易小敏 張珺 梁宇 沈群山 李海波
[摘要] 目的 研究沉默lncRNA PCA3對(duì)前列腺癌細(xì)胞的影響。 方法 選擇前列腺癌細(xì)胞LNCaP和C4-2細(xì)胞,使用siRNA干擾PCA3在細(xì)胞內(nèi)的表達(dá),實(shí)時(shí)定量PCR法檢測(cè)干擾效果,檢測(cè)siRNA干擾PCA3后對(duì)前列腺癌細(xì)胞增殖、遷移和侵襲能力的影響,Western blot法在前列腺癌C4-2細(xì)胞內(nèi)分別檢測(cè)雄激素受體及其變體7的表達(dá)情況。 結(jié)果 PCA3特異性的siRNA可明顯抑制前列腺癌細(xì)胞內(nèi)PCA3 mRNA的表達(dá),抑制前列腺癌細(xì)胞增殖、遷移和侵襲潛能。沉默PCA3后的C4-2細(xì)胞內(nèi)雄激素受體及其變體7表達(dá)明顯減少。 結(jié)論 沉默lncRNA PCA3可減少前列腺癌細(xì)胞內(nèi)AR及AR-V7的表達(dá),從而抑制前列腺癌細(xì)胞增殖和遷移等惡性轉(zhuǎn)變。
[關(guān)鍵詞] 長(zhǎng)鏈非編碼RNA;PCA3;siRNA;前列腺癌;雄激素受體
[中圖分類號(hào)] R737.2? ? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼] A? ? ? ? ? [文章編號(hào)] 1673-9701(2019)34-0021-05
Effect of silencing lncRNA PCA3 on reduction of prostate androgen receptor expression and inhibition of prostate cancer cell proliferation and metastasis
YI Xiaomin1, 2? ?ZHANG Jun1? ?LIANG Yu1? ?SHEN Qunshan1? ?LI Haibo1
1.Department of Urology, the 901 Hospital of PLA, Hefei? ?230031, China; 2.Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing? ?210029, China
[Abstract] Objective To study the effect of silencing lncRNA PCA3 on prostate cancer cells. Methods The prostate cancer cells LNCaP and C4-2 cells were selected, and siRNA was used to interfere with the expression of PCA3 in cells. The interference effect was detected by real-time quantitative PCR, and the effects of siRNA on PCA3 proliferation, migration and invasion of prostate cancer cells were detected. Western blot method was used to investigate the expression of androgen receptor and its variant 7 in prostate cancer C4-2 cells. Results The expression of PCA3 mRNA in prostate cancer cells and the proliferation, migration and invasion potential of prostate cancer cells were significantly inhibited by CA3-specific siRNA. The expression of androgen receptor and its variant 7 in C4-2 cells after silencing PCA3 was significantly reduced. Conclusion Silencing lncRNA PCA3 can reduce the expression of AR and AR-V7 in prostate cancer cells, thereby inhibiting the malignant transformation of prostate cancer cells, such as proliferation and migration.
[Key words] Long-chain non-coding RNA; PCA3; siRNA; Prostate cancer; Androgen receptor
前列腺癌在歐美國(guó)家已經(jīng)成為發(fā)病率最高的男性惡性腫瘤,嚴(yán)重危害男性健康。我國(guó)前列腺癌的發(fā)病率也在不斷攀升,患病群體也有年輕化的趨勢(shì)。早期局限性的前列腺癌可通過(guò)手術(shù)和放射治療等綜合治療達(dá)到治愈,但在發(fā)病早期多數(shù)患者并不會(huì)出現(xiàn)明顯不適。只有在腫瘤遷延進(jìn)展、侵犯臨近組織甚至發(fā)生骨轉(zhuǎn)移后,方有可能被患者察覺(jué)。通過(guò)手術(shù)或藥物去勢(shì)的雄激素剝奪治療是晚期前列腺癌的主要治療方法,但多數(shù)患者在經(jīng)歷大約16個(gè)月之后都將轉(zhuǎn)變?yōu)槿?shì)抵抗性前列腺癌(Castration resistant prostate cancer,CRPC),此時(shí)繼續(xù)行雄激素剝奪的內(nèi)分泌治療不再有效[1]。
早期前列腺癌細(xì)胞依賴雄激素-雄激素受體信號(hào)軸不斷增殖是前列腺癌內(nèi)分泌治療方案的基礎(chǔ)。正常前列腺上皮細(xì)胞和前列腺癌上皮細(xì)胞在雄激素激活雄激素受體后可產(chǎn)生前列腺特異性抗原(prostate-specific antigen,PSA)并維持存活。前列腺癌的雄激素受體(Androgen receptor,AR)還可出現(xiàn)異常剪接,形成不同的雄激素受體變體(AR Variants,AR-V),而變體同源/異源二聚體化后能夠不依賴雄激素實(shí)現(xiàn)自激活維持增殖信號(hào)[2]。明顯升高的雄激素受體變體7(AR-V7)水平直接關(guān)系到前列腺癌的治療效果,也是前列腺癌細(xì)胞產(chǎn)生去勢(shì)抵抗的一個(gè)重要因素[3,4]。
非編碼RNA在表觀遺傳學(xué)的調(diào)控機(jī)制中發(fā)揮重要作用,非編碼RNA(noncoding RNA,ncRNA)是一種不能夠翻譯為蛋白的功能性RNA序列,常見(jiàn)的具有調(diào)控作用的非編碼RNA包括小干擾RNA、miRNA、piRNA以及長(zhǎng)鏈非編碼RNA。PCA3(Prostate Cancer Associated 3)是一個(gè)僅在前列腺組織內(nèi)特異性表達(dá)的長(zhǎng)鏈非編碼RNA(long noncoding RNA,lncRNA),其基因座位于9號(hào)染色體q21~22。前列腺癌內(nèi)PCA3的表達(dá)水平可達(dá)到正常前列腺組織的66倍[5]。不僅如此,PCA3高表達(dá)還可增加前列腺癌細(xì)胞內(nèi)雄激素受體的表達(dá)水平[6],通過(guò)AR信號(hào)通路增強(qiáng)前列腺癌細(xì)胞的增殖及侵襲能力。盡管PCA3在前列腺癌內(nèi)的特異性高表達(dá)已被熟知,對(duì)PCA3在前列腺癌中的調(diào)控機(jī)制作用尚未闡明。本研究在前列腺癌細(xì)胞LNCaP及C4-2內(nèi)調(diào)節(jié)PCA3表達(dá),發(fā)現(xiàn)沉默PCA3可減少AR及AR-V7的形成,從而抑制前列腺癌細(xì)胞增殖和遷移等惡性轉(zhuǎn)變。
1 材料與方法
1.1 細(xì)胞系和細(xì)胞培養(yǎng)
人前列腺癌細(xì)胞LNCaP購(gòu)自中國(guó)醫(yī)學(xué)科學(xué)院基礎(chǔ)所細(xì)胞中心,前列腺癌細(xì)胞C4-2為本實(shí)驗(yàn)室保存,使用RPMI1640培養(yǎng)基+10%胎牛血清,于37℃含5% CO2的恒溫細(xì)胞培養(yǎng)箱內(nèi)培養(yǎng)。
1.2 瞬時(shí)轉(zhuǎn)染
siRNA由上海生工生物合成,靶向PCA3的siRNA(siPCA3)正義鏈5CUAGCACACAGCAUGAUCAUU-ACGG3,陰性對(duì)照序列Scrambled RNA(scrPCA3)正義鏈5GCACGCUCCUACGAAUGCUAGUAAA3,反義鏈均為互補(bǔ)。前列腺癌細(xì)胞使用siPCA3處理為siPCA3組,使用scrPCA3處理為scrPCA3組。轉(zhuǎn)染前1 d接種前列腺癌細(xì)胞至6孔板,轉(zhuǎn)染當(dāng)天查看細(xì)胞貼壁生長(zhǎng)良好后,按照Lipofectamine2000轉(zhuǎn)染試劑盒說(shuō)明書(shū)準(zhǔn)備siRNA及脂質(zhì)體的混合物,每孔加入5 μL脂質(zhì)體及50 pmol的siRNA,終體積用無(wú)血清培養(yǎng)基加至2 mL。6 h后輕輕吸去培養(yǎng)基并更換含血清新鮮培養(yǎng)基繼續(xù)培養(yǎng)30 h后收取樣本,使用Trizol(美國(guó)Invitrogen公司)試劑盒提取總RNA反轉(zhuǎn)錄cDNA進(jìn)行下一步實(shí)驗(yàn)。
1.3 實(shí)時(shí)定量PCR
使用SYBR綠色熒光標(biāo)記的SYBR Premix Ex TaqTM試劑盒(Takara公司)及ABIPRISM7300Real-TimePCR儀進(jìn)行實(shí)時(shí)定量PCR檢測(cè)。按如下反應(yīng)體系進(jìn)行配置:2×SYBR Premix Ex TaqTM Buffer 10 μL,cDNA 模板50 ng,PCR上下游引物各0.8 μL,(終濃度0.4 μmol/L);ROX Reference Dye(50x)0.4 μL,終體積為20 μL體系。特異性引物序列如下:PCA3 基因:上游:5-AGATTTGTGTGGCTGCAGC-3,下游:5-TCCTGCCCATCCTTTAAGG -3;內(nèi)參GAPDH基因:上游:5-TGACCCCTTCATTGACCTCA-3,下游:5-AGTCCTTCCACGATACCAAA-3。反應(yīng)條件為預(yù)變性95℃ 10 s,94℃ 5 s、55℃ 20 s、72℃ 31 s(共40個(gè)循環(huán))。
1.4 Western blot
使用RIPA裂解液提取實(shí)驗(yàn)組細(xì)胞總蛋白,12000 r/min離心10 min后,將蛋白上清液轉(zhuǎn)移至新EP管,BCA法測(cè)定蛋白濃度,加入上樣緩沖液后煮沸5 min。聚丙烯酰胺凝膠電泳后轉(zhuǎn)PVDF膜,5%脫脂奶粉TBST封閉1 h,分別加入1∶1000的兔抗人AR及AR-V7一抗(英國(guó)Abcam公司)4℃過(guò)夜,TBST洗3次,加入抗兔二抗(碧云天生物)孵育1 h,TBST洗膜3次后進(jìn)行顯色發(fā)光。
1.5 MTT法檢測(cè)細(xì)胞增殖
按照前述操作步驟進(jìn)行siRNA轉(zhuǎn)染操作后,消化重懸細(xì)胞,以每孔5×103的密度將細(xì)胞接種于96孔板。分別于0 h、24 h、48 h、72 h在各組選3個(gè)復(fù)孔更換新鮮培養(yǎng)基100 μL,并加入10 μL CCK-8試劑(日本同仁化學(xué)研究所),37℃孵育2 h后,酶標(biāo)儀檢測(cè)450 nm OD值并記錄。
1.6 細(xì)胞遷移和侵襲
前列腺癌細(xì)胞接種至Transwell小室的上層,每孔1×104個(gè)細(xì)胞,加入1% FBS培養(yǎng)基 200 μL,Transwell小室下層加入600 μL含 10% FBS 的培養(yǎng)基。在37℃、5% CO2孵箱中培養(yǎng)24 h后,4%多聚甲醛固定10 min,隨后用0.5%結(jié)晶紫染色10 min。PBS清洗后棉簽擦去上室中的細(xì)胞,隨機(jī)選取5個(gè)視野對(duì)聚碳酯膜下表面的細(xì)胞進(jìn)行拍照計(jì)數(shù),取視野細(xì)胞數(shù)量進(jìn)行統(tǒng)計(jì)學(xué)分析。進(jìn)行細(xì)胞侵襲實(shí)驗(yàn)前在Transwell小室的上室內(nèi)加入50 μL Matrigel基質(zhì)膠(美國(guó)BD公司),放入37℃培養(yǎng)箱6 h,等待膠凝固后加入200 μL無(wú)血清培養(yǎng)基37℃培養(yǎng)箱30 min以水化基質(zhì)膠,其余操作同遷移實(shí)驗(yàn)。
1.7 統(tǒng)計(jì)學(xué)處理
以上實(shí)驗(yàn)所獲取的數(shù)據(jù)均使用SPSS 16.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。計(jì)量資料采用均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,兩組間差異采用t檢驗(yàn)進(jìn)行比較,每次實(shí)驗(yàn)至少重復(fù)3次,P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 siRNA干擾前列腺癌細(xì)胞內(nèi)PCA3表達(dá)
為明確PCA3對(duì)前列腺癌細(xì)胞的影響,我們?cè)谇傲邢侔㎜NCaP和C4-2 細(xì)胞系中使用siRNA干擾PCA3表達(dá)。提取總RNA后用Real-time RT-PCR法檢測(cè)各組PCA3 mRNA的表達(dá)情況驗(yàn)證轉(zhuǎn)染效率,以和LNCaP空白對(duì)照組的PCA3 mRNA比值進(jìn)行分析。結(jié)果顯示轉(zhuǎn)染siPCA3 36 h后,LNCaP細(xì)胞及C4-2細(xì)胞內(nèi)PCA3 mRNA表達(dá)明顯降低(P<0.05);轉(zhuǎn)染scrPCA3后PCA3 mRNA的表達(dá)無(wú)明顯影響,這表明siPCA3可有效干擾前列腺癌細(xì)胞內(nèi)PCA3 mRNA的表達(dá)(表1)。siPCA3對(duì)LNCaP細(xì)胞的干擾效果略高于C4-2細(xì)胞組,這可能與C4-2細(xì)胞去勢(shì)抵抗的惡性表型有關(guān)。盡管檢測(cè)結(jié)果提示C4-2細(xì)胞內(nèi)的PCA3 mRNA表達(dá)有略高于LNCaP細(xì)胞對(duì)照組PCA3 mRNA表達(dá)的趨勢(shì),兩組間未見(jiàn)明顯統(tǒng)計(jì)學(xué)差異(P>0.05)。siPCA3良好的干擾效果保證了后續(xù)對(duì)PCA3功能的研究。
2.2 PCA3對(duì)前列腺癌細(xì)胞增殖能力的影響
在siPCA3及scrPCA3處理前列腺癌細(xì)胞后,我們采用MTT法檢測(cè)各組細(xì)胞在不同時(shí)間點(diǎn)的增殖情況(表2)。結(jié)果顯示與轉(zhuǎn)染scrPCA3的對(duì)照組相比,轉(zhuǎn)染siPCA3后的兩株前列腺癌細(xì)胞增殖明顯受到抑制(P<0.05),這種抑制在48 h時(shí)更為明顯,但在72 h后前列腺癌細(xì)胞恢復(fù)了大部分的增殖能力,這與siPCA3瞬時(shí)轉(zhuǎn)染的起效時(shí)間相吻合,表明siRNA的干擾效果是可逆轉(zhuǎn)的。
2.3 PCA3對(duì)前列腺癌細(xì)胞遷移和侵襲數(shù)量的影響
采用細(xì)胞遷移和侵襲實(shí)驗(yàn)檢測(cè)siPCA3對(duì)前列腺癌細(xì)胞轉(zhuǎn)移能力的影響(表3)。結(jié)果可見(jiàn)siPCA3干擾后的兩株前列腺癌細(xì)胞遷移及侵襲數(shù)量均低于scrPCA3對(duì)照組,且差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。
2.4 PCA3對(duì)前列腺癌細(xì)胞AR-V7表達(dá)的影響
雄激素受體及其變體在前列腺癌細(xì)胞的去勢(shì)抵抗進(jìn)展中發(fā)揮了重要作用。為進(jìn)一步分析PCA3如何實(shí)現(xiàn)對(duì)前列腺癌細(xì)胞增殖、遷移和侵襲能力的影響,本實(shí)驗(yàn)用Western blot法檢測(cè)雄激素不敏感的C4-2細(xì)胞內(nèi)AR及AR-V7的表達(dá),發(fā)現(xiàn)scrPCA3處理的C4-2細(xì)胞內(nèi)有少量AR-V7的表達(dá)。siPCA3處理組AR的表達(dá)較scrPCA3組明顯減少(P<0.05),且AR-V7的表達(dá)量也明顯降低(表4)。這表明PCA3可以通過(guò)增加前列腺癌細(xì)胞內(nèi)AR-V7的表達(dá)促進(jìn)前列腺癌細(xì)胞增殖和轉(zhuǎn)移等惡性進(jìn)展。
3 討論
雄激素受體是激素受體家族的一個(gè)重要成員,以配體依賴的方式作為轉(zhuǎn)錄因子與不同的DNA位點(diǎn)結(jié)合[7,8]。雄激素受體基因位于X染色體q12區(qū)域,由8個(gè)外顯子組成。N端結(jié)構(gòu)域(NTD)內(nèi)含有轉(zhuǎn)錄活化作用的AF1,中間的DNA結(jié)合域與糖皮質(zhì)激素受體和孕激素受體類似,具有兩個(gè)可識(shí)別并結(jié)合DNA的鋅指結(jié)構(gòu),其C端含有配體結(jié)合區(qū)和AF2轉(zhuǎn)錄調(diào)節(jié)結(jié)構(gòu)域[9]。AR蛋白通過(guò)一系列的折疊加工后才能擁有配體結(jié)合的功能,配體-受體結(jié)合后的AR蛋白轉(zhuǎn)位至細(xì)胞核內(nèi),聚集共活化子并與雄激素應(yīng)答元件結(jié)合,發(fā)揮下游基因如PSA和TMPRSS2的轉(zhuǎn)錄調(diào)控作用[10]。目前已經(jīng)在去勢(shì)抵抗性前列腺癌患者中檢測(cè)出了多種AR變體,這些變體最終形成的截短體蛋白缺失了配體結(jié)合域[11,12]。更為重要的是,這些截短體能夠在缺少雄激素配體的環(huán)境中自我激活并直接調(diào)節(jié)靶基因的表達(dá)[13]。LNCaP為激素敏感性前列腺癌細(xì)胞,其自身并無(wú)明顯的AR-V7表達(dá)[14];但異位表達(dá)的AR-V7可使LNCaP成瘤裸鼠獲得去勢(shì)抵抗性,敲除AR-V7則能減弱去勢(shì)抵抗性前列腺癌細(xì)胞在裸鼠體內(nèi)的成瘤能力[1,15,16]。AR-V7高表達(dá)增加了患者接受根治性前列腺切除術(shù)后生化復(fù)發(fā)的風(fēng)險(xiǎn)。與雄激素敏感的前列腺癌患者相比,這類患者的預(yù)后更差[1,17]。
自Marion首次報(bào)道DD3(即PCA3)在前列腺癌內(nèi)特異性高表達(dá)以來(lái),針對(duì)PCA3的研究尤其是它作為前列腺腫瘤標(biāo)記物的研究亦逐漸增加[18]。尿液PCA3檢測(cè)試劑盒已在2006年獲得CE認(rèn)證,該診斷試劑盒的靈敏度及特異度均高于PSA檢測(cè),可用來(lái)評(píng)價(jià)患者是否需要進(jìn)行前列腺穿刺活檢排除前列腺癌,也有研究者使用術(shù)前PCA3檢測(cè)結(jié)果來(lái)預(yù)測(cè)前列腺癌患者的預(yù)后[19-24]。但PCA3的功能作用仍未徹底闡明,現(xiàn)有研究發(fā)現(xiàn)PCA3在雄激素-雄激素受體信號(hào)軸中起著重要的調(diào)控作用。PCA3基因座位于9號(hào)染色體短臂21~22區(qū),與Prune同源基因2(Prune homolog 2 gene,PRUNE2/BMCC1)的6號(hào)內(nèi)含子部分成反義互補(bǔ),這一特定的結(jié)構(gòu)賦予了它可能在RNA選擇性剪接和加尾中的作用[25,26]。
有研究者認(rèn)為PCA3主要通過(guò)調(diào)節(jié)AR信號(hào)通路來(lái)促進(jìn)前列腺癌細(xì)胞存活與增殖[27-29]。沉默PCA3后的前列腺癌LNCaP細(xì)胞或雄激素不敏感的前列腺癌PC3及DU145細(xì)胞后,前列腺癌細(xì)胞發(fā)生凋亡的比例明顯增加,細(xì)胞增殖也受到明顯的抑制,深入分析雄激素受體的多個(gè)靶點(diǎn)基因包括PSA、AR、TMPRSS2、NDRG1、GREB1、FGF8、CDK1、CDK2和PMEPA1表達(dá)水平結(jié)果顯示,這些促進(jìn)前列腺癌細(xì)胞生長(zhǎng)增殖的基因表達(dá)明顯下調(diào)[6]。本實(shí)驗(yàn)在前列腺癌LNCaP及C4-2的研究結(jié)果也證實(shí)前列腺癌細(xì)胞的增殖與侵襲能力受到明顯抑制,同時(shí)沉默PCA3表達(dá)后AR及AR-V7的表達(dá)明顯降低,這也表明PCA3在前列腺癌內(nèi)的表達(dá)與AR變體的形成密切相關(guān),從而促使激素依賴性前列腺癌逐漸發(fā)展成為去勢(shì)抵抗性前列腺癌。基于以上結(jié)果,我們認(rèn)為PCA3可能參與了雄激素受體靶基因的調(diào)節(jié),對(duì)PCA3調(diào)控機(jī)制的深入研究將有可能實(shí)現(xiàn)以PCA3作為前列腺癌靶點(diǎn)的治療方式。
[參考文獻(xiàn)]
[1] Egan A,Dong Y,Zhang H,et al. Castration-resistant prostate cancer:Adaptive responses in the androgen axis[J].Cancer Treat Rev,2014,40(3):426-433.
[2] Xu D,Zhan Y,Qi Y,et al.Androgen receptor splice variants dimerize to transactivate target genes[J].Cancer Res,2015,75(17):3663-3671.
[3] Sharp A,Coleman I,Yuan W,et al. Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer[J].J Clin Invest, 2019,129(1):192-208.
[4] Okegawa T,Ninomiya N,Masuda K,et al. AR-V7 in circulating tumor cells cluster as a predictive biomarker of abiraterone acetate and enzalutamide treatment in castration-resistant prostate cancer patients[J]. Prostate,2018, 78(8):576-582.
[5] Hessels D,Klein Gunnewiek JM,van Oort I,et al. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer[J]. Eur Urol,2003,44(1):8-16.
[6] Ferreira LB,Palumbo A,de Mello KD,et al.PCA3 noncoding RNA is involved in the control of prostate-cancer cell survival and modulates androgen receptor signaling[J].BMC Cancer,2012,12:507-522.
[7] Shafi AA,Yen AE,Weigel NL.Androgen receptors in hormone-dependent and castration-resistant prostate cancer[J]. Pharmacol Ther,2013,140(3): 223-238.
[8] Bennett NC,Gardiner RA,Hooper JD,et al. Molecular cell biology of androgen receptor signalling[J].Int J Biochem Cell Biol,2010,42(6):813-827.
[9] Ahmed A,Ali S,Sarkar FH.Advances in androgen receptor targeted therapy for prostate cancer[J].J Cell Physiol,2014,229(3):271-276.
[10] Wen S,Niu Y,Lee SO,et al. Androgen receptor (AR) positive vs negative roles in prostate cancer cell deaths including apoptosis,anoikis,entosis, necrosis and autophagic cell death[J]. Cancer Treat Rev,2014,40(1): 31-40.
[11] Yu Z,Chen S,Sowalsky AG,et al. Rapid induction of androgen receptor splice variants by androgen deprivation in prostate cancer[J]. Clin Cancer Res,2014,20(6):1590-1600.
[12] Haile S,Sadar MD.Androgen receptor and its splice variants in prostate cancer[J]. Cell Mol Life Sci,2011,68(24):3971-3981.
[13] Cao B,Qi Y,Zhang G,et al.Androgen receptor splice variants activating the full-length receptor in mediating resistance to androgen-directed therapy[J].Oncotarget,2014,5(6):1646-1656.
[14] Wilson S,Cavero L,Tong D,et al.Resveratrol enhances polyubiquitination-mediated ARV7 degradation in prostate cancer cells[J]. Oncotarget,2017,8(33):54683-54693.
[15] Mediwala SN,Sun H,Szafran AT,et al.The activity of the androgen receptor variant AR-V7 is regulated by FOXO1 in a PTEN-PI3K-AKT-dependent way[J]. Prostate,2013,73(3):267-277.
[16] Krause WC,Shafi AA,Nakka M,et al. Androgen receptor and its splice variant,AR-V7,differentially regulate FOXA1 sensitive genes in LNCaP prostate cancer cells[J]. Int J Biochem Cell Biol,2014,54(1):49-59.
[17] Sprenger CC,Plymate SR.The link between androgen receptor splice variants and castration-resistant prostate cancer[J]. Horm Cancer, 2014, 5(4): 207-217.
[18] Auprich M,Bjartell A,Chun FK,et al. Contemporary role of prostate cancer antigen 3 in the management of prostate cancer[J].Eur Urol,2011,60(5): 1045-1054.
[19] Wang FB,Chen R,Ren SC,et al. Prostate cancer antigen 3 moderately improves diagnostic accuracy in Chinese patients undergoing first prostate biopsy[J]. Asian J Androl,2017,19(2):238-243.
[20] Tan SJ,Xu LW,Xu Z,et al. The value of PHI/PCA3 in the early diagnosis of prostate cancer[J].Zhonghua Yi Xue Za Zhi,2016,96(2):100-103.
[21] Wei W,Leng J,Shao H,et al.High PCA3 scores in urine correlate with poor-prognosis factors in prostate cancer patients[J]. Int J Clin Exp Med,2015,8(9):16606-16612.
[22] Vlaeminck-Guillem V,Devonec M,Champetier D,et al.Urinary PCA3 to predict prostate cancer in a cohort of 1015 patients[J]. Prog Urol,2015,25(16): 1160-1168.
[23] Tsaur I,Hennenlotter J,Oppermann E,et al.PCA3 and PSA gene activity correlates with the true tumor cell burden in prostate cancer lymph node metastases[J]. Cancer Biomark,2015,15(3):311-316.
[24] TomLins SA,Day JR,Lonigro RJ,et al.Urine TMPRSS2:ERG plus PCA3 for individualized prostate cancer risk assessment[J].Eur Urol,2016,70(1):45-53.
[25] Salameh A,Lee AK,Cardo-Vila M,et al.PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3[J]. Proc Natl Acad Sci USA,2015,112(27):8403-8408.
[26] Salagierski M,Verhaegh GW,Jannink SA,et al. Differential expression of PCA3 and its overlapping PRUNE2 transcript in prostate cancer[J].Prostate, 2010,70(1):70-78.
[27] Bourdoumis A,Chrisofos M,Stasinou T,et al. The role of PCA 3 as a prognostic factor in patients with castration-resistant prostate cancer (CRPC) treated with docetaxel[J].Anticancer Res,2015,35(5):3075-3079.
[28] Cornu JN,Cancel-Tassin G,Egrot C,et al. Urine TMPRSS2:ERG fusion transcript integrated with PCA3 score,genotyping,and biological features are correlated to the results of prostatic biopsies in men at risk of prostate cancer[J]. Prostate,2013,73(3):242-249.
[29] Altintas DM,Allioli N,Decaussin M,et al.Differentially expressed androgen-regulated genes in androgen-sensitive tissues reveal potential biomarkers of early prostate cancer[J]. PLoS One,2013,8(6):e66278.
(收稿日期:2019-08-16)