反應(yīng);形貌;飽和磁化強(qiáng)度
納米材料和微米材料的性質(zhì)不僅與材料的組成有關(guān),更與材料的形貌、粒徑以及粒徑分布密切相關(guān).因此,能夠通過改變合成方法或?qū)嶒?yàn)條件得到具有理想形貌和性能的無機(jī)粉狀材料成為材料界一直追求的目標(biāo).磁鐵礦(Fe3O4)獨(dú)特的磁性特質(zhì),使其在磁性分離[1]、數(shù)據(jù)存儲[2]、永磁體[3]以及催化劑[4-5]等領(lǐng)域得到廣泛應(yīng)用.近年來,具有高飽和磁化強(qiáng)度、超順磁性以及表面帶有功能基團(tuán)的磁性納米粒子因其在后續(xù)修飾及應(yīng)用中顯示出幾乎相同的物理、化學(xué)和生物學(xué)性質(zhì),為其在生物醫(yī)學(xué)診斷[6]、治療方面的基礎(chǔ)和應(yīng)用研究提供了新的機(jī)遇.納米材料的磁化主要取決于磁矩的數(shù)量與分布,而磁矩的數(shù)量與分布又與納米材料的形貌、顆粒尺寸以及結(jié)晶性密切相關(guān).另外,磁性納米粒子表面的功能基團(tuán)如羧基、胺基和羥基等,不僅使磁性納米粒子在水溶液中具有良好的穩(wěn)定性和分散性,而且可以使材料用于偶聯(lián)生物大分子,如特異性靶向分子、藥物和生物標(biāo)記物等,進(jìn)而為實(shí)現(xiàn)藥物靶向治療、生物檢測和核磁共振分子影像等應(yīng)用奠定了基礎(chǔ).在眾多表面修飾功能團(tuán)中,羧基是一種能夠與生物大分子相互偶聯(lián)的基團(tuán),因此對高飽和磁化強(qiáng)度及羧基功能化磁性Fe3O4納米粒子進(jìn)行制備和研究非常必要.Fe3O4納米顆??梢酝ㄟ^很多方法合成,例如水熱法[7-9]、共沉淀法[10-11]、熱分解法[12-13]和微乳液法[14]等.然而,相比其他合成方法,F(xiàn)e3O4在水熱過程中更容易形成單晶顆粒并且粒子的結(jié)晶度更高[15],此外,水熱過程的操作安全簡便、成本低,適用于大規(guī)模的生產(chǎn),因此研究者們更傾向于采用水熱法合成Fe3O4納米顆粒[16].
本文利用亞鐵離子與檸檬酸的絡(luò)合作用,通過改變水熱反應(yīng)時(shí)間合成出具有高純度和不同形貌的Fe3O4顆粒,并采用磁性測量系統(tǒng)研究材料的飽和磁化強(qiáng)度,分析水熱反應(yīng)時(shí)間對Fe3O4顆粒的形貌以及磁性能的影響,以期得到具有超順磁性和高飽和磁化強(qiáng)度的Fe3O4顆粒.
七水合硫酸亞鐵(FeSO4·7,H2O)、一水合檸檬酸(C6H8O7·H2O)、氫氧化鈉(NaOH)和水合肼(N2H4·H2O,85%,)均購于國藥集團(tuán)化學(xué)試劑有限公司.實(shí)驗(yàn)過程中所使用的藥品均為分析純.
材料的形貌用場發(fā)射掃描電子顯微鏡(FE-SEM)(日本日立公司,s-4800型,3.0,kV)來進(jìn)行表征;樣品的物象分析用X-射線衍射儀(XRD)(德國布魯克公司,D8型)以4°/min的速率在15°~75°(2)的范圍內(nèi)進(jìn)行表征(Cu Ka,=0.154,06,nm,=40,kV,=40,mA);材料的表面功能基團(tuán)通過紅外光譜儀(德國布魯克公司,ALPHA型)進(jìn)行表征;材料的磁性能通過Squid-vsm(美國量子公司)磁性測量系統(tǒng)在-70~70,kOe范圍內(nèi)進(jìn)行測試.
本文采用水熱法合成Fe3O4顆粒.將0.018,mol FeSO4·7,H2O和0.042,mol檸檬酸以及20,μL質(zhì)量分?jǐn)?shù)為85%,的水合肼加入40,mL蒸餾水中,在氮?dú)饬鲃?dòng)的室溫條件下攪拌4,h后,滴加5,mol/L的NaOH溶液將上述溶液的pH值調(diào)節(jié)在12~13之間.隨后將溶液轉(zhuǎn)移至100,mL高壓反應(yīng)釜中,并在140,℃烘箱中分別放置6,h、10,h、14,h、18,h、26,h進(jìn)行水熱反應(yīng).待其自然冷卻后,將溶液進(jìn)行磁性分離,依次用去離子水和乙醇交替清洗各3次后,將樣品放入真空干燥箱中干燥6,h,得到Fe3O4顆粒.
圖1是在不同水熱反應(yīng)時(shí)間條件下合成的Fe3O4樣品的XRD譜圖.如圖1所示,樣品的衍射峰均可以與面心立方結(jié)構(gòu)的Fe3O4標(biāo)準(zhǔn)PDF卡片(PDF#65-3107)對應(yīng).此外,圖中未出現(xiàn)其他物質(zhì)的晶相,說明制備的Fe3O4樣品具有很高的純度.
圖1?不同水熱反應(yīng)時(shí)間制得樣品的XRD譜圖
Fe3O4的形成機(jī)理如下列方程式所示,其中,水合肼作為弱氧化劑.在實(shí)驗(yàn)中,經(jīng)過4,h的磁力攪拌,F(xiàn)e2+與電離的檸檬酸根充分接觸,形成Fecit絡(luò)合物.在pH值為12~13的弱堿性水溶液中,F(xiàn)e2+與OH-結(jié)合形成Fe(OH)2(式(1)),隨后Fe(OH)2被N2H4·H2O氧化成Fe(OH)3(式(2)).在140,℃條件下,F(xiàn)e(OH)2與Fe(OH)3脫水生成Fe3O4納米顆粒(式(3)).在這個(gè)反應(yīng)過程中,F(xiàn)e(OH)3的生成量是自我限制的,并且過量的N2H4·H2O在高溫下會(huì)分解出氮?dú)?、氨氣和氫?式(4)),加大了反應(yīng)釜內(nèi)的壓力,進(jìn)而促進(jìn)Fe3O4的形成過程.因此,能夠在pH值為12~13的弱堿性水溶液中形成高純度的Fe3O4顆粒.
???(1)
?????2Fe(OH)3+2NH4OH(2)
?????4H2O(3)
???2N2H4N2+2NH3+H2(4)
圖2是在不同水熱反應(yīng)時(shí)間條件下制備的Fe3O4樣品的SEM圖.如圖2(a)所示,反應(yīng)時(shí)間為6,h時(shí),樣品主要由邊長約為100,nm的正八面體顆粒構(gòu)成,同時(shí)含有粒徑約為20,nm的納米顆粒.如圖2(b)所示,反應(yīng)時(shí)間為10,h時(shí),樣品由厚度約為20,nm的納米片和大小不一的納米顆粒構(gòu)成.當(dāng)反應(yīng)時(shí)間為14,h時(shí),樣品主要由厚度約為50,nm的塊狀結(jié)構(gòu)組成(見圖2(c)).如圖2(d)所示,當(dāng)反應(yīng)時(shí)間為18,h時(shí),樣品主要由大小不一的多面體顆粒組成.如圖2(e)所示,當(dāng)反應(yīng)時(shí)間為26,h時(shí),樣品主要由邊長約200,nm的不規(guī)則多面體構(gòu)成.
圖2?不同水熱反應(yīng)時(shí)間合成樣品的SEM圖
由上可知,隨著水熱反應(yīng)時(shí)間的增加,納米顆粒的正八面體結(jié)構(gòu)消失,并先擇優(yōu)取向橫向生長成納米片,隨后逐漸趨向于縱向生長,使納米片縱向生長為塊狀結(jié)構(gòu),最終顆粒趨向于長成多面的立體結(jié)構(gòu).根據(jù)以上分析可推斷出多種形貌形成的機(jī)理.當(dāng)水熱反應(yīng)時(shí)間增加時(shí),生成的納米片經(jīng)過Ostwald熟化,吞噬周圍的小粒子,導(dǎo)致納米片的厚度逐漸增大,生成塊狀顆粒,且結(jié)晶性變差.隨著反應(yīng)的繼續(xù)進(jìn)行,塊狀顆粒吸收的小粒子在溶液中由于受到表面張力的作用會(huì)盡量卷曲,形成大小不一的多面體顆粒.因此,增加水熱反應(yīng)時(shí)間有利于晶粒的生長[17],且對材料的形貌具有重要的影響.
為了解在不同水熱反應(yīng)時(shí)間條件下合成的Fe3O4樣品表面的化學(xué)基團(tuán),對其進(jìn)行紅外光譜測試,結(jié)果如圖3所示.在580,cm-1處有一個(gè)較強(qiáng)的吸收峰,這是由于Fe—O鍵的伸縮振動(dòng)引起的.1,630,cm-1處的吸收峰是由于Fe3O4表面的羥基(O—H)伸縮振動(dòng)而引起的.而介于3,000,cm-1和3,500,cm-1之間的極強(qiáng)的吸收峰是由于水蒸氣中的O—H的伸縮振動(dòng)引起?的[18].此外,接近1,400,cm-1處的吸收峰是COO—Fe鍵的特征吸收峰[19],可能是由Fe3O4表面的羥基與溶液中的檸檬酸中的羧基發(fā)生絡(luò)合反應(yīng)而形成的.2,853,cm-1和2,925,cm-1處左右微弱的吸收峰是由于檸檬酸中較長的烷基鏈而引起的伸縮振動(dòng)[20].根據(jù)以上分析可知,檸檬酸成功地修飾在Fe3O4顆粒表面上.
圖3?不同水熱反應(yīng)時(shí)間合成樣品的FTIR譜圖
圖4是不同水熱反應(yīng)時(shí)間條件下合成的Fe3O4樣品在室溫下的磁滯回線.如圖4所示,曲線均呈“S”狀,且樣品在磁化過程中幾乎不存在矯頑力和剩余磁化強(qiáng)度,說明樣品具有超順磁性.不同水熱反應(yīng)時(shí)間條件下合成Fe3O4樣品的飽和磁化強(qiáng)度(s)與反應(yīng)時(shí)間關(guān)系曲線如圖5所示.由圖可知,隨著反應(yīng)時(shí)間的增加,F(xiàn)e3O4顆粒的飽和磁化強(qiáng)度先增大后減?。?dāng)水熱反應(yīng)時(shí)間為14,h時(shí),s的值最大且高達(dá)97,emu/g,相比目前文獻(xiàn)報(bào)道的最高的塊狀結(jié)構(gòu)Fe3O4顆粒飽和磁化強(qiáng)度(90,emu/g)[21]提高了7.78%.
圖4?不同水熱反應(yīng)時(shí)間合成樣品的磁滯回線
圖5 不同水熱反應(yīng)時(shí)間合成樣品的飽和磁化強(qiáng)度與時(shí)間關(guān)系曲線
獨(dú)特的形貌以及結(jié)晶性使Fe3O4顆粒具有極大的飽和磁化強(qiáng)度.眾所周知,材料的形貌和尺寸對磁疇的數(shù)量有顯著的影響[22].在性質(zhì)相似的Fe3O4材料中,體積相同的片狀Fe3O4顆粒比球狀Fe3O4顆粒擁有更少的磁疇.而且,隨著Fe3O4顆粒尺寸的減小,磁疇壁對體系提供的能量會(huì)隨之增加,直到磁疇與磁疇壁的形成達(dá)到相對的平衡.即磁疇的數(shù)量會(huì)隨著顆粒的減小而減少,直到體系達(dá)到最穩(wěn)定的狀態(tài).也就是說,當(dāng)小于臨界尺寸時(shí),臨近原子的磁矩會(huì)連接成一個(gè)大的磁矩,從而為整個(gè)粒子做貢獻(xiàn)[23].該情況下,顆粒一般會(huì)具有較高的飽和磁化強(qiáng)度.水熱反應(yīng)時(shí)間為14,h時(shí)合成的Fe3O4顆粒主要由厚度約為50,nm的塊狀結(jié)構(gòu)組成,具有這種結(jié)構(gòu)的Fe3O4顆??赡芴幱谧罘€(wěn)定的狀態(tài),從而具有超高的飽和磁化強(qiáng)度.此外,由XRD測試結(jié)果(見圖1)可知,當(dāng)反應(yīng)時(shí)間小于14,h時(shí),溶液中生成Fe3O4顆粒的結(jié)晶性逐漸增強(qiáng),飽和磁化強(qiáng)度增大.水熱反應(yīng)10,h合成的Fe3O4納米片具有最高的結(jié)晶性.隨著反應(yīng)繼續(xù)進(jìn)行,納米片經(jīng)過Ostwald熟化,生成塊狀顆粒,結(jié)晶性變差,飽和磁化強(qiáng)度達(dá)到最大值.據(jù)Lee等[24]的報(bào)道可知,當(dāng)結(jié)晶度達(dá)到60%,時(shí),F(xiàn)e3O4顆粒的飽和磁化強(qiáng)度將會(huì)達(dá)到最大值,這個(gè)觀點(diǎn)可以用來解釋水熱反應(yīng)14,h時(shí)合成的Fe3O4粉體具有最高飽和磁化強(qiáng)度的現(xiàn)象.另外,除了材料的組成、形貌和尺寸,還有許多因素也會(huì)影響材料的磁性能,例如結(jié)晶度、表面缺陷、表面配體和化學(xué)計(jì)量學(xué)的偏差等[25].
(1) 利用Fe2+與檸檬酸絡(luò)合體系在水熱條件下成功制備出高純度的Fe3O4顆粒,并且羧基基團(tuán)成功地對Fe3O4顆粒表面進(jìn)行修飾.
(2) 隨著水熱反應(yīng)時(shí)間增加,F(xiàn)e3O4顆粒先擇優(yōu)取向橫向生長再縱向生長,由正八面體至納米片、納米塊,最終為不規(guī)則的多面體.
(3) 所合成Fe3O4顆粒的飽和磁化強(qiáng)度高達(dá)97,emu/g,相比目前文獻(xiàn)報(bào)道最高的塊狀Fe3O4飽和磁化強(qiáng)度提高7.78%.
[1] Yavuz C T,Mayo J,William W Y,et al. Low-field magnetic separation of monodisperse Fe3O4nanocrystals [J]. Science,2006,314(5801):964-967.
[2] ?kerman J. Toward a universal memory[J]. Science,2005,308(5721):508-510.
[3] Chen Y C,Gregori G,Leineweber A,et al. Unique high-temperature performance of highly condensed MnBi permanent magnets[J]. Scripta Materialia,2015,107:131-135.
[4] Xu X,Dai Y,Yu J,et al. Metallic state FeS anchored(Fe)/Fe3O4/N-doped graphitic carbon with porous spongelike structure as durable catalysts for enhancing bioelectricity generation[J]. ACS Applied Materials & Interfaces,2017,9(12):10777-10787.
[5] Jiang Y,Jiang J,Gao Q,et al. A novel nanoscale catalyst system composed of nanosized Pd catalysts immobilized on Fe3O4@ SiO2-PAMAM[J]. Nanotech-nology,2008,19(7):075714.
[6] Issa B,Obaidat I M,Albiss B A,et al. Magnetic nanoparticles:Surface effects and properties related to biomedicine applications[J]. International Journal of Molecular Sciences,2013,14(11):21266-21305.
[7] Wan J,Chen X,Wang Z,et al. A soft-template-assisted hydrothermal approach to single-crystal Fe3O4nanorods[J]. Journal of Crystal Growth,2005,276(3):571-576.
[8] Liu Y,Cui T,Wu T,et al. Excellent microwave-absorbing properties of elliptical Fe3O4nanorings made by a rapid microwave-assisted hydrothermal approach [J]. Nanotechnology,2016,27(16):165707.
[9] Khalil M I. Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(Ⅲ)salts as precursors[J]. Arabian Journal of Chemistry,2015,8(2):279-284.
[10] Tajabadi M,Khosroshahi M E,Bonakdar S. An efficient method of SPION synthesis coated with third generation PAMAM dendrimer[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2013,431(33):18-26.
[11] Hufschmid R,Arami H,F(xiàn)erguson R M,et al. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition[J]. Nano-scale,2015,7(25):11142-11154.
[12] Roca A,Morales M,O’Grady K,et al. Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors[J]. Nanotechnology,2006,17(11):2783-2788.
[13] Wongwailikhit K,Horwongsakul S. The preparation of iron(Ⅲ)oxide nanoparticles using W/O microemulsion [J]. Materials Letters,2011,65(17):2820-2822.
[14] Wang J,Sun J,Sun Q,et al. One-step hydrothermal process to prepare highly crystalline Fe3O4nanoparticles with improved magnetic properties[J]. Materials Research Bulletin,2003,38(7):1113-1118.
[15] Zhu H,Yang D,Zhu L. Hydrothermal growth and characterization of magnetite(Fe3O4) thin films[J]. Surface and Coatings Technology,2007,201(12):5870-5874.
[16] Jung H,Choi H. Hydrothermal fabrication of octahedral-shaped Fe3O4nanoparticles and their magnetorheological response[J]. Journal of Applied Physics,2015,117(17):17E708.
[17] Laurent S,F(xiàn)orge D,Port M,et al. Magnetic iron oxide nanoparticles:Synthesis,stabilization,vectori-zation,physicochemical characterizations,and biological applications[J]. Chemical Reviews,2008,108(6):2064-2110.
[18] Soares P I,Alves A M,Pereira L C,et al. Effects of surfactants on the magnetic properties of iron oxide colloids[J]. J Colloid Interface Sci,2014,419(4):46-51.
[19] Nikazar M,Alizadeh M,Lalavi R,et al. The optimum conditions for synthesis of Fe3O4/ZnO core/shell magnetic nanoparticles for photodegradation of phenol [J]. Journal of Environmental Health Science and Engineering,2014,12(1):21-26.
[20] Wei Y,Han B,Hu X,et al. Synthesis of Fe3O4nanoparticles and their magnetic properties[J]. Procedia Engineering,2012,27:632-637.
[21] Han D,Wang J,Luo H. Crystallite size effect on saturation magnetization of fine ferrimagnetic particles [J]. Journal of Magnetism and Magnetic Materials,1994,136(1/2):176-182.
[22] Yang C,Hou Y L,Gao S. Nanomagnetism:Principles,nanostructures,and biomedical applications [J]. Chinese Physics B,2014,23(5):057505.
[23] Goto K,Ito M,Sakurai T. Studies on magnetic domains of small particles of barium ferrite by colloid-SEM method[J]. Japanese Journal of Applied Physics,1980,19(7):1339-1346.
[24] Lee J,Isobe T,Senna M. Preparation of ultrafine Fe3O4particles by precipitation in the presence of PVA at high pH[J]. Journal of Colloid and Interface Science,1996,177(2):490-494.
[25] Salado J,Insausti M,de Muro I G,et al. Synthesis and magnetic properties of monodisperse Fe3O4nanoparticles with controlled sizes[J]. Journal of Non-Crystalline Solids,2008,354(47):5207-5209.
(責(zé)任編輯:田?軍)
Synthesis and Study of Fe3O4Magnetic Particles with High Saturation Magnetization
Wang Wei,Zhang Lijing,Meng Xu,Wang Yicheng
(School of Chemical Engineering and Technology,Tianjin University,Tianjin 300350,China)
Fe3O4powders with various morphologies and high magnetism were synthesized by controlling the reaction time of the hydrothermal process with the coordination of iron(Ⅱ) ion and citric acid(Cit). The influence of the reaction time on the morphology and magnetism of Fe3O4synthesis was investigated,and the optimized synthesis protocol was determined. The XRD patterns showed that the products synthesized in the iron(Ⅱ)-Cit system were face-centered-cubic Fe3O4powders of high purity. The SEM images illustrated that, with the increase of reaction time, octahedral Fe3O4particles disappeared and grains exhibited lateral growth to form a nanoplate, and longitudinal growth to form a bulk structure and finally an irregular polyhedron structure. The FT-IR spectra indicated thatcoordinated Cit molecules existed on the surface of Fe3O4particles. The hysteresis curves of the products showed that the maximum saturation magnetization of up to 97 emu/g at 300 K was observed at the hydrothermal reaction time of 14 h, which was 7.78% higher than that of the corresponding bulk Fe3O4.
Fe3O4particle;hydrothermal reaction;morphology;saturation magnetization
10.11784/tdxbz201803106
O646.8
A
0493-2137(2019)03-0231-05
2018-03-29;
2018-04-13.
王?為(1962—??),女,博士,教授.
王?為,wangweipaper@163.com.