• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      秸稈還田量對(duì)土壤團(tuán)聚體有機(jī)碳和玉米產(chǎn)量的影響

      2019-02-21 00:40:34孟慶英鄒洪濤韓艷玉張春峰
      關(guān)鍵詞:田量粒級(jí)土層

      孟慶英,鄒洪濤,韓艷玉,張春峰

      ·農(nóng)業(yè)水土工程·

      秸稈還田量對(duì)土壤團(tuán)聚體有機(jī)碳和玉米產(chǎn)量的影響

      孟慶英1,2,3,4,鄒洪濤1,2,3※,韓艷玉1,2,3,張春峰4

      (1. 沈陽(yáng)農(nóng)業(yè)大學(xué)土地與環(huán)境學(xué)院,沈陽(yáng) 110866;2. 農(nóng)業(yè)部東北耕地保育重點(diǎn)實(shí)驗(yàn)室,沈陽(yáng) 110866;3. 土肥資源高效利用國(guó)家工程實(shí)驗(yàn)室,沈陽(yáng) 110866;4. 黑龍江省農(nóng)業(yè)科學(xué)院佳木斯分院,佳木斯 154000)

      為明確秸稈深還田對(duì)土壤團(tuán)聚體及有機(jī)碳和作物產(chǎn)量的影響,在遼寧省半干旱地區(qū)進(jìn)行了6年秸稈深還田小區(qū)定位試驗(yàn),秸稈施用量分別為0(CK)、6 000 kg/hm2(T1)、12 000 kg/hm2(T2)、18 000 kg/hm2(T3)、24 000 kg/hm2(T4),將秸稈還入>20~40 cm土壤亞表層,利用干篩、濕篩得到不同粒級(jí)土壤團(tuán)聚體。結(jié)果表明:秸稈添加與CK比可降低土壤0~20 cm和>20~40 cm土層土壤容重;土壤機(jī)械性團(tuán)聚體主要集中在>0.25 mm粒級(jí),而水穩(wěn)性團(tuán)聚體主要集中在<0.25 mm粒級(jí),與CK處理比秸稈的添加增加了土壤機(jī)械穩(wěn)定性團(tuán)聚體平均重量直徑(MWD)和土壤水穩(wěn)性團(tuán)聚體MWD,隨秸稈還田量增加,MWD值增大;秸稈深還田使各粒級(jí)團(tuán)聚體有機(jī)碳均高于CK,對(duì)>20~40 cm土層土壤團(tuán)聚體碳含量的影響大于0~20 cm土層;秸稈深還田可增加玉米產(chǎn)量,隨秸稈還田時(shí)間延長(zhǎng),不同秸稈還田量對(duì)玉米產(chǎn)量增加存在差異,2016年玉米產(chǎn)量測(cè)定結(jié)果各處理與CK比,T1增產(chǎn)4.66%、T2增產(chǎn)6.71%,T3增產(chǎn)5.37%、T4增產(chǎn)8.82%。秸稈深還田,能夠提升土壤團(tuán)聚體的穩(wěn)定性,有利于增加土壤團(tuán)聚體碳含量,對(duì)土壤質(zhì)量和玉米產(chǎn)量的提高具有促進(jìn)作用。

      有機(jī)碳;團(tuán)聚體;秸稈還田;玉米

      0 引 言

      東北三省是中國(guó)第一大糧食主產(chǎn)區(qū),2018年,東北三省糧食產(chǎn)量達(dá)到1 333億kg,約占全國(guó)糧食總產(chǎn)量的20.3%[1],由此產(chǎn)生的農(nóng)作物秸稈量巨大。農(nóng)作物秸稈作為一種重要的生物質(zhì)資源,其再利用途徑多種多樣[2-4]。國(guó)內(nèi)外眾多研究中,秸稈直接還田成為秸稈主要利用途徑[2-4]。由于農(nóng)作物秸稈是農(nóng)業(yè)生態(tài)循環(huán)重要物質(zhì)基礎(chǔ),秸稈還田后可改善土壤水、肥、氣、熱狀況,對(duì)土壤質(zhì)量及作物增產(chǎn)具有積極意義,秸稈還田可顯著增加土壤有機(jī)碳12.8%[2-4]。隨著中國(guó)立法嚴(yán)禁秸稈焚燒[5],秸稈直接還田方式主要有秸稈覆蓋還田、秸稈耕層還田以及秸稈深還田。秸稈覆蓋還田容易造成地表溫度降低,不利于作物出苗并造成出苗延遲[6-7]。秸稈耕層還田是指秋收后利用旋耕機(jī)將秸稈破碎后旋到土壤耕層中,由于秸稈破碎程度不好,與土壤接觸不良,易造成漏風(fēng)跑墑的現(xiàn)象,影響下一年播種[8-9]。上述2種秸稈還田方式還存在秸稈腐解速度滿、礦化養(yǎng)分不能及時(shí)被當(dāng)季作物利用、易發(fā)生病蟲害等問(wèn)題[10-11]。秸稈深還田,是指將農(nóng)作物秸稈施入土壤亞表層(>20~40 cm),這種秸稈還田方式可降低土壤容重,增加土壤孔隙度,改善土壤持水特性,提高土壤水分利用效率,有利于土壤亞表層有機(jī)質(zhì)積累,對(duì)作物增產(chǎn)也具有重要促進(jìn)作用[8-11]。

      土壤團(tuán)聚體作為土壤結(jié)構(gòu)的最小功能單元和物理基礎(chǔ),是評(píng)價(jià)土壤結(jié)構(gòu)質(zhì)量的重要指標(biāo),其動(dòng)態(tài)變化是對(duì)土壤結(jié)構(gòu)和土壤理化、生物特性及其生態(tài)功能的綜合反映[12-13]。土壤團(tuán)聚體間的孔隙不但影響土壤中水分的存儲(chǔ)和運(yùn)輸,而且影響著土壤生物活性及作物生長(zhǎng)[14]。土壤團(tuán)聚體穩(wěn)定性是一項(xiàng)重要的土壤特性,影響土壤的可持續(xù)性,土壤的生產(chǎn)力及農(nóng)作物生長(zhǎng)[15-17]。土壤團(tuán)聚體的形成及穩(wěn)定性受土地利用方式、耕作方式、種植作物、有機(jī)物料和肥料輸入等的影響[18-20]。大量研究表明秸稈還田對(duì)土壤團(tuán)聚體固碳具有促進(jìn)作用,秸稈還田對(duì)土壤團(tuán)聚體的影響受秸稈還田方式,秸稈質(zhì)量和數(shù)量的影響[21],易分解的秸稈對(duì)土壤微生物區(qū)系,土壤酶活性有快速刺激作用,為土壤提供有機(jī)質(zhì)的同時(shí)對(duì)團(tuán)聚體的形成及穩(wěn)定性具有增加作用[22-23]。土壤團(tuán)聚體是土壤有機(jī)碳的重要貯存場(chǎng)所,土壤團(tuán)聚體的包被作用可使其內(nèi)部的有機(jī)碳得到物理保護(hù)免受微生物的分解,進(jìn)而對(duì)穩(wěn)定土壤結(jié)構(gòu),保護(hù)土壤有機(jī)碳有著重要作用;相反,土壤有機(jī)碳作為重要的膠結(jié)物質(zhì)能夠增強(qiáng)土粒間的團(tuán)聚性,促進(jìn)團(tuán)聚體的形成[24-25],因此土壤團(tuán)聚體和土壤有機(jī)碳密不可分。

      為明確在遼寧省半干旱地區(qū)秸稈深還田條件下,秸稈還田量對(duì)土壤理化性質(zhì)的影響,本研究將整株玉米秸稈還入土壤亞表層(>20~40 cm),設(shè)置了不同秸稈還田量,探討該模式下,土壤容重,土壤水分,土壤團(tuán)聚體分布特征變化,明確對(duì)土壤團(tuán)聚體有機(jī)碳含量和玉米產(chǎn)量的影響,以期為該地區(qū)秸稈深還田條件下,秸稈合理高效利用,改善土壤質(zhì)量,提高作物產(chǎn)量提供理論依據(jù)。

      1 材料方法

      1.1 研究區(qū)概況

      試驗(yàn)于2011-2016年在遼寧省凌源市農(nóng)業(yè)技術(shù)推廣中心試驗(yàn)田進(jìn)行,凌源市地處溫帶大陸性季風(fēng)氣候區(qū),干燥寒冷期長(zhǎng),春秋季風(fēng)大,雨量集中,日照充足,四季分明。凌源境內(nèi)年平均氣溫8.7 ℃,年平均降水量為479.4 mm,年平均日照時(shí)數(shù)為2 748.1 h,無(wú)霜期長(zhǎng)達(dá)130~160 d。

      試驗(yàn)區(qū)土壤類型為褐土,土壤基本理化性質(zhì)為:有機(jī)碳9.60 g/kg,全氮1.17 g/kg,pH值7.79,容重1.36 g/cm3。

      1.2 試驗(yàn)設(shè)計(jì)

      試驗(yàn)于2011年秋開始,田間小區(qū)試驗(yàn),采用人工開溝,溝為梯形,上底寬為60 cm,下底寬為40 cm,溝深40 cm,將風(fēng)干玉米秸稈打捆,要求兩端粗細(xì)均勻,捆扎繩使用可降解的麻類或草類材料。土地深開溝后,將其整稈(玉米秸稈包括葉片,莖稈2部分)全部埋入,合壟。按照C∶N=25∶1增施氮素肥料。試驗(yàn)共設(shè)5個(gè)處理:處理1到處理5的秸稈施用量分別為0、6 000、12 000、18 000、24 000 kg/hm2。分別用CK、T1、T2、T3、T4 表示。試驗(yàn)采取隨機(jī)區(qū)組設(shè)計(jì),每小區(qū)面積24 m2,每個(gè)處理設(shè)3次重復(fù)。2012年春采用大壟雙行的方式在壟臺(tái)播種玉米,2013年秋,2015年秋在上一次未埋入秸稈位置再進(jìn)行秸稈深還田,還田量如上。供試玉米品種為鄭單958,密度6.75萬(wàn)株/hm2。肥料用量∶純氮(N)225.0 kg/hm2,純磷(P2O5)75.0 kg/hm2,純鉀(K2O)120.0 kg/hm2。

      1.3 樣品采集與分析

      1.3.1 土壤樣品采集

      于2016年秋,玉米收獲后采集土壤樣品,樣品采集方法:每個(gè)處理分0~20 cm(表層)和20~40 cm(亞表層)2個(gè)土壤深度進(jìn)行取樣,每個(gè)小區(qū)隨機(jī)選取3點(diǎn),采集原狀土放入取樣盒,在采集和運(yùn)輸過(guò)程中減少對(duì)土壤樣品的擾動(dòng),減少對(duì)土壤團(tuán)聚體的破壞。

      1.3.2 測(cè)定方法

      土壤容重:環(huán)刀法,采用容積為100 cm3的環(huán)刀分層取原狀土土樣,每小區(qū)取樣層次為0~20,>20~40 cm;土壤機(jī)械穩(wěn)定性團(tuán)聚體有機(jī)碳采用元素分析儀(Vario EL Ⅲ,德國(guó))測(cè)定。

      土壤機(jī)械穩(wěn)定性團(tuán)聚體分級(jí)采用干篩法(采用震蕩篩分儀Retsch AS200,德國(guó))。將風(fēng)干后土樣混合均勻,采用四分法取100 g分別通過(guò)2、1、0.5、0.25、0.053 mm的土壤套篩(振幅1.5 mm,時(shí)間3 min),計(jì)算出各級(jí)干篩團(tuán)聚體質(zhì)量分?jǐn)?shù),并按干篩后所得到的比例配成50 g的風(fēng)干樣品,放入水桶中的套篩以振幅38 mm,時(shí)間30 min在水中篩分。將收集到的團(tuán)聚體用蒸餾水洗入到鋁盒,65 ℃烘干并稱質(zhì)量,用于土壤水穩(wěn)性團(tuán)聚體測(cè)定。

      1.3.3 計(jì)算方法

      不同粒級(jí)團(tuán)聚體的質(zhì)量百分?jǐn)?shù),按(1)式計(jì)算

      式中w為粒級(jí)團(tuán)聚體質(zhì)量百分比,%;W為粒級(jí)團(tuán)聚體質(zhì)量;g。

      平均重量直徑(mean weight diameter, MWD)按BAVEL[26]推導(dǎo)公式計(jì)算。

      1.4 數(shù)據(jù)分析

      采用Excel 2010進(jìn)行數(shù)據(jù)分析,采用SPSS19.0軟件進(jìn)行統(tǒng)計(jì)分析,其中方差分析為單因素方差(One Way-ANOVA),顯著水平為0.05;采用Origin 9.0軟件對(duì)數(shù)據(jù)進(jìn)行繪圖。

      2 結(jié)果與分析

      2.1 秸稈還田量對(duì)土壤容重的影響

      于2016年秋季測(cè)定土壤不同土層容重及含水量,測(cè)定結(jié)果如表1所示,各處理隨土層深度加深土壤容重增大,在0~20、>20~40 cm土層與對(duì)照處理比,各秸稈還田處理土壤容重均低于CK;0~20 cm土層土壤容重各處理分別比CK降低2.11%、4.23%、5.63%和9.15%,T3、T4處理與CK比較差異達(dá)到顯著水平(<0.05);>20~40 cm土層土壤容重各處理比CK分別降低2.76%、6.9%、4.83%和7.59%,除T1處理與CK差異不顯著,其他處理差異均達(dá)到顯著水平(<0.05)。結(jié)果說(shuō)明不同量秸稈添加在一定程度上均可降低單位容積的土體質(zhì)量,從而降低土壤容重,秸稈還田作為保護(hù)性耕作可有效改善土壤容重,對(duì)耕作順利進(jìn)行具有積極作用。

      表1 不同秸稈還田量對(duì)土壤容重的影響

      注:CK、T1、T2、T3和T4分別指秸稈還田量0、6000、12 000、18 000和24 000 kg·hm-2;不同小寫字母表示處理間存在顯著差異(<0.05),下同。

      Note: CK, T1, T2, T3 and T4 represent straw application rate 0, 6000, 12 000, 18 000 and 24 000 kg·hm-2, respectively; Different lowercase letters mean significant among treatments at 0.05 level, the same as blew.

      2.2 秸稈還田量對(duì)土壤團(tuán)聚體的影響

      2.2.1 秸稈還田量對(duì)土壤機(jī)械穩(wěn)定性團(tuán)聚體粒級(jí)分布的影響

      通過(guò)干篩法可以獲得原狀土中各級(jí)機(jī)械穩(wěn)定性團(tuán)聚體百分含量分布,由表2所示,秸稈不同還田量對(duì)土壤機(jī)械穩(wěn)定性團(tuán)聚體分布產(chǎn)生影響:不同處理各土壤機(jī)械穩(wěn)定性團(tuán)聚體粒級(jí)分布基本一致,主要集中分布在>2、>1~2和0.25~1 mm 3個(gè)粒級(jí),<0.25 mm粒級(jí)團(tuán)聚體含量最少;各處理與CK相比顯著提高了2~1 mm機(jī)械性團(tuán)聚體含量(<0.05),0~20 cm土層與CK相比T3處理增幅最大,提高了59.22%;>20~40 cm土層與CK處理相比T2處理增幅最大,提高了31.43%;各處理與CK相比顯著降低了<0.25 mm機(jī)械性團(tuán)聚體含量;分析0~20 cm土層土壤機(jī)械穩(wěn)定性團(tuán)聚體MWD值與CK比添加秸稈各處理MWD值均高于CK;分析20~40 cm土層土壤機(jī)械穩(wěn)定性團(tuán)聚體含量可知,與CK比>2 mm團(tuán)聚體含量均降低,>1~2 mm和1~0.25 mm 2個(gè)粒級(jí)團(tuán)聚體含量增加,<0.25 mm團(tuán)聚體含量降低,隨秸稈添加量的增加,MWD值增加,與CK處理相比T1、T2、T3、T4分別增加了4.85%、13.33%、17.58%、18.18%。

      表2 不同秸稈還田量土壤機(jī)械穩(wěn)定性團(tuán)聚體的組成

      2.2.2 秸稈還田量對(duì)土壤水穩(wěn)性團(tuán)聚體粒級(jí)分布的影響

      通過(guò)濕篩法獲得土壤中水穩(wěn)性團(tuán)聚體的百分含量分布,表3所示,水穩(wěn)性團(tuán)聚體分布主要集中<0.25 mm粒級(jí),其次1~0.25 mm,在>2 mm和>1~2 mm粒級(jí)含量較少,尤其是> 2 mm粒級(jí)含量最少。分析各土層水穩(wěn)性團(tuán)聚體百分含量分布可以看出在各處理>2 mm的水穩(wěn)性大團(tuán)聚體所占比重較小,且隨秸稈添加量增加,>2 mm水穩(wěn)性團(tuán)聚體數(shù)量增加。0~20 cm 土層>2 mm團(tuán)聚體含量,T2、T3、T4處理分別比CK高34.55%、59.12%、93.43%;20~40 cm土層>2 mm團(tuán)聚體含量,T2、T3、T4處理分別比CK高3.98%、78.32%、69.91%;<0.25 mm團(tuán)聚體含量與CK處理比隨秸稈添加量增加而減小,0~20 cm土層除T1處理其他處理與CK相比差異達(dá)到顯著水平(<0.05);>20~40 cm土層,T3、T4處理與CK處理差異達(dá)到顯著水平(<0.05);>2 mm、>1~2 mm、1~0.25 mm,水穩(wěn)性團(tuán)聚體總量與CK處理比各處理0~20 cm土層分別提高了33.73%、39.92%、36.20%,>20~40 cm土層分別提高了8.37%、24.18%、32.39%;>0.25 mm水穩(wěn)性團(tuán)聚體數(shù)量直接影響MWD,秸稈添加各處理土壤水穩(wěn)性團(tuán)聚體的MWD值高于CK,隨秸稈添加量增加土壤水穩(wěn)性團(tuán)聚體的MWD值增加,0~20 cm土層水穩(wěn)性團(tuán)聚體MWD與CK相比分別提高了2.68%、30.86%、36.9%、42.94%,除T1處理其他處理與CK比差異達(dá)到顯著水平(<0.05);>20~40 cm土層水穩(wěn)性團(tuán)聚體MWD與CK相比分別提高了1.89%、5.66%、33.96%、37.74%,T3和T4處理與CK比差異達(dá)到顯著水平(<0.05);各處理機(jī)械穩(wěn)定性團(tuán)聚體MWD值高于水穩(wěn)性團(tuán)聚體MWD值。產(chǎn)生這樣結(jié)果可能是大量非水穩(wěn)性團(tuán)聚體在水分作用條件下分解造成的。

      2.3 秸稈還田量對(duì)土壤團(tuán)聚體有機(jī)碳含量影響

      對(duì)不同處理土壤機(jī)械穩(wěn)定性團(tuán)聚體有機(jī)碳測(cè)定結(jié)果如圖1所示,秸稈還田顯著影響了土壤團(tuán)體碳含量變化。秸稈添加各粒級(jí)團(tuán)聚體有機(jī)碳均高于CK,0~20 cm土層>2 mm團(tuán)聚體各處理比CK分別高出2.95%、2.24%、2.40%、0.66%;2~1 mm團(tuán)聚體各處理比CK分別高出6.47%、3.23%、5.51%、1.61%;1~0.25 mm團(tuán)聚體各處理比CK分別高出7.77%、6.29%、6.77%、5.95%;<0.25 mm團(tuán)聚體各處理比CK分別高出10.02%、7.45%、7.34%、11.33%。

      20~40 cm土層>2 mm團(tuán)聚體各處理比CK分別高出0.41%、1.18%、7.11%、19.32%;>1~2 mm團(tuán)聚體各處理比CK分別高出1.72%、5.05%、13.46%、41.50%;1~0.25 mm團(tuán)聚體各處理比CK分別高出3.14%、6.26%、15.59%、46.23%;<0.25 mm團(tuán)聚體各處理比CK分別高出11.11%、12.75%、18.92%、49.08%。秸稈深層還田,促進(jìn)土壤團(tuán)聚體碳含量升高,對(duì)20~40 cm土層土壤團(tuán)聚體碳含量影響高于對(duì)0~20 cm土層影響。

      2.4 秸稈還田量對(duì)玉米產(chǎn)量影響

      2012-2016年玉米測(cè)產(chǎn)結(jié)果表明(表4),各處理產(chǎn)量2012年為T2>T1>T3>T4>CK,2016年為T4>T1>T2>T3>CK,2012-2016年玉米產(chǎn)量結(jié)果表明秸稈深還田對(duì)玉米增產(chǎn)有促進(jìn)作用,且2012,2016年與CK相比玉米增產(chǎn)達(dá)到顯著水平(<0.05)。試驗(yàn)初期,與CK相比玉米產(chǎn)量增幅較高處理為秸稈還田量低處理,隨試驗(yàn)時(shí)間延長(zhǎng),產(chǎn)量增幅發(fā)生變化,秸稈還田量高處理增產(chǎn)幅度增加,考慮農(nóng)業(yè)生產(chǎn)實(shí)際情況,T2處理秸稈還田量與實(shí)際農(nóng)業(yè)1 hm2秸稈產(chǎn)量較相符,因此在生產(chǎn)中推薦12 000 kg/hm2秸稈還田量。

      表4 2012-2016年不同秸稈還田量對(duì)玉米產(chǎn)量的影響

      3 討 論

      秸稈直接還田是農(nóng)作物秸稈綜合利用最主要的途徑,對(duì)生態(tài)環(huán)境和農(nóng)業(yè)可持續(xù)發(fā)展具有積極意義。本研究結(jié)果表明,秸稈不同量深還田對(duì)土壤容重影響顯著,與CK比各處理均降低了土壤容重,這與鄒洪濤等研究結(jié)果較為一致,他研究結(jié)果表明秸稈深還田條件下秸稈施入量越大對(duì)土壤容重和孔隙度影響越強(qiáng),秸稈深還田改善了土壤理化性質(zhì),為作物生長(zhǎng)創(chuàng)造了良好的環(huán)境,作物生產(chǎn)力得到提高[10-11]。王勝楠等[8,17]研究也表明秸稈深還田有效降低土壤容重,增加土壤含水量,使土壤具有良好。

      土壤團(tuán)粒結(jié)構(gòu)是土壤肥力的物質(zhì)基礎(chǔ),是作物優(yōu)質(zhì)高產(chǎn)所必須的土壤條件之一,土壤團(tuán)聚體組成及其基本特性直接決定土壤侵蝕,壓實(shí)、板結(jié)等物理過(guò)程和土壤有機(jī)質(zhì)的周轉(zhuǎn)[28-30]。本研究中秸稈深還田條件下,不同秸稈還田量影響了不同土層、不同粒級(jí)土壤團(tuán)聚體分布比例和穩(wěn)定性。秸稈深還田條件下通過(guò)干篩與濕篩得到土壤團(tuán)聚體分布存在差異,如機(jī)械穩(wěn)定性團(tuán)聚體以>0.25 mm粒級(jí)的大團(tuán)聚體為主,而水穩(wěn)性團(tuán)聚體以<0.25 mm粒級(jí)團(tuán)聚體為主。秸稈的施入促進(jìn)了土壤團(tuán)聚體的形成,各處理土壤團(tuán)聚體的MWD均高于CK,這是由于秸稈在分解過(guò)程中提供了膠結(jié)物,為團(tuán)聚體的形成提供了條件。許多研究表明秸稈還田可以提高土壤團(tuán)聚體團(tuán)聚度[19,28-29]。土壤團(tuán)聚體的穩(wěn)定性關(guān)鍵在于土壤顆粒間的膠結(jié)物質(zhì)的生物穩(wěn)定性,土壤生物通過(guò)對(duì)有機(jī)質(zhì)的周轉(zhuǎn)利用來(lái)提高自身活性,同時(shí)積累難降解有機(jī)碳,包括木質(zhì)素、角質(zhì)、幾丁質(zhì)等有機(jī)膠結(jié)劑是否能被微生物迅速分解利用或徹底分解,是影響團(tuán)聚體生物穩(wěn)定性的重要因素,微生物可以形成三維的、多種的生物膜結(jié)構(gòu)[30],細(xì)胞鑲嵌在生物膜的胞外多糖中,能夠保持更高的穩(wěn)定性和降解能力。有研究表明,秸稈主要通過(guò)真菌菌絲體生長(zhǎng)和其他微生物產(chǎn)生胞外多糖的分解活動(dòng),使土壤顆粒與礦物質(zhì)結(jié)合在一起,許多菌絲體分泌出的膠結(jié)物質(zhì)-多糖類物質(zhì),使微團(tuán)聚體粘結(jié)在一起,進(jìn)而被菌絲體纏繞成穩(wěn)定的大團(tuán)聚體[31]。土壤中團(tuán)聚體有機(jī)碳的穩(wěn)定性與有機(jī)碳的數(shù)量和質(zhì)量,土壤團(tuán)聚結(jié)構(gòu)及土壤黏粒表面性質(zhì),土壤生物自身等因素存在復(fù)雜的相互作用。本研究表明秸稈添加增加了土壤各粒級(jí)團(tuán)聚體有機(jī)碳含量,對(duì)0~20 cm土壤團(tuán)聚體有機(jī)碳含量影響較小,對(duì)>20~40 cm土壤團(tuán)聚體有機(jī)碳含量影響較大,這與譚岑等研究的秸稈深還田條件下土壤養(yǎng)分變化規(guī)律較一致[32]。此外王勝楠等[8]研究表明秸稈深還田后土壤各種形態(tài)有機(jī)碳含量均高于對(duì)照,3 a秸稈深還田表明土壤亞表層(>20~40 cm)土壤有機(jī)碳含量增加,同時(shí)提高了土壤腐殖化程度[33]。崔婷婷等[34]研究表明秸稈還田一方面為土壤提供了外源有機(jī)質(zhì),另一方面這種新鮮的有機(jī)質(zhì)作為團(tuán)聚體形成的膠結(jié)物質(zhì)也促進(jìn)了土壤團(tuán)聚體的形成,促進(jìn)了團(tuán)聚體的穩(wěn)定,大量研究表明,穩(wěn)定的團(tuán)聚體可將更多有機(jī)碳保護(hù)起來(lái),促進(jìn)土壤碳的固定和貯存[35-36]。此外秸稈的添加提供了外源有機(jī)碳和其他營(yíng)養(yǎng)物質(zhì),也為作物生長(zhǎng)提供了養(yǎng)料[37-38]。本研究結(jié)果表明玉米產(chǎn)量與CK比增產(chǎn)幅度明顯。黃毅等[39]認(rèn)為秸稈深還田為根系的生長(zhǎng)提供豐富的養(yǎng)分,從而促進(jìn)了玉米根系生長(zhǎng),使玉米根系數(shù)目增加,分布空間擴(kuò)大直接影響玉米產(chǎn)量。

      4 結(jié) 論

      通過(guò)連續(xù)6 a田間定位試驗(yàn)發(fā)現(xiàn),秸稈深還田有效降低土壤容重,秸稈還田量越大效果越顯著,對(duì)土壤亞表層(>20~40 cm)的影響大于土壤表層(0~20 cm)的影響。秸稈深還田影響土壤團(tuán)聚體結(jié)構(gòu),促進(jìn)了土壤團(tuán)聚體的形成及穩(wěn)定,提高了土壤團(tuán)聚體有機(jī)碳的含量,秸稈深還田顯著增加了玉米產(chǎn)量,考慮生產(chǎn)實(shí)際,5 a產(chǎn)量測(cè)定結(jié)果表明,秸稈施用量12 000 kg/hm2整體上增幅最大,因此在生產(chǎn)中推薦12 000 kg/hm2秸稈還田量,秸稈深還田作為保護(hù)性耕作可有效改善土壤質(zhì)量,對(duì)耕作順利進(jìn)行及作物增產(chǎn)具有積極作用。

      [1]李楠樺. 發(fā)改委:2018年?yáng)|北三省糧食產(chǎn)量達(dá)2666億斤[Z/OL].[2019-01-07].http://finance.people.com.cn/n1/2019/0107/c1004-30507939.html?spm=C73544894212.P59511941341.0.0

      [2]Blanco-Canqui H, Lal R. Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till[J]. Soil & Tillage Research, 2007, 95: 240-254.

      [3]Zhang Peng, Chen Xiaoli, Wei Ting, et al. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China[J]. Soil & Tillage Research, 2016, 160: 65-72.

      [4]Wang Jun, Fu Xin, Zhao Fazhu, et al. Response of soil carbon fractions and dryland maize yield to mulching[J]. Soil Science Society of America Journal, 2018, 82(2): 371-381.

      [5]國(guó)家認(rèn)監(jiān)委. 中華人民共和國(guó)大氣污染防治法[Z/OL]..2017-07-11.http://www.cnca.gov.cn/bsdt/ywzl/flyzcyj/zcfg/201707/t20170711_54705.shtml

      [6]王秋菊,焦峰,劉峰,等. 秸稈粉碎集條深埋機(jī)械還田模式對(duì)玉米生長(zhǎng)及產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(9):153-159.

      Wang Qiuju, Jiao Feng, Liu Feng, et al. Effect of straw pulverization and concentrated deep-buried into field on growth and yield of maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2018, 34(9): 153-159. (in Chinese with English abstract)

      [7]李新華,郭洪海,朱振林,等. 不同秸稈還田模式對(duì)土壤有機(jī)碳及其活性組分的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(9):130-135.

      Li Xinhua, Guo Honghai, Zhu Zhenlin, et al. Effects of different straw return modes on contents of soil organic carbon and fractions of soil active carbon[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2016, 32(9): 130-135. (in Chinese with English abstract)

      [8]王勝楠,鄒洪濤,張玉龍,等. 秸稈集中深還田對(duì)土壤水分特性及有機(jī)碳組分的影響[J]. 水土保持學(xué)報(bào),2015,29(1):154-158.

      Wang Shengnan, Zou Hongtao, Zhang Yulong, et al. Effect of straw deep returning on the soil water features and soil organic carbon components[J]. Journal of Soil and Water Conservation, 2015, 29(1): 154-158. (in Chinese with English abstract)

      [9]朱姝,竇森,關(guān)松,等. 秸稈深還對(duì)土壤團(tuán)聚體中胡敏素結(jié)構(gòu)特征的影響[J]. 土壤學(xué)報(bào),2016,53(1):126-136.

      Zhu Shu, Dou Sen, Guan Song, et al. Effect of corn stover deep incorporation on composition of humin in soil aggregates[J]. Acta Pedologica Sinica, 2016, 53(1): 126-136. (in Chinese with English abstract)

      [10]鄒洪濤,馬迎波,徐萌,等. 遼西半干旱區(qū)秸稈深還田對(duì)土壤含水量、容重及玉米產(chǎn)量的影響[J]. 沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào),2012,43(4):494-497.

      Zou Hongtao, Ma Yingbo, Xu Meng, et al. Effect of corn stalk returning to soil on soil water content, bulk density and corn yields in semiarid area of western Liaoning Province[J]. Journal of Shenyang Agricultural University, 2012, 43(4): 494-497. (in Chinese with English abstract)

      [11]鄒洪濤,王勝楠,閆洪亮,等. 秸稈深還田對(duì)東北半干旱區(qū)土壤結(jié)構(gòu)及水分特征影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,2014,32(2):52-60.

      Zou Hongtao, Wang Shengnan, Yan Honglaing, et al. Effects of straw deep returning on soil structure moisturein semiarid region of Northeast China[J]. Agricultural Research in the Arid Areas, 2014, 32(2): 52-60. (in Chinese with English abstract)

      [12]Six J, Elliott E T, Paustian K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1998, 62: 1367-1377.

      [13]Six J, Elliott ET, Paustian K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture[J]. Soil Biol Biochem, 2000, 32(14): 2099-2103.

      [14]袁晶晶,同延安,盧紹輝,等.生物炭與氮肥配施改善土壤團(tuán)聚體結(jié)構(gòu)提高紅棗產(chǎn)量[J].農(nóng)業(yè)工程學(xué)報(bào),2018,34(3):159-165.

      Yuan Jingjing, Tong Yan’an, Lu Shaohui, et al. Yuan Guojun. Biochar and nitrogen amendments improving soil aggregate structure and jujube yields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 159-165. (in Chinese with English abstract)

      [15]李景,吳會(huì)軍,武雪萍,等. 長(zhǎng)期保護(hù)性耕作提高土壤大團(tuán)聚體含量及團(tuán)聚體有機(jī)碳的作用[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2015,21(2):378-386.

      Li Jing, Wu Huijun, Wu Xueping, et al. Impact of long-term conservation tillage on soil aggregate formation and aggregate organic carboncontents[J]. Journal of Plant Vutrition and Fertilizer, 2015, 21(2): 378-386.(in Chinese with English abstract)

      [16]Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils[J]. European Journal of Soil Science, 1982, 33(2): 141-163.

      [17]Jastrow J D. Soil aggregate formation and the accrual of particulate and mineral associated organic matter[J]. Soil Biological Biochemistry, 1996, 28(4/5): 665-676.

      [18]王麗,李軍,李娟,等. 輪耕與施肥對(duì)渭北旱作玉米田土壤團(tuán)聚體和有機(jī)碳含量的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2014,25(3):759-768.

      Wang Li, Li Jun, Li Juan, et al. Effects of tillage rotation and fertilization on soil aggregates and oranic carbon content in corn field in Weibei Highlang[J]. Chinese Journal of Applied Ecology, 2014, 25(3): 759-768. (in Chinese with English abstract)

      [19]Eynard A, Schumacher T E, Lindstrom M J, et al. Effects of agricultural management systems on soil organic carbon in aggregates of Ustools and Usterts[J]. Soil and Tillage Research, 2005, 81(2): 253-263.

      [20]Besnard E, Chenu C, Balesdent J, et al. Fate of particulate organic matter in soil aggregates during cultivation[J]. European Journal of Soil Science, 2010, 47(4): 495-500.

      [21]孫元宏,高雪瑩,趙興敏,等. 添加玉米秸稈對(duì)白漿土重組有機(jī)碳及團(tuán)聚體組成的影響[J]. 土壤學(xué)報(bào),2017,54(4):1009-1017.

      Sun Yuanhong, Gao Xueying, Zhao Xingmin, et al. Effects of corn stalk incorporation on organic carbon of heavy fraction and composition of soil aggregates in albic soil[J]. Acta Pedologica Sinica, 2017, 54(4): 1009-1017. (in Chinese with English abstract)

      [22]Roldan A, Garcia-Orenes F, Lax A. An incubation experiment to determine factors involving aggregation changes in an arid soil receiving urban refuses[J]. Soil Biol. Biochem, 1994, 26: 1699-1707.

      [23]García-Orenes F, Guerrero C, Roldán A, et al. Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem[J]. Soil Tillage Res, 2010, 109: 110-115.

      [24]Wanedr M M, Boliero G A. Soil qauality assessment of tillage impacts in illionois[J]. Soil Science Society of America Journal, 1999, 63(4): 961-971.

      [25]Eynard A, Schumacher T E, Lindstrom M J, et al. Effects of agricultural management systems on soil organic carbon in aggregates of Ustools and Usterts[J]. Soil and Tillage Research, 2005, 81(2): 253-263.

      [26]Bavel C H M V. Mean weight-diameter of soil aggregates as a statistical index of aggregation[J]. Soil Science Society of America Journal, 1950, 14(C): 20-23.

      [27]張帥,孔德剛,常曉慧,等. 秸稈深施對(duì)土壤蓄水能力的影響[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2010,41(6):127-129.

      Zhang Shuai, Kong Degang, Chang Xiaohui, et al. Effect of straw deep application on soil water storage capacity[J]. Journal of northeast Agricultural University, 2010, 41(6): 127-129. (in Chinese with English abstract)

      [28]張迪,姜佰文,梁世鵬,等. 草甸黑土團(tuán)聚體穩(wěn)定性對(duì)耕作與炭基肥施用的響應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(14):125-132.

      Zhang Di, Jiang Baiwen, Liang Shipeng, et al. Responsive of aggregate stability of meadow black soil to different tillage practices and carbon-based fertilizers[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 125-132. (in Chinese with English abstract)

      [29]蘇思慧,王美佳,張文可,等. 耕作方式與玉米秸稈條帶還田對(duì)土壤水穩(wěn)性團(tuán)聚體和有機(jī)碳分布的影響[J]. 土壤通報(bào),2018,49(4):841-847.

      Su Sihui, Wang Meijia, Zhang Wenke, et al. Effects of tillage practices and maize straw incorporation on water-stable aggregates and organic carbon[J]. Chinese Journal of Soil Science, 2018, 49(4): 841-847. (in Chinese with English abstract)

      [30]Webb J S, G Ivskov M, K Jelleberg S. Bacterial biofilms prokaryotic adventures in multicellularity[J]. Current Opinion in Microbiology, 2003, 6(6): 578-585.

      [31]Jastrow J D. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter[J]. Soil Biology and Biochemistry, 1996, 28(4/5): 665-676.

      [32]譚岑,竇森,靳亞雙,等. 秸稈深還對(duì)黑土耕層根區(qū)養(yǎng)分空間分布的影響[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報(bào),2018,40(5):603-609.

      Tan Cen, Dou Sen, Jin Yashuang, et al. Effects of corn overcast deep incorporation on spatial distribution of nutrients in root zone of black Soil[J]. Journal Jilin Agriculture University, 2018, 40(5): 603-609. (in Chinese with English abstract)

      [33]鄒洪濤,關(guān)松,凌堯,等. 秸稈還田不同年限對(duì)土壤腐殖質(zhì)組分的影響[J]. 土壤通報(bào),2013,44(6):1398-1402.

      Zou Hongtao, Guan Song, Ling Yao, et al. Effect of different straw return years on humus composition of soil[J]. Chinese Journal of Soil Science, 2013, 44(6): 1398-1402. (in Chinese with English abstract

      [34]崔婷婷,竇森,楊軟固,等. 秸稈深還對(duì)土壤腐殖質(zhì)組成和胡敏酸結(jié)構(gòu)特征的影響[J]. 土壤學(xué)報(bào),2014,51(4):718-725.

      Cui Tingting, Dou Seng, Yang Ruangu, et al. Effect of deep applied corn stalks on composition of soil humus and structure of humic acid[J]. Acta Pedologica Sinica, 2014, 51(4): 718-725. (in Chinese with English abstract)

      [35]Sun F, Lu S. Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(1): 26-33.

      [36]Noellemeyer E, Frank F, Alvarez C, et al. Carbon contents and aggregation related to soil physical and biological properties under a land-use sequence in the semiarid region of central Argentina[J]. Soil and Tillage Research, 2008, 99: 179-190.

      [37]成臣,汪建軍,程慧煌,等. 秸稈還田與耕作方式對(duì)雙季稻產(chǎn)量及土壤肥力質(zhì)量的影響[J]. 土壤學(xué)報(bào),2018,55(1):247-257.

      Cheng Chen, Wang Jianjun, Cheng Huihuang, et al. Effects of straw returning and tillage system on crop yield and soil fertility quality in paddy field under double-cropping-mce system[J]. Acta Pedologica Sinica, 2018, 55(1): 247-257. (in Chinese with English abstract)

      [38]薩如拉,高聚林,于曉芳,等. 玉米秸稈深翻還田對(duì)土壤有益微生物和土壤酶活性的影響[J]. 干旱區(qū)資源與環(huán)境,2014,28(7):138-143.

      Sa Rula, Gao Julin, Yu Xiaofang, et al. Effect of straw-sleep incorporation on soil beneficial microorganism and soil enzyme activities[J]. Journal of Arid Land Resources and Environment, 2014, 28(7): 138-143. (in Chinese with English abstract)

      [39]黃毅,畢素艷,鄒洪濤,等. 秸稈深層還田對(duì)玉米根系及產(chǎn)量的影響[J]. 玉米科學(xué),2013,21(5):109-112.

      Huang Yi, Bi Suyan, Zou Hongtao, et al. Effect of straw deep returning on corn root system and yield[J]. Journal of Maize Sciences,2013,21(5):109-112.(in Chinese with English abstract)

      Effects of straw application rates on soil aggregates, soil organic carbon content and maize yield

      Meng Qingying1,2,3,4, Zou Hongtao1,2,3※, Han Yanyu1,2,3, Zhang Chunfeng4

      (1.,,110866,;2.,,110866,; 3.,110866,; 4.,154000,)

      Northeast China is an important crop production area, so the amount of crop straw in northeast China is large. Among of main utilization approaches for straw, the straw returned to soil is the most widely adopted approach in China. Returning straw to the soil is beneficial for optimizing the soil environment, preventing and controlling soil degradation, and reducing air pollution that results from burning straw. Currently, straw is returned to the soil in the following three ways: mechanical crushing with backward pressure return, direct mulching and returning straw to deep soil layers. There are many problems with the first two approaches, straw decays slowly because it has a relatively high carbon-to-nitrogen (C/N) ratio, which is not beneficial for the next crop and can decrease the rate of crop emergence. Returning straw to deep soil layers, the bottom of the soil plow layer is broken, the soil bulk density is reduced, and the soil structure is improved. Meanwhile, as straw was buried in the furrow. Crops were planted on the ridge in next season. Thus, crop roots do not directly contact the straw, which could reduce the incidence of disease caused by the harmful substances produced during straw degradation. However, the optimal amount of straw return has not been determined yet. To determine the effects of straw application rates on the soil aggregate ,soil organic carbon content and maize yield under the condition of returning straw to deep soil layers, , The experiments were conducted in the experimental field of the agricultural technology popularization center of Lingyuan city, Liaoning province from 2011 to 2016. After corn harvest in October 2011, five treatments were tested: no straw application. The application of maize straw was at a rate of 6 000, 12 000, 18 000, 24 000 kg/hm2. The straw was incorporation into the subsurface of soil (>20-40 cm). Apply additional nitrogen fertilizer according to C:N=25.1 . The experimental plots were arranged using a random design with three replicates, and the area of each plot was 24 m2. The aggregates amount was examined by dry and wet sieving methods. After straw application for six years, compare with CK, all treatments significantly reduced soil bulk density. The size of dry-stable aggregate and water-stable aggregate were mainly >0.25 mm, <0.25 mm, respectively. Compared with CK, the straw application treatments increased mean weight diameter (MWD) and soil organic carbon content. With the increase of straw application rate, MWD increased. The effect on aggregate SOC of surface soil (0-20 cm) was greater than that of the subsurface soil (>20-40 cm). Compared with CK, the straw application treatments increased the maize yield during 2012-2016. In general, the maize yield increased the most was the straw application amount of 12 000 kg/hm2among all treatments, so it is the recommended treatment. In conclusion, returning straw to deep soil layers can significantly improve aggregate SOC, soil structure, stability and maize yield and is a suitable agricultural practice to improve soil quality in Northeast China.

      organic carbon; aggregate; straw application; maize

      孟慶英,鄒洪濤,韓艷玉,張春峰. 秸稈還田量對(duì)土壤團(tuán)聚體有機(jī)碳和玉米產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(23):119-125.doi:10.11975/j.issn.1002-6819.2019.23.015 http://www.tcsae.org

      Meng Qingying, Zou Hongtao, Han Yanyu, Zhang Chunfeng. Effects of straw application rates on soil aggregates, soil organic carbon content and maize yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 119-125. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.23.015 http://www.tcsae.org

      2019-08-07

      2019-11-20

      遼寧省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019JH2/10200004);國(guó)家科技支撐項(xiàng)目(No. 2015BAD23B0203)

      孟慶英,助理研究員,博士生,主要從事土壤改良與植物營(yíng)養(yǎng)。Email:mqy269@126.com

      鄒洪濤,教授,博士,主要從事土壤改良與農(nóng)業(yè)節(jié)水、新型肥料研發(fā)與應(yīng)用。Email:zouhongtao2001@163.com

      10.11975/j.issn.1002-6819.2019.23.015

      S3

      A

      1002-6819(2019)-23-0119-07

      猜你喜歡
      田量粒級(jí)土層
      不同秸稈還田量對(duì)設(shè)施番茄生長(zhǎng)的影響
      國(guó)外某大型銅礦選礦廠流程考查與分析①
      礦冶工程(2022年6期)2023-01-12 02:15:10
      土釘噴錨在不同土層的支護(hù)應(yīng)用及效果分析
      山地暗棕壤不同剖面深度的團(tuán)聚體分布
      土層 村與人 下
      土層——伊當(dāng)灣志
      土層 沙與土 上
      不同農(nóng)作物秸稈直接還田及其還田量對(duì)大豆生長(zhǎng)的影響
      秸稈還田下灌水量對(duì)土壤水分運(yùn)移特性研究
      不同粒級(jí)再生骨料取代的混凝土基本性能試驗(yàn)研究
      盘锦市| 浪卡子县| 泰来县| 旺苍县| 禄劝| 达孜县| 枣阳市| 昌乐县| 新化县| 恩平市| 田林县| 兴仁县| 大姚县| 绥江县| 普格县| 富顺县| 梧州市| 临沭县| 吉安县| 秦皇岛市| 马关县| 湖南省| 铁力市| 武强县| 凤庆县| 南昌县| 苏尼特右旗| 杭锦后旗| 温泉县| 汤阴县| 敖汉旗| 江山市| 礼泉县| 乐安县| 腾冲县| 陇西县| 泉州市| 姚安县| 古浪县| 霍州市| 青州市|