羅興锜,閆思娜,馮建軍,朱國(guó)俊,孫帥輝,陳森林
氣液兩相離心泵受力特性分析
羅興锜,閆思娜,馮建軍,朱國(guó)俊,孫帥輝,陳森林
(西安理工大學(xué)水利水電學(xué)院,西安 710048)
離心泵在氣液兩相流工況運(yùn)行時(shí),葉輪內(nèi)部流動(dòng)極不穩(wěn)定,為了研究葉輪在該工況下的受力情況,該文采用計(jì)算流體動(dòng)力學(xué)的方法對(duì)某一氣液兩相離心泵進(jìn)行了研究?;跉W拉-歐拉非均相流模型及SST湍流模型求解氣液兩相流離心泵的三維湍流流場(chǎng),并將數(shù)值模擬結(jié)果與試驗(yàn)數(shù)據(jù)對(duì)比,兩者吻合較好。通過對(duì)不同含氣率工況下的離心泵瞬態(tài)特性進(jìn)行分析發(fā)現(xiàn),葉輪所受軸向力的大小隨著時(shí)間的變化而波動(dòng),進(jìn)口含氣率達(dá)到3%時(shí),軸向力脈動(dòng)出現(xiàn)明顯的峰值,這些峰值所對(duì)應(yīng)的頻率均為葉輪轉(zhuǎn)頻,隨著進(jìn)口含氣率的增加,出現(xiàn)了2個(gè)及以上的峰值,進(jìn)口含氣率為7%工況的軸向力脈動(dòng)峰值是3%工況的3倍,是5%工況的2倍;葉輪所受徑向力大小及徑向力脈動(dòng)幅值均隨進(jìn)口含氣率的增加呈先增加后減小的趨勢(shì),各工況下徑向力脈動(dòng)峰值所對(duì)應(yīng)的頻率均為葉片轉(zhuǎn)頻的倍數(shù);通過分析進(jìn)口含氣率分別為1%、3%及7%工況下葉輪中間截面的含氣率分布、渦量分布以及靜壓分布可得,葉輪內(nèi)含氣率較高區(qū)域的渦量也較大,而該區(qū)域的壓力分布也不均勻,由此可見,葉輪內(nèi)氣液分布不均導(dǎo)致了葉輪內(nèi)的壓力分布不均,從而使葉輪受力不均。
泵;兩相流;數(shù)值模擬;徑向力;軸向力
離心泵以其高揚(yáng)程、高效率以及結(jié)構(gòu)簡(jiǎn)單等優(yōu)點(diǎn)廣泛應(yīng)用于各個(gè)領(lǐng)域[1-3]。當(dāng)離心泵傳輸工質(zhì)為氣液混合物時(shí),泵的外特性會(huì)發(fā)生改變。Murakami等[4]通過對(duì)氣液兩相流泵進(jìn)行了試驗(yàn)研究證實(shí)了離心泵的傳輸介質(zhì)為氣液兩相流會(huì)使泵的揚(yáng)程降低,同時(shí),作者采用高速攝影技術(shù)來觀察不同工況下葉輪內(nèi)氣泡的變化規(guī)律,并將葉輪內(nèi)的流型分為孤立氣泡流、泡狀流、段塞流以及分離流4類。Lea和Bearden[5]通過試驗(yàn)發(fā)現(xiàn)進(jìn)口壓力、液相流量以及含氣率對(duì)氣液兩相離心泵外特性有很重要的影響,并且指出葉輪內(nèi)氣體聚集造成了泵的揚(yáng)程降低。Barrios和Gamboa[6-7]對(duì)泵進(jìn)行了可視化試驗(yàn),采用高速攝影技術(shù)觀察到葉輪內(nèi)的氣泡尺寸隨著含氣率的升高而增大,隨著泵轉(zhuǎn)速的升高而減小,從而影響泵的外特性。
氣液兩相流動(dòng)不但會(huì)使泵的外特性發(fā)生惡化,還會(huì)造成泵的振動(dòng)和噪音等不穩(wěn)定現(xiàn)象的產(chǎn)生。氣液兩相流泵在實(shí)際運(yùn)行中葉輪受力大小和方向會(huì)隨時(shí)間發(fā)生變化,即會(huì)受到非定常力的作用,這些非定常力直接影響了泵運(yùn)行的穩(wěn)定性。徑向力可以理解為葉輪流場(chǎng)對(duì)葉輪產(chǎn)生的作用力在半徑方向上的分力[8],王洋等[9]和江偉等[10]采用數(shù)值計(jì)算的方法對(duì)離心泵的徑向力特性進(jìn)行了研究,指出變化的徑向力會(huì)使泵的軸承受到交變應(yīng)力的作用,從而泵軸產(chǎn)生定向的撓度,使軸封間隙變得不均勻從而導(dǎo)致泄漏。Barrios[11]通過對(duì)離心泵進(jìn)行機(jī)理研究發(fā)現(xiàn)氣液兩相之間的滑移速度會(huì)造成氣體在葉輪中的聚集,造成葉輪流場(chǎng)及葉片表面的壓力分布不均勻,接著,錢晨等[12]研究了出流條件對(duì)多級(jí)泵徑向力的影響,通過對(duì)內(nèi)流場(chǎng)分析發(fā)現(xiàn)葉輪內(nèi)部荷載分布不均會(huì)導(dǎo)致葉輪受到的徑向力發(fā)生變化。軸向力會(huì)拉動(dòng)葉輪軸向移動(dòng),產(chǎn)生該力的主要因素是葉輪前后蓋板不對(duì)稱及傳輸介質(zhì)對(duì)葉輪的動(dòng)反力[1]。劉瑞祥等[13-15]分別對(duì)離心式泵的軸向力進(jìn)行試驗(yàn)及數(shù)值模擬研究,結(jié)果表明葉輪所受軸向力過大,會(huì)燒毀轉(zhuǎn)動(dòng)軸承并且損壞軸端密封,甚至造成斷軸事故,而非定常軸向力的產(chǎn)生,同樣會(huì)使軸承及軸端密封受到交變應(yīng)力,加快材料的損壞速率。
目前對(duì)氣液兩相流離心泵產(chǎn)生振動(dòng)的研究較少,特別是葉輪受力特性對(duì)泵的影響機(jī)理還不是很明確。國(guó)內(nèi)外很多學(xué)者[16-21]采用CFD技術(shù)研究氣液兩相流泵的外特性,并將數(shù)值模擬結(jié)果與試驗(yàn)結(jié)果進(jìn)行對(duì)比,驗(yàn)證了數(shù)值模擬的準(zhǔn)確性。為此,本文針對(duì)某一氣液兩相離心泵,采用CFD技術(shù)進(jìn)行非定常數(shù)值模擬研究,分析了不同含氣率工況下葉輪所受軸向力和徑向力的大小及脈動(dòng)值的變化、離心泵內(nèi)部流場(chǎng)對(duì)葉輪受力的影響等。
本文選用德國(guó)布倫瑞克工業(yè)大學(xué)的某一離心泵模型[22]進(jìn)行研究,該實(shí)驗(yàn)室公開了該泵的幾何參數(shù)、單相工況以及氣液兩相工況的試驗(yàn)結(jié)果。模型泵為閉式中比轉(zhuǎn)速離心泵,該泵的主要的幾何參數(shù)見表1所示。
表1 離心泵主要參數(shù)
圖1為葉輪0.5倍葉高處的截面圖,葉輪葉片骨線由2段半徑分別為169和270 mm的圓弧組成,在葉片的壓力面和吸力面處各設(shè)置了8個(gè)監(jiān)測(cè)點(diǎn)測(cè)量該布點(diǎn)處的壓力。計(jì)算域由進(jìn)口管、葉輪、環(huán)形室、葉輪間隙以及出口管等5部分組成。該模型采用環(huán)形腔作為離心泵的擴(kuò)壓器,從而避免了葉輪葉片與蝸殼式擴(kuò)壓器的隔舌產(chǎn)生動(dòng)靜干涉。12個(gè)出口管在環(huán)形腔的圓周方向上均勻布置。為了避免葉輪進(jìn)口處回流對(duì)流場(chǎng)預(yù)測(cè)的影響,對(duì)該模型的進(jìn)口管進(jìn)行了加長(zhǎng)處理,延長(zhǎng)至進(jìn)口管直徑的2.5倍[23],此時(shí)進(jìn)口管長(zhǎng)度為520 mm。
注:MP1~8為葉輪葉片吸力面?zhèn)鹊?個(gè)壓力測(cè)點(diǎn),MP1¢~8¢為葉輪葉片壓力面?zhèn)鹊?個(gè)壓力測(cè)點(diǎn)。
圖2為數(shù)值計(jì)算模型的面網(wǎng)格,采用UG軟件對(duì)該計(jì)算模型進(jìn)行三維建模,并采用ICEM軟件對(duì)三維模型的所有部件進(jìn)行結(jié)構(gòu)化網(wǎng)格劃分,并采用局部網(wǎng)格加密技術(shù)對(duì)近壁面區(qū)域及葉片頭部區(qū)域進(jìn)行網(wǎng)格加密以保證數(shù)值計(jì)算的準(zhǔn)確性[24]。
圖2 離心泵計(jì)算域和面網(wǎng)格
離心泵混合揚(yáng)程m定義如下
式中MPPn表示環(huán)形室出口繞圓周方向均布的8個(gè)監(jiān)測(cè)點(diǎn)的總壓(分別取1~8),in表示離心泵進(jìn)口總壓,Pa;g表示進(jìn)口含氣率(inlet gas volume fraction, IGVF),純水工況下,g=0。
為了在保證計(jì)算精度的基礎(chǔ)上節(jié)約計(jì)算資源,本文對(duì)純水工況和氣液兩相工況均進(jìn)行了網(wǎng)格無關(guān)性驗(yàn)證[25],圖3表示純水工況(液相流量l=412 m3/h,=540 r/min,g=0)和氣液兩相流工況(液相流量l=400 m3/h,=540 r/min,g=3%)離心泵的揚(yáng)程隨網(wǎng)格數(shù)的變化曲線(網(wǎng)格數(shù)為離心泵全流道網(wǎng)格數(shù)之和)。由圖3可知,當(dāng)網(wǎng)格數(shù)達(dá)到503萬時(shí)2條曲線趨于穩(wěn)定,波動(dòng)均在1%以內(nèi),故最終選用的網(wǎng)格數(shù)為503萬。
注:IGVF為入口含氣率,%;d0為離心泵進(jìn)口處氣泡直徑,mm。
采用歐拉-歐拉非均相流模型[26-28]來捕捉各相分布及其對(duì)壓力和速度場(chǎng)的影響,該模型考慮了氣液兩相間的滑移速度,能夠準(zhǔn)確地預(yù)測(cè)氣液兩相的流場(chǎng)分布。由于氣液兩相流場(chǎng)湍流強(qiáng)度較強(qiáng),故湍流模型選用SST(剪切應(yīng)力傳輸)模型[29]。
數(shù)值計(jì)算作如下假設(shè):離心泵進(jìn)口段氣液兩相流型為混合均勻的泡狀流;進(jìn)口處所有氣泡為直徑相等的均勻球形,本文稱離心泵進(jìn)口處氣泡直徑為初始?xì)馀葜睆?;離心泵入口處氣液兩相流速分布均勻且相等;氣液兩相均為不可壓縮介質(zhì);氣液兩相之間互不溶解;壁面水力光滑且無滑移。
邊界條件設(shè)置:1)進(jìn)口設(shè)置:總壓、初始?xì)馀葜睆?、進(jìn)口含氣率g;2)出口處設(shè)置質(zhì)量流量,每一個(gè)工況對(duì)應(yīng)不同的質(zhì)量流量;3)葉輪出口與擴(kuò)壓器進(jìn)口的動(dòng)靜交界面采用凍結(jié)轉(zhuǎn)子的方法。
進(jìn)口含氣率g和進(jìn)口處液相體積分?jǐn)?shù)l如下式所示
式中g(shù)和l分別為氣相和液相流量,m3/h。
在非定常計(jì)算的過程中,將定常計(jì)算結(jié)果作為非定常計(jì)算的初始值。葉輪每旋轉(zhuǎn)3°為一個(gè)時(shí)間步長(zhǎng),旋轉(zhuǎn)一圈需要0.111 s,旋轉(zhuǎn)20圈作為總時(shí)間步長(zhǎng),選取最后5圈的數(shù)值模擬結(jié)果進(jìn)行分析。
液相流量l=400 m3/h時(shí),該模型泵數(shù)值模擬結(jié)果與試驗(yàn)結(jié)果外特性對(duì)比見表2所示。
由表2可知,數(shù)值模擬結(jié)果與試驗(yàn)結(jié)果的誤差均在2%以內(nèi),由此可見,本文選用的數(shù)值模型具有一定的準(zhǔn)確性,為了進(jìn)一步驗(yàn)證氣液兩相流工況數(shù)值模擬的準(zhǔn)確性,在氣液兩相流工況(液相流量l=400 m3/h,g=3%)下將模型泵葉片中間截面上壓力分布的數(shù)值模擬結(jié)果與試驗(yàn)數(shù)據(jù)[22]進(jìn)行對(duì)比,結(jié)果如圖4所示。數(shù)值模擬結(jié)果與試驗(yàn)得到的葉片正背面壓力分布規(guī)律基本一致,而葉片頭部和尾部位置的誤差較大,這可能是造成表2中數(shù)值模擬與試驗(yàn)結(jié)果誤差的主要原因。
圖4 50%葉高處葉片表面壓力分布曲線
葉輪在旋轉(zhuǎn)過程中的受力可分解為、、3個(gè)方向的力,和方向的合力即為葉輪所受徑向力r,N;方向的力即為葉輪所受軸向力z,N。各個(gè)方向上力的計(jì)算公式[30]如下
式中1表示葉輪進(jìn)口過流斷面面積,m2;F、F分別表示葉輪在、方向的受力,N;V為流體質(zhì)點(diǎn)的徑向速度,m/s;V與V分別表示流體質(zhì)點(diǎn)在、方向的分速度,m/s;為葉輪旋轉(zhuǎn)角速度,rad/s;為流體質(zhì)點(diǎn)初始角度,(°);為時(shí)間,s;為壓力,Pa。第二項(xiàng)代表葉輪進(jìn)出口產(chǎn)生的壓力,第三項(xiàng)代表葉輪內(nèi)部流體動(dòng)量變化引起的力,括號(hào)里面的項(xiàng)代表葉輪的動(dòng)量通量。
無量綱參數(shù)便于對(duì)不同監(jiān)測(cè)點(diǎn)或不同工況的某一參數(shù)進(jìn)行比較,因此本文引入無量綱參數(shù)C來反應(yīng)力的脈動(dòng)幅度(分別取和),其中C為軸向力脈動(dòng)系數(shù),C為徑向力脈動(dòng)系數(shù),該參數(shù)的值越大,說明該力的波動(dòng)幅度越大。C的計(jì)算公式如下
式中ΔF為葉輪瞬時(shí)受力與平均受力之差,2表示葉輪出口過流斷面面積,m2;為葉輪出口圓周速度,m/s;為流體密度,kg/m3;為葉輪出口直徑,m。
液相流量不變(l=400 m3/h),對(duì)模型泵在純水工況及進(jìn)口含氣率分別為1%、3%、5%及7%氣液兩相流工況進(jìn)行非定常計(jì)算。
3.2.1 軸向力的分析
圖5為不同工況下非定常計(jì)算收斂后,葉輪旋轉(zhuǎn)一周所受軸向力的平均值。由圖5可知,各個(gè)工況下軸向力的方向與進(jìn)口水流方向相同;純水工況,葉輪所受軸向力的大小在200 N左右波動(dòng),氣液兩相工況下其大小在480 N左右波動(dòng),約為純水工況的2.4倍,這是因?yàn)槿~輪所受動(dòng)反力與正向軸向力方向相反其指向葉輪背面,當(dāng)流場(chǎng)中含有氣體時(shí),流場(chǎng)流速的不均勻性增加,主流方向改變,動(dòng)反力快速增加,導(dǎo)致葉輪所受總軸向力加大。由此可見,離心泵傳輸介質(zhì)中含有氣體對(duì)其軸向力影響較大。
圖5 不同工況下的軸向力
為了研究軸向力的非定常特性,對(duì)軸向力脈動(dòng)系數(shù)隨時(shí)間變化的時(shí)域圖進(jìn)行快速傅里葉變換(fast Fourier transform, FFT),得到軸向力脈動(dòng)頻域圖,見圖6所示。
圖6 軸向力脈動(dòng)頻域圖
由圖6可以看出,葉輪所受軸向力的脈動(dòng)幅值隨著進(jìn)口含氣率的增加而增加:純水工況及含氣率較低的工況(g=1%)軸向力脈動(dòng)不明顯,此時(shí),葉輪所受軸向力隨著葉輪的旋轉(zhuǎn)其大小基本不會(huì)發(fā)生變化;進(jìn)口含氣率大于等于3%的工況,軸向力脈動(dòng)系數(shù)開始出現(xiàn)峰值,且隨著含氣率的增加峰值大小也在增大,這些峰值所對(duì)應(yīng)的頻率均為葉輪轉(zhuǎn)頻的倍數(shù);同時(shí),隨著含氣率的增加,氣液兩相流動(dòng)出現(xiàn)氣液分離現(xiàn)象,葉輪流道產(chǎn)生旋渦以及氣塞等現(xiàn)象,這些不穩(wěn)定流動(dòng)會(huì)產(chǎn)生低頻脈動(dòng),使得進(jìn)口含氣率為5%和7%工況出現(xiàn)了2個(gè)及以上峰值;7%工況的軸向力脈動(dòng)系數(shù)的最大值是3%工況的3倍,是5%工況的2倍。由此可見,離心泵在氣液兩相工況下運(yùn)行時(shí),葉輪所受軸向力會(huì)在某些頻率下產(chǎn)生幅值較大的脈動(dòng),且該脈動(dòng)幅值大小隨著含氣率的增加呈倍數(shù)增加。
3.2.2 徑向力分析
為了直觀地反映葉輪所受徑向力隨時(shí)間的變化規(guī)律,非定常計(jì)算穩(wěn)定后,取葉輪旋轉(zhuǎn)一周的參數(shù)作如圖7所示的徑向力矢量分布,圖中曲線上點(diǎn)的坐標(biāo)代表旋轉(zhuǎn)時(shí)某一瞬時(shí)徑向力的大小和方向。由圖7可知,進(jìn)口含氣率的改變影響了徑向力的大小和方向。純水工況下葉輪所受徑向力最大,葉輪旋轉(zhuǎn)一周徑向力矢量分布呈橢圓形;進(jìn)口含氣率為1%時(shí),徑向力的大小相對(duì)于純水工減少了30%,其矢量分布還是呈橢圓形;進(jìn)口含氣率大于等于3%的工況,葉輪旋轉(zhuǎn)一周徑向力大小隨時(shí)間變化較劇烈,各個(gè)工況的矢量圖呈不規(guī)則的多邊形分布。
圖8為葉輪旋轉(zhuǎn)一圈的徑向力時(shí)域特性圖,可以看出進(jìn)口含氣率會(huì)影響徑向力的幅值。純水工況及進(jìn)口含氣率為1%的工況下,徑向力曲線呈周期性波動(dòng),出現(xiàn)了5個(gè)波峰和5個(gè)波谷,即為葉輪葉片個(gè)數(shù);進(jìn)口含氣率為3%和5%時(shí),波峰及波谷的幅值不同,且其個(gè)數(shù)與葉片數(shù)不同;進(jìn)口含氣率為7%時(shí),徑向力曲線又出現(xiàn)了5個(gè)波峰和5個(gè)波谷。進(jìn)口含氣率為1%工況的徑向力幅值最小,其次是純水工況,進(jìn)口含氣率為3%和5%工況的徑向力幅值最大。Murakami等[31]指出少量氣泡的存在會(huì)增大流速的不均勻性,促使主流方向發(fā)生改變,葉輪內(nèi)部流體質(zhì)點(diǎn)的徑向速度也發(fā)生改變,使得徑向力幅值低于純水工況。徑向力幅值變化的主要原因是葉輪中的流型分布引起的,進(jìn)口含氣率為1%的工況下,葉輪中的氣泡為孤立的泡狀流,此時(shí)流場(chǎng)分布較均勻;進(jìn)口含氣率為3%和5%的工況下,流型為由一些小氣泡聚合而成的不穩(wěn)定氣囊狀流,這些氣囊會(huì)不斷地破裂或者聚合;隨著進(jìn)口含氣率增加至7%時(shí),氣囊越來越大且較穩(wěn)定,占據(jù)了流道的大部分面積。因此,從純水工況到進(jìn)口含氣率為7%的工況,葉輪流場(chǎng)經(jīng)歷了一個(gè)由穩(wěn)定到輕微振蕩再到變化劇烈最后再穩(wěn)定的過程,而這個(gè)過程伴隨著徑向力的變化。
圖7 徑向力矢量分布
圖8 徑向力時(shí)域特性
徑向力的脈動(dòng)值可以反映葉輪所受非定常徑向力的大小,因此,對(duì)徑向力系數(shù)隨時(shí)間變化的曲線進(jìn)行快速傅里葉變換(FFT),得到徑向力脈動(dòng)頻域圖,見圖9所示。由圖9可以看出含氣率對(duì)葉輪徑向力脈動(dòng)影響較大:純水工況、含氣率為1%和7%的工況徑向力脈動(dòng)僅出現(xiàn)了1個(gè)峰值,徑向力脈動(dòng)系數(shù)分別為0.018 34、0.011 4以及0.029 31,其脈動(dòng)峰值所對(duì)應(yīng)的頻率均為葉片轉(zhuǎn)頻,進(jìn)口含氣率為7%工況的徑向力系數(shù)峰值是純水工況的1.6倍,是進(jìn)口含氣率為1%工況的2.6倍,這是由于含氣率達(dá)到7%時(shí),葉輪流道中的氣泡聚集形成一個(gè)大的氣囊,見圖10a,該氣囊會(huì)對(duì)流場(chǎng)造成擾動(dòng),擾動(dòng)頻率即為葉輪葉片的通過頻率。含氣率為3%的工況出現(xiàn)了2個(gè)峰值,主頻對(duì)應(yīng)的峰值為0.097 22,主頻為2倍的葉輪頻率,次主頻對(duì)應(yīng)的峰值為0.062 36,次主頻為5倍的葉輪轉(zhuǎn)頻;同樣地,含氣率為5%的工況也出現(xiàn)了2個(gè)峰值,主頻對(duì)應(yīng)的峰值為0.110 59,主頻為3倍的葉輪頻率,次主頻對(duì)應(yīng)的峰值為0.069 99,次主頻為5倍的葉輪轉(zhuǎn)頻。
3.2.3 葉輪內(nèi)流場(chǎng)分布
由于葉輪流道內(nèi)壓力分布是否均勻直接影響了葉輪的受力,因此,接下來分析了含氣率分布和渦量分布對(duì)壓力分布的影響,渦量是流體速度矢量的旋度,流體渦量的絕對(duì)值越大,其能量耗散越大。圖10為=0.1s時(shí)不同含氣率工況下葉輪中間截面的含氣率分布、渦量分布以及壓力分布瞬時(shí)值的對(duì)比。
圖9 徑向力脈動(dòng)系數(shù)頻域特性
圖10 氣液兩相工況下葉輪中間截面的內(nèi)流場(chǎng)分布
由圖10可以看出,葉輪內(nèi)含氣率分布規(guī)律與渦量分布規(guī)律基本一致:進(jìn)口含氣率為1%的工況下,葉輪流道中既沒有氣體聚集區(qū)也沒有渦量較大區(qū);進(jìn)口含氣率為3%的工況下,葉輪流道氣體開始聚集,同時(shí)氣體聚集區(qū)的渦量較大,可以看出該渦量較大區(qū)域是以氣體聚集區(qū)向外擴(kuò)散形成的;進(jìn)口含氣率為7%的工況下,氣體聚集面積以葉片壓力面頭部為核心進(jìn)一步擴(kuò)大,流道中渦量較大區(qū)域與之相對(duì)應(yīng),同樣是以葉片壓力面頭部為核心,向葉輪流道及出口擴(kuò)散,見圖10a和10b所示。同時(shí),含氣率和渦量大小會(huì)對(duì)壓力分布產(chǎn)生影響,在圖10c中,進(jìn)口含氣率為1%工況,葉輪從進(jìn)口到出口,壓力均勻增加,流線方向上的壓力梯度為正,隨著進(jìn)口含氣率的增加,壓力梯度開始不均勻,特別是在進(jìn)口含氣率為7%的工況,局部壓力梯度出現(xiàn)了負(fù)值。
1)通過泵模型氣液兩相工況外特性和葉片表面壓力分布的數(shù)值模擬結(jié)果與試驗(yàn)數(shù)據(jù)對(duì)比發(fā)現(xiàn)兩者吻合性較好,驗(yàn)證了氣液兩相流數(shù)值模擬的準(zhǔn)確性。
2)氣液兩相介質(zhì)對(duì)離心泵軸向力大小及脈動(dòng)影響較大。氣液兩相流工況葉輪所受軸向力超過純水工況的2倍,隨著進(jìn)口含氣率的增加,軸向力脈動(dòng)幅值呈倍數(shù)增加,同時(shí)出現(xiàn)一些低頻脈動(dòng)。
3)氣液兩相介質(zhì)對(duì)離心泵徑向力影響明顯,純水工況下葉輪所受徑向力大于氣液兩相工況,由于氣泡的存在,內(nèi)流場(chǎng)分布不均,葉輪所受徑向力波動(dòng)峰值呈先增加后降低的趨勢(shì)。
4)葉輪內(nèi)渦量分布規(guī)律受氣液分布影響較大。氣液兩相氣體聚集區(qū)域的渦量較大,導(dǎo)致葉輪內(nèi)壓力梯度分布不均,從而使葉輪受力不均。
[1]關(guān)醒凡. 現(xiàn)代泵理論與設(shè)計(jì)[M]. 北京:中國(guó)宇航出版社, 2011.
[2]江偉,陳帝伊,秦鈺祺,等. 半高導(dǎo)葉端面間隙對(duì)離心泵水力性能影響的數(shù)值模擬與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(17):73-81.
Jiang Wei, Chen Diyi, Qin Yuqi, et al. Numerical simulation and validation of influence of end clearance in half vane diffuser on hydraulic performance for centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(17): 73-81. (in Chinese with English abstract)
[3]司喬瑞,崔強(qiáng)磊,袁壽其,等. 氣液兩相條件下進(jìn)口含氣率對(duì)離心泵相似定律的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(2):107-112.
Si Qiaorui, Cui Qianglei, Yuan Shouqi, et al. Influence of inlet gas volume fraction on similarity law in centrifugal pumps under gas-liquid two-phase condition[J]. Transaction of the Chinese Society for Agricultural Machinery, 2018, 49(2): 107-112. (in Chinese with English abstract)
[4]Murakami M, Minemura K. Effects of entrained air on the performance of a centrifugal pump(1st report, Performance and flow conditions)[J]. Bulletin of the JSME, 1974, 17(110): 1047-1055.
[5]Lea J F, Bearden J L. Effect of gaseous fluids on submersible pump performance[J]. Journal of Petroleum Technology, 1982: 2922-2930.
[6]Barrios L. Visualization and Modeling of Multiphase Performance inside an Electrical Submersible Pump[D]. Tulsa: The University of Tulsa, 2007.
[7]Gamboa J. Prediction of the Transition in Two-Phase Performance of an Electrical Submersible Pump[D]. Tulsa: The University of Tulsa, 2008.
[8]關(guān)醒凡. 現(xiàn)代泵技術(shù)手冊(cè)[M]. 北京:中國(guó)宇航出版社,1995.
[9]王洋,張翔,黎義斌. 離心泵變工況流場(chǎng)分析及徑向力數(shù)值預(yù)測(cè)[J].排灌機(jī)械工程學(xué)報(bào),2008,26(5):18-22.
Wang Yang, Zhang Xiang, Li Yibin. Off-design flow field analysis and radial force prediction of centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2008, 26(5): 18-22. (in Chinese with English abstract)
[10]江偉,李國(guó)君,張新盛,等. 離心泵蝸殼進(jìn)口邊對(duì)葉輪徑向力影響的數(shù)值模擬[J]. 水利學(xué)報(bào),2014,45(2):248-252.
Jiang Wei, Li Guojun, Zhang Xinsheng, et al. Numerical simulation of radial force on impeller in a centrifugal pump with different volute inlet edges[J]. Journal of Hydraulic Engineering, 2014, 45(2): 248-252. (in Chinese with English abstract)
[11]Barrios L, Prado M G, Kenyery F. CFD modeling inside an electrical submersible pump[J]. ASME, 2009: 1-13.
[12]錢晨,楊從新. 高壓端出流條件對(duì)多級(jí)泵徑向力的影響[J]. 西安交通大學(xué)學(xué)報(bào),2019,53(1):106-113.
Qian Chen, Yang Congxin. Influence of high pressure side outflow condition on radial force in multistage pump[J]. Journal of Xi'an Jiao tong University, 2019, 53(1): 106-113. (in Chinese with English abstract)
[13]劉瑞祥,曹蕾,張弋揚(yáng),等. 考慮軸向間隙影響的挖泥泵軸向力數(shù)值分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(18):101-108.
Liu Ruixiang, Cao Lei, Zhang Yiyang, et al. Numerical analysis of axial force on dredging pump considering influence of axial clearance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 101-108. (in Chinese with English abstract)
[14]李彩虹,薛志寬,李紅. 葉輪前蓋板與泵體軸向間隙對(duì)軸向力的影響[J]. 排灌機(jī)械工程學(xué)報(bào),2016,34(4):295-300.
Li Caihong, Xue Zhikuan, Li Hong. Effects of axial clearances between impeller front shroud and pump body on axial force[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(4): 295-300. (in Chinese with English abstract)
[15]周嶺,施衛(wèi)東,陸偉剛,等. 深井離心泵軸向力數(shù)值預(yù)測(cè)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(7):100-103.
Zhou Ling, Shi Weidong, Lu Weigang, et al. Numerical prediction and experiment of axial force on deep-well centrifugal pump[J]. Transaction of the Chinese Society for Agricultural Machinery, 2012, 43(7): 100-103. (in Chinese with English abstract)
[16]孔祥領(lǐng),呂楊,高進(jìn)偉,等. 螺旋軸流式多相泵多級(jí)可壓縮模擬研究[J]. 石油機(jī)械,2016,44(5):77-86.
Kong Xiangling, Lü Yang, Gao Jinwei, et al. Research on multi-stage compressible simulation of helico-axial multiphase pump[J]. China Petroleum Machinery, 2016, 44(5): 77-86. (in Chinese with English abstract)
[17]苗長(zhǎng)山,李增亮,趙新學(xué),等. 多相混輸泵的數(shù)值模擬及與試驗(yàn)結(jié)果對(duì)比[J]. 石油機(jī)械,2007,35(11):1-4.
Miao Changshan, Li Zengliang, Zhao Xinxue, et al. The numerical simulation of multiphase pump and its comparison with the experimental result[J]. China Petroleum Machinery, 2007, 25(11): 1-4. (in Chinese with English abstract)
[18]Barrios L. Modeling two-phase flow inside an electrical submersible pump stage[J]. ASME Journal of Energy Resources Technology, 2011, 133: 1-10.
[19]Jose C. CFD analysis of ESP handling two-phase mixtures[J]. ASME Journal of Energy Resources Technology, 2004, 126: 99-104.
[20]Jose C. Characterization of a centrifugal pump impeller under two-phase flow conditions[J]. Journal of Petroleum Science and Engineering, 2008, 63: 18-22.
[21]袁建平,張克玉,司喬瑞,等. 基于非均相流模型的離心泵氣液兩相流動(dòng)數(shù)值研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(1):89-95.
Yuan Jianping, Zhang Keyu, Si Qiaorui, et al. Numerical investigation of gas-liquid two-phase flow in centrifugal pumps based on inhomogeneous model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1): 89-95. (in Chinese with English abstract)
[22]Kosyna S. Improved Understanding of two phase flow phenomena based on unsteady blade pressure measurements[J]. Journal of Computational and Applied Mechanics, 2001, 2(1): 45-52.
[23]王洋,呂忠斌,曹璞鈺,等. 雙吸泵吸入室擋板的數(shù)值模擬和正交試驗(yàn)[J]. 江蘇大學(xué)學(xué)報(bào):自然科學(xué)版,2014,35(5):525-530.
Wang Yang, Lü Zhongbin, Cao Puyu, et al. Numerical simulation and orthogonal test of baffle in suction chamber of double suction pump[J]. Journal of Jiangsu University: Natural Science Edition, 2014, 35(5): 525-530. (in Chinese with English abstract)
[24]張帆,Martin B,裴吉,等. 側(cè)流道泵葉輪軸徑向間隙內(nèi)流動(dòng)特性數(shù)值模擬與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(10):78-83.
Zhang Fan, Martin B, Pei Ji, et al. Numerical simulation and verification on flow characteristics of impeller axial and radial gaps in side channel pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 78-83. (in Chinese with English abstract)
[25]Ferziger J H. Computational Methods for Fluid Dynamic[M]. Berlin: Springer Berlin Heidelberg, 2002.
[26]郭烈錦. 兩相與多相流動(dòng)力學(xué)[M]. 西安:西安交通大學(xué)出版社,2002.
[27]Zhu Jianjun, Zhu Haiwen, Zhang Jiecheng, et al. A numerical study on flow patterns inside an electrical submersible pump(ESP) and comparison with visualization experiments[J]. Journal of Petroleum and Engineering, 2019, 173: 339-350.
[28]Zhu Jianjun, Zhang Hongquan. A review of experiments and modeling of gas-liquid flow in electrical submersible pumps[J]. Energies, 2018, 11: 1-41.
[29]馮建軍,羅興锜,吳廣寬,等. 間隙流動(dòng)對(duì)混流式水輪機(jī)效率預(yù)測(cè)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(5):53-58.
Feng Jianjun, Luo Xingqi, Wu Guangkuan, et al. Influence of clearance flow on efficiency prediction of francis turbines[J]. Transactions of the Chinese society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 53-58. (in Chinese with English abstract)
[30]Zhangm T. Unsteady hydrodynamic forces due to rotor-stator interaction on a diffuser pump with identical number of vanes on the impeller and diffuser[J]. Journal of Fluids Engineering, 2005, 127(4): 743-751.
[31]Murakami M, Minemura K. Effects of entrained air on the performance of a centrifugal pump (2st report, Effects of number of blades)[J]. Bulletin of the JSME, 1974, 17(112): 1286-1295.
Force characteristics of gas-liquid two-phase centrifugal pump
Luo Xingqi, Yan Sina, Feng Jianjun, Zhu Guojun, Sun Shuaihui, Chen Senlin
(710048)
Centrifugal pumps are widely used in various fields because of their high head, high efficiency and simple structure. It will be accompanied by instability phenomena, such as vibration and noise, when a centrifugal pump is operated at gas-liquid two-phase conditions. Uneven force on impeller is an important reason for these unstable phenomena of pump. The variable radial force will make the bearing of pump subject to alternating stress and produce directional deflection of pump shaft, so that the clearances of seal become uneven, leading to leakage.The impeller is also moved axially by axial force. Therefore, it is very important to study the force acting on gas-liquid two-phase centrifugal pump. In this study, a gas-liquid two-phase centrifugal pump was studied by computational fluid dynamics (CFD) to analyze the unsteady force characteristics. The CFX-18.0 was used to solve the three-dimensional turbulent flow field of the gas-liquid two-phase centrifugal pump. The inhomogeneous Eulerian-Eulerian two-fluid model was used to capture the distribution of each phase and its influence on the pressure and velocity fields. The SST (Shear Stress Transmission) model was adopted as turbulence model in the process of numerical simulation. The transient characteristics of the pump under different gas volume fraction conditions were studied. The results showed that the numerical simulation results were coincident with the experimental data. IGVF affected the magnitude of the axial force. The magnitude of axial force at gas-liquid two-phase flow conditions was 2.4 times that of water single-phase flow condition. Under gas-liquid two-phase conditions, the unsteady axial force acting on the impeller was produced a large amplitude fluctuation under some frequency. And the magnitude of the amplitude was increased exponentially with the increase of the IGVF. IGVF had a great influence on the magnitude and direction of radial force. Under water single-phase condition, the magnitude of the radial force on the impeller was the largest, and the direction of radial force on the impeller's rotating circle distributed in an elliptical shape. Under gas-liquid two-phase condition, the impeller radial force magnitude changed dramatically, and the vector diagram of each working condition had an irregular polygonal distribution. IGVF affected the number of radial force fluctuation period. There were 5 wave peaks and troughs of periodic fluctuation for one impeller cycle which was the same as the number of impeller blades at the condition of 0, 1% and 7% IGVF, while it was four for the condition of 3% and 5% IGVF. IGVF also affected the radial force fluctuation of impeller. The peak value of radial force coefficient at 7% IGVF was 1.6 times that of 0 IGVF and 2.6 times that of 1% IGVF. IGVF affected the gas liquid two phase flow pattern. It was isolated bubble flow at the 1% IGVF, the flow pattern was unstable gas-pocket formed by the aggregation of some small bubbles under the3% and 5% IGVF, and the gas-pocket becomed large and more stable which occupying most of the area of the flow channel as IGVF increased to 7%. Therefore, the impeller flow field had undergone a process from stability to slight oscillation, then to drastic change and finally to stability as IGVF increased from 0 to 7%, which was accompanied by the change of radial force. In addition, the distribution law of vorticity in impeller was consistent with that of gas-liquid two-phase distribution. The large vorticity in gas accumulation area resulted in uneven pressure gradient distribution in impeller and uneven force distribution in impeller.
Pumps; two-phase flow; numerical simulation; radial force; axial force
羅興锜,閆思娜,馮建軍,朱國(guó)俊,孫帥輝,陳森林. 氣液兩相離心泵受力特性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(23):66-72.doi:10.11975/j.issn.1002-6819.2019.23.008 http://www.tcsae.org
Luo Xingqi, Yan Sina, Feng Jianjun, Zhu Guojun, Sun Shuaihui, Chen Senlin. Force characteristics of gas-liquid two-phase centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 66-72. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.23.008 http://www.tcsae.org
2019-05-31
2019-10-31
國(guó)家自然科學(xué)基金(51527808, 51679195);陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃(2018JM5102)
羅興锜,教授,博士生導(dǎo)師,研究方向?yàn)榱黧w機(jī)械流動(dòng)理論及優(yōu)化設(shè)計(jì)。Email:luoxq@xaut.edu.cn
10.11975/j.issn.1002-6819.2019.23.008
TH311
A
1002-6819(2019)-23-0066-07
農(nóng)業(yè)工程學(xué)報(bào)2019年23期