• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      差速鋸切式水稻秸稈粉碎還田機(jī)設(shè)計(jì)與試驗(yàn)

      2019-02-21 05:08:52孫妮娜王曉燕李洪文王慶杰劉正道王英博
      關(guān)鍵詞:扇葉稻區(qū)合格率

      孫妮娜,王曉燕,李洪文,何 進(jìn),王慶杰,王 將,劉正道,王英博

      差速鋸切式水稻秸稈粉碎還田機(jī)設(shè)計(jì)與試驗(yàn)

      孫妮娜,王曉燕※,李洪文,何 進(jìn),王慶杰,王 將,劉正道,王英博

      (中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083)

      為解決東北稻區(qū)秸稈粉碎質(zhì)量不達(dá)標(biāo)、影響后期作業(yè)的問題,該文基于差速鋸切原理,設(shè)計(jì)了一種秸稈粉碎還田機(jī),可實(shí)現(xiàn)鋸盤刀與粉碎刀同向差速配合,提高切削秸稈的摩擦力及相對(duì)線速度,以達(dá)到支撐鋸切的目的,改善秸稈粉碎效果。通過理論分析,對(duì)粉碎刀和鋸盤刀等關(guān)鍵部件進(jìn)行設(shè)計(jì);利用Fluent仿真分析,得到正扇葉型粉碎刀能夠提高粉碎腔內(nèi)風(fēng)速;對(duì)秸稈切碎過程進(jìn)行動(dòng)力學(xué)分析,確定影響粉碎效果的主要因素為粉碎刀轉(zhuǎn)速及其與鋸盤刀間的傾斜角度。選取粉碎刀轉(zhuǎn)速和傾斜角度作為試驗(yàn)因素,以秸稈粉碎平均長(zhǎng)度和秸稈粉碎長(zhǎng)度合格率為評(píng)價(jià)指標(biāo),進(jìn)行二因素三水平田間試驗(yàn),結(jié)果表明:粉碎刀轉(zhuǎn)速和傾斜角度對(duì)秸稈粉碎平均長(zhǎng)度和秸稈粉碎長(zhǎng)度合格率均有顯著影響。綜合考慮秸稈粉碎效果和功耗等因素,最終確定優(yōu)化組合為粉碎刀轉(zhuǎn)速1800 r/min,傾斜角度65°,相應(yīng)的鋸盤刀轉(zhuǎn)速為600 r/min。優(yōu)化組合條件下的田間試驗(yàn)結(jié)果為:秸稈粉碎平均長(zhǎng)度9.58 cm,長(zhǎng)度10 cm以下的秸稈占93.23%,秸稈拋撒不均勻度20.89%,滿足東北稻區(qū)秸稈粉碎拋撒質(zhì)量要求。通過與現(xiàn)有秸稈粉碎還田機(jī)進(jìn)行性能對(duì)比試驗(yàn),得出研制的差速鋸切式水稻秸稈粉碎還田機(jī)秸稈粉碎效果更優(yōu),后期翻耕秸稈掩埋率達(dá)98.92%。機(jī)具的設(shè)計(jì)對(duì)解決東北稻區(qū)秸稈還田關(guān)鍵技術(shù)問題具有重要意義和應(yīng)用價(jià)值。

      農(nóng)業(yè)機(jī)械;秸稈;設(shè)計(jì);東北稻區(qū);鋸盤刀;粉碎刀;差速鋸切;田間試驗(yàn)

      0 引 言

      東北稻區(qū)是國(guó)內(nèi)重要的水稻生產(chǎn)區(qū),2017年其種植面積為526.24萬hm2,產(chǎn)量達(dá)3 925.7萬t,單位面積產(chǎn)量為7.46 t/hm2,對(duì)應(yīng)的水稻秸稈量為7.24 t/hm2,秸稈量大增加秸稈的粉碎難度[1-2]。另外,該地區(qū)一般在霜降后收獲水稻,秸稈含水率較低[3-4],且秸稈經(jīng)聯(lián)合收獲機(jī)滾筒的揉搓后韌性進(jìn)一步增強(qiáng),秸稈粉碎難度進(jìn)一步增大。而秸稈粉碎效果差會(huì)嚴(yán)重影響后期整地、插秧作業(yè)質(zhì)量,并影響秸稈腐解速度[5-6],出現(xiàn)整地時(shí)機(jī)具堵塞、插秧前秸稈漂浮、插秧時(shí)秧苗漂秧等問題,解決秸稈粉碎問題對(duì)于秸稈還田技術(shù)在東北稻區(qū)的推廣具有重要意義。

      目前,國(guó)內(nèi)外研制的秸稈粉碎還田機(jī)主要有2種機(jī)具配套形式:1)聯(lián)合收獲機(jī)配套的秸稈粉碎拋撒機(jī)[7-8]。該機(jī)具在收獲的同時(shí)實(shí)現(xiàn)秸稈粉碎,在東北稻區(qū)以收獲機(jī)廠家配套的秸稈粉碎拋撒機(jī)為主,如約翰迪爾、久保田、常發(fā)佳聯(lián)等廠家配套的秸稈粉碎拋撒機(jī),秸稈粉碎質(zhì)量受收獲機(jī)喂入量、留茬高度、前進(jìn)速度等影響較大。2)拖拉機(jī)配套的秸稈粉碎還田機(jī)。該機(jī)具在收獲后進(jìn)地粉碎秸稈,是目前秸稈粉碎還田機(jī)的主要形式?,F(xiàn)有水稻秸稈粉碎還田機(jī)切割方式以動(dòng)刀與定刀配合形成有支撐切割的方式為主,且多采用Y型或直刀型粉碎刀與定刀配合進(jìn)行秸稈粉碎[9],如Singh 等[10]針對(duì)印度地區(qū)的水稻特性研制的秸稈粉碎還田機(jī),采用倒“Y”型粉碎刀與定刀配合的方式,粉碎合格率(小于15 cm)為87.4%以上;針對(duì)中國(guó)南方稻田留茬高、土壤黏重的問題,邱進(jìn)等[11]研制的動(dòng)刀與定刀及風(fēng)送葉片同軸安裝的稻麥秸稈切碎裝置,在“站稈”和“殘茬”2種工況下均有較好粉碎效果,稻秸稈切碎長(zhǎng)度合格率(小于15 cm)分別為95.78%、96.98%;針對(duì)中國(guó)稻麥輪作區(qū)水稻秸稈還田過程中的倒茬殘留問題,趙博等[12]研制的具有扶禾功能的水稻滅茬機(jī),采用“L”型扶指將倒伏殘茬扶起后喂入粉碎室,其粉碎機(jī)構(gòu)采用“Y”型甩刀與定刀配合的方式,秸稈粉碎長(zhǎng)度合格率(小于11 cm)為91.04%。這種方式結(jié)構(gòu)簡(jiǎn)單,在南方地區(qū)、秸稈含水率高的情況下,秸稈粉碎效果較好。但由于東北稻區(qū)秸稈量較大,收獲時(shí)秸稈含水率低、秸稈韌性強(qiáng)等方面的差異,導(dǎo)致這類砍切為主、滑切為輔的切割方式,在東北稻區(qū)作業(yè)時(shí)仍存在秸稈粉碎不徹底、粉碎合格率不達(dá)標(biāo)等問題,而鋸切對(duì)秸稈鉗住能力強(qiáng),作業(yè)時(shí)一般有一個(gè)或幾個(gè)刀齒參與切割,能夠提高秸稈切削效率及切削性能[13]。廖慶喜等[14]研究的免耕播種機(jī)新型鋸切防堵裝置采用鋸齒圓盤刀的形式切割秸稈,功率消耗低,防堵效果好。邢立冉[15]設(shè)計(jì)的鋸盤式秸稈粉碎還田機(jī),通過撿拾機(jī)構(gòu)和鋸盤式粉碎裝置配合,能夠顯著提高秸稈粉碎質(zhì)量,但額外增加了撿拾機(jī)構(gòu),增加機(jī)具動(dòng)力消耗,且對(duì)撿拾機(jī)構(gòu)撿拾性能要求較高。

      本文針對(duì)東北稻區(qū)秸稈粉碎質(zhì)量不達(dá)標(biāo),影響后期整地、插秧作業(yè)的問題,在綜合分析現(xiàn)有秸稈粉碎還田機(jī)的優(yōu)缺點(diǎn)及東北稻區(qū)秸稈特性的基礎(chǔ)上,提出了粉碎刀與鋸盤刀同向差速配合實(shí)現(xiàn)有支撐鋸切的方法,增加切削秸稈的線速度和作用力,以改善秸稈粉碎效果。基于此思路,本文優(yōu)化設(shè)計(jì)了一種差速鋸切式水稻秸稈粉碎還田機(jī),通過理論分析確定機(jī)具的主要結(jié)構(gòu)參數(shù),并設(shè)計(jì)二因素三水平田間試驗(yàn)優(yōu)化機(jī)具的具體作業(yè)參數(shù),以期為東北稻區(qū)秸稈粉碎還田機(jī)的研發(fā)提供機(jī)具和技術(shù)支撐。

      1 整機(jī)結(jié)構(gòu)及工作原理

      1.1 整機(jī)結(jié)構(gòu)

      差速鋸切式水稻秸稈粉碎還田機(jī)主要由機(jī)架、粉碎裝置(粉碎刀輥、粉碎刀)、鋸盤裝置、傳動(dòng)裝置、鎮(zhèn)壓裝置、變速箱、導(dǎo)流板等部分組成,如圖1所示。鋸盤軸設(shè)置在粉碎刀輥斜上方,二者轉(zhuǎn)向相同,與機(jī)具前進(jìn)方向相反;切削秸稈時(shí)二者線速度方向相反,增加了切削秸稈的相對(duì)線速度。鋸盤軸在圓弧形調(diào)節(jié)滑槽內(nèi)位置可調(diào),在保持粉碎刀與鋸盤刀間距離不變的同時(shí)實(shí)現(xiàn)鋸盤刀與粉碎刀之間傾斜角度的調(diào)節(jié)。

      1.變速箱 2.后懸掛架 3.鋸盤裝置 4.后定刀 5.鋸盤帶傳動(dòng)裝置 6.導(dǎo)流板 7.粉碎刀 8.鎮(zhèn)壓輥 9.粉碎刀輥 10.鎮(zhèn)壓板 11.張緊裝置 12.粉碎帶傳動(dòng)裝置 13.機(jī)架 14.調(diào)節(jié)滑槽 15.懸掛裝置

      1.2 工作原理與技術(shù)參數(shù)

      工作時(shí),拖拉機(jī)的動(dòng)力經(jīng)變速箱向左右兩側(cè)傳動(dòng),經(jīng)粉碎帶傳動(dòng)裝置增速后帶動(dòng)粉碎刀輥高速旋轉(zhuǎn),粉碎刀輥上的粉碎刀將地表的秸稈撿拾并向后拋,同時(shí),鋸盤帶傳動(dòng)裝置減速后帶動(dòng)鋸盤刀旋轉(zhuǎn)。鋸盤刀與粉碎刀之間形成有支撐切割,且二者之間的相對(duì)運(yùn)動(dòng)增加了切削秸稈的線速度,此時(shí)秸稈受到粉碎刀和鋸盤刀的切削及撕扯作用進(jìn)行第一次粉碎;隨后秸稈在粉碎刀和后定刀產(chǎn)生的沖擊力作用下進(jìn)行第二次粉碎,粉碎后的秸稈隨導(dǎo)流板落到地表,鎮(zhèn)壓裝置碾壓秸稈,為后期整地提供好的作業(yè)條件。整機(jī)主要技術(shù)參數(shù)如表1所示。

      表1 差速鋸切式水稻秸稈粉碎還田機(jī)技術(shù)參數(shù)

      2 關(guān)鍵部件設(shè)計(jì)及參數(shù)確定

      2.1 粉碎裝置設(shè)計(jì)及參數(shù)確定

      2.1.1 粉碎刀刀型設(shè)計(jì)

      常見用于水稻等軟秸稈的粉碎刀主要有L型刀和直刀2種[16],本文設(shè)計(jì)的粉碎刀采用改進(jìn)的L型刀和直刀組合的方式,兼有L型刀的撿拾性能和直刀的粉碎性能[17-18]。東北稻區(qū)秸稈含水率低、韌性強(qiáng)導(dǎo)致砍切的方式不能完全切斷秸稈纖維,本文設(shè)計(jì)的粉碎刀采用鋸齒刀,與光刃刀相比[19],采用鋸齒刀使秸稈能夠更好的附著在刀片上[20],對(duì)秸稈既有切削又有撕扯作用,能更好的切斷秸稈纖維。

      在粉碎刀輥上安裝扇葉,能夠增大粉碎腔內(nèi)風(fēng)速,同時(shí)提高粉碎室入口處秸稈喂入功能[21],由于粉碎腔內(nèi)秸稈-空氣作用力較小[17],本文忽略氣流對(duì)秸稈附著能力的影響。本文在L型刀兩側(cè)增加扇葉,以提高機(jī)具的粉碎腔內(nèi)風(fēng)速及秸稈喂入性能。扇葉的形狀和安裝位置對(duì)風(fēng)速影響較大,為此設(shè)計(jì)3種扇葉形式與無扇葉時(shí)進(jìn)行仿真對(duì)比分析,以選擇適合增大風(fēng)速的扇葉形式,扇葉形式如圖2所示。

      圖2 不同的粉碎刀扇葉形式

      正扇葉型與反扇葉型粉碎刀的扇葉形狀、尺寸一致,僅安裝方向不同;正扇葉型粉碎刀的葉片面與粉碎刀的刀柄面平行(如圖3所示),反扇葉型粉碎刀的葉片面與粉碎刀的刀柄面垂直。正扇葉型與異扇葉型的扇葉安裝位置一致,但扇葉形狀不同,異扇葉型的扇葉是在正扇葉型的扇葉基礎(chǔ)上,外緣去掉2個(gè)直角三角形。綜合考慮刀座與L型刀刀柄間的距離,本文設(shè)計(jì)的扇葉尺寸為35 mm×30 mm×3 mm,以正扇葉為例(如圖3所示),此時(shí)扇葉一端距刀座為22 mm,不易與刀座發(fā)生干涉,扇葉另一端安裝在L型刀彎角處,不易與土壤發(fā)生擾動(dòng)。

      注:圖中尺寸單位為mm,下同。

      2.1.2 粉碎刀扇葉對(duì)粉碎腔內(nèi)流速影響仿真分析

      為選擇適合增大風(fēng)速的扇葉形式,采用Fluent軟件對(duì)4種粉碎刀刀型進(jìn)行仿真分析,研究不同扇葉對(duì)粉碎腔內(nèi)氣流速度的影響。為提高模擬效率,在盡可能保證模擬精度的前提下,對(duì)粉碎室三維結(jié)構(gòu)模型進(jìn)行簡(jiǎn)化,將鋸齒刀改為無鋸齒、忽略粉碎刀輥上的軸承座、軸承、螺栓等,簡(jiǎn)化后的粉碎室結(jié)構(gòu)如圖4所示。

      在分析粉碎腔內(nèi)氣相流場(chǎng)時(shí),將流場(chǎng)視為不可壓縮,運(yùn)用多重參考系模型(MRF)解決粉碎刀輥旋轉(zhuǎn)問題,定義粉碎刀輥流域?yàn)樾D(zhuǎn)流域,采用旋轉(zhuǎn)坐標(biāo)系,設(shè)置轉(zhuǎn)動(dòng)速度為粉碎刀輥的轉(zhuǎn)速(1 800 r/min),其他流域?yàn)殪o止流域。入口和出口邊界條件均采用壓力型,壓力大小為一個(gè)標(biāo)準(zhǔn)大氣壓。在粉碎刀輥區(qū)域和機(jī)殼區(qū)域的分界面定義一對(duì)Interface用于處理2個(gè)區(qū)域之間數(shù)據(jù)的傳遞。

      圖4 簡(jiǎn)化的三維模型圖

      本文利用Realizable k-ε模型來計(jì)算粉碎腔內(nèi)湍流[22-23]。動(dòng)量、湍動(dòng)能和耗散率的離散格式均為計(jì)算精度較高的二階迎風(fēng)格式,壓力—速度耦合采用SIMPLE算法求解并利用CFD-Post軟件進(jìn)行后處理。

      將Fluent中的三維數(shù)值模擬結(jié)果生成相應(yīng)的二維平面圖形,能夠細(xì)致的描述流場(chǎng)特性,通過粉碎腔內(nèi)氣相流場(chǎng)的特點(diǎn)來反映秸稈的運(yùn)動(dòng)形式。本文在機(jī)殼寬度方向的中間位置選取截面,不同粉碎刀形式在該截面上的速度分布情況如圖5所示。觀測(cè)4種刀型在機(jī)殼出口處的氣流情況,正扇葉型粉碎刀出口處氣流速度范圍為12.06~18.09 m/s;反扇葉型粉碎刀出口處氣流速度范圍為10.18~15.27 m/s;異扇葉型粉碎刀出口處氣流速度范圍為10.57~15.85 m/s;無扇葉型粉碎刀出口處氣流速度范圍為9.15~13.73 m/s。通過仿真對(duì)比分析,正扇葉型粉碎腔內(nèi)流體速度最大,顯著比無扇葉情況下增加了粉碎腔體內(nèi)的氣流速度,有助于提高秸稈的粉碎效果。主要是因?yàn)楫?dāng)粉碎刀輥旋轉(zhuǎn)時(shí),正扇葉型粉碎刀的葉片面與旋轉(zhuǎn)方向垂直,起到增大風(fēng)速作用的扇葉面積較其他3種形式更大,更有利于增大風(fēng)速,最終選擇正扇葉作為粉碎刀的扇葉形式。

      圖5 粉碎腔內(nèi)速度流線圖

      為驗(yàn)證仿真的準(zhǔn)確性,采用熱線風(fēng)速儀分別測(cè)量粉碎刀上無扇葉和焊接正扇葉后的氣流速度。將探頭放置在粉碎腔出口處同一位置,經(jīng)多次測(cè)量,在粉碎刀輥轉(zhuǎn)速為1 800 r/min時(shí),無扇葉的情況下氣流平均速度為10.3 m/s,正扇葉的情況下氣流平均速度為14.8 m/s,與仿真結(jié)果基本一致。

      2.1.3 粉碎刀布置

      根據(jù)《農(nóng)業(yè)機(jī)械設(shè)計(jì)手冊(cè)》[24]粉碎刀數(shù)量設(shè)計(jì)原則并參考東北稻區(qū)秸稈粉碎還田機(jī)粉碎刀數(shù)量,本文設(shè)計(jì)的粉碎刀數(shù)量為32組,粉碎刀排列方式為雙螺旋線型[25-26],如圖6所示。若粉碎刀工作時(shí)緊貼地表,則會(huì)打土使其產(chǎn)生反沖擊力,導(dǎo)致刀具磨損和斷裂,縮短刀具使用壽命[27];同時(shí)粉碎刀入土?xí)⒌乇淼耐亮伒戒彵P刀上,造成鋸盤刀磨損,本文取粉碎刀離地距離為40 mm??紤]整機(jī)結(jié)構(gòu)設(shè)計(jì)配置關(guān)系、工作幅寬并參考目前國(guó)內(nèi)外秸稈撿拾粉碎裝置動(dòng)刀回轉(zhuǎn)半徑范圍為240~350 mm[28],本文選取粉碎刀的回轉(zhuǎn)半徑為255 mm。

      圖6 粉碎刀雙螺旋線排列展開圖

      2.2 鋸盤裝置設(shè)計(jì)及參數(shù)確定

      2.2.1 鋸盤刀設(shè)計(jì)及參數(shù)確定

      經(jīng)測(cè)量東北地區(qū)常見的水稻品種(龍粳31號(hào)、龍粳36號(hào)、墾稻12號(hào)等)的秸稈直徑在3.5~5 mm之間,多集中在4~4.5 mm之間。根據(jù)東北稻區(qū)的秸稈直徑,進(jìn)行鋸盤刀鋸齒的設(shè)計(jì)。若相鄰鋸齒間距離過小,則秸稈處于2個(gè)鋸齒的齒尖上,粉碎時(shí)秸稈被完全撕碎,會(huì)額外增加機(jī)具動(dòng)力消耗。若相鄰鋸齒間距離過大,則部分秸稈未經(jīng)粉碎即隨鋸齒刀流出。綜合考慮,本文設(shè)計(jì)的鋸盤刀相鄰鋸齒之間內(nèi)切圓直徑為6 mm,鋸盤刀直徑為200 mm,鋸盤刀厚度為4 mm,鋸盤刀結(jié)構(gòu)如圖7所示。設(shè)計(jì)的鋸盤刀上布滿鋸齒,鋸盤刀與粉碎刀存在轉(zhuǎn)速差,可以避免對(duì)單一鋸齒面的磨損,提高鋸盤刀的使用壽命;同時(shí)鋸盤刀上的鋸齒,有助于撕扯秸稈。

      圖7 鋸盤刀結(jié)構(gòu)

      2.2.2 鋸盤刀布置

      鋸盤裝置的動(dòng)力由鋸盤帶傳動(dòng)裝置減速傳遞到鋸盤軸,鋸盤軸直徑過小,則帶輪張緊時(shí)易造成軸彎折;鋸盤軸直徑過大,則相應(yīng)鋸盤刀也需增大,會(huì)增加動(dòng)力消耗。綜合考慮鋸盤軸的強(qiáng)度、鋸盤裝置動(dòng)力消耗及其與粉碎裝置的配合關(guān)系,同時(shí)為防止鋸盤刀旋轉(zhuǎn)時(shí)與鋸盤軸發(fā)生相對(duì)轉(zhuǎn)動(dòng),本鋸盤軸采用27 mm的六方軸。鋸盤刀沿鋸盤軸的軸線上均勻設(shè)置,相鄰鋸盤刀之間設(shè)置間管,相鄰鋸盤刀之間的距離為50 mm,相應(yīng)的鋸盤刀與粉碎刀中的直刀的軸向間隙為22 mm。鋸盤刀與粉碎刀的配合示意圖如圖8所示,1組粉碎刀同時(shí)與2把鋸盤刀配合作業(yè),粉碎刀與鋸盤刀之間配合重疊區(qū)為30 mm。

      圖8 鋸盤裝置與粉碎裝置配合示意圖

      鋸盤刀與粉碎刀的相對(duì)位置如圖9所示,其中粉碎刀離地距離1為40 mm,粉碎刀輥中心離地距離2為295 mm。鋸盤刀與粉碎刀中心距離保持不變,為325 mm;鋸盤刀與粉碎刀間傾斜角度可調(diào),根據(jù)粉碎腔內(nèi)速度流線圖(圖5),粉碎刀斜上方區(qū)域氣流速度大,秸稈流動(dòng)性強(qiáng),所以設(shè)計(jì)鋸盤刀與粉碎刀在此處切割秸稈,最終確定二者間傾斜角度調(diào)節(jié)范圍為45~65°;鋸盤刀軸心從點(diǎn)(=45°)到點(diǎn)(=65°)之間可調(diào);對(duì)應(yīng)的鋸盤刀與粉碎刀的水平距離調(diào)節(jié)范圍為137~230 mm;鋸盤刀與粉碎刀中心的豎直距離3調(diào)節(jié)范圍為230~295 mm。

      注:H1表示粉碎刀離地距離,mm;H2為粉碎刀輥中心離地距離,mm;H3和H'3分別為θ為45°和60°時(shí)鋸盤刀與粉碎刀中心的豎直距離,mm;R1為粉碎刀回轉(zhuǎn)半徑,mm;R2為鋸盤刀半徑,mm;R為鋸盤刀與粉碎刀中心距離,mm;L和L'分別為θ為45°和60°時(shí)鋸盤刀與粉碎刀中心的水平距離,mm;θ為鋸盤刀與粉碎刀的之間的傾斜角度,(°)。

      2.3 粉碎刀和鋸盤刀轉(zhuǎn)速計(jì)算

      粉碎刀和鋸盤刀轉(zhuǎn)向相同,都與前進(jìn)方向相反,二者運(yùn)動(dòng)軌跡相似,此處以粉碎刀為例進(jìn)行分析,其運(yùn)動(dòng)軌跡示意圖如圖10所示。

      注:vp為機(jī)具前進(jìn)速度,m/s;ω1為粉碎刀角速度,rad/s;O為粉碎刀回轉(zhuǎn)中心。

      設(shè)粉碎刀軌跡上任一點(diǎn)坐標(biāo)(,),則粉碎刀的運(yùn)動(dòng)軌跡參數(shù)方程為

      式中為粉碎刀運(yùn)動(dòng)時(shí)間,s。

      由式(1)微分得

      由公式(2)可得出粉碎刀的絕對(duì)速度為

      研究表明在單動(dòng)刀條件下動(dòng)刃刀遠(yuǎn)心端(以動(dòng)刀轉(zhuǎn)軸為軸心)線速度在30~43 m/s時(shí),能達(dá)到良好的切碎效果[29],為保證粉碎效果,本文取1為43 m/s。秸稈粉碎還田機(jī)前進(jìn)速度v一般為0.83~1.39 m/s[30],本文前進(jìn)速度v為1 m/s。本文中粉碎刀的回轉(zhuǎn)半徑1為255 mm,代入式(5)中,得出粉碎刀轉(zhuǎn)速最小值為1min=1 650 r/min。

      東北稻區(qū)秸稈量大,若粉碎刀轉(zhuǎn)速過低,則容易造成秸稈漏撿,降低秸稈整體粉碎質(zhì)量??紤]到實(shí)際工作中其他未知影響因素,取1=1.1~1.51min[24, 31],則粉碎刀轉(zhuǎn)速1的取值范圍為:1 815~2 475 r/min。本文選取了1 800、2 100、2 400 r/min 3種轉(zhuǎn)速進(jìn)行對(duì)比,研究轉(zhuǎn)速對(duì)秸稈粉碎效果的影響。

      本文設(shè)計(jì)的鋸盤刀與粉碎刀相互作用,為切削秸稈提供線速度,考慮到若鋸盤刀轉(zhuǎn)速過高,有將秸稈重新帶回地表的趨勢(shì),且會(huì)阻礙秸稈隨粉碎刀后拋,降低秸稈向后拋的速度,不利于秸稈拋撒;若鋸盤刀轉(zhuǎn)速過低,則無法達(dá)到提高切削秸稈線速度的目的。綜合考慮,設(shè)計(jì)的鋸盤刀轉(zhuǎn)速為粉碎刀轉(zhuǎn)速的1/3,二者保持固定傳動(dòng)比,即鋸盤刀轉(zhuǎn)速2的取值范圍為605~825 r/min。

      2.4 粉碎質(zhì)量影響因素分析

      秸稈在粉碎刀與鋸盤刀的共同作用下首先發(fā)生局部塑性變形,隨著粉碎刀的進(jìn)一步運(yùn)動(dòng),秸稈發(fā)生較大的彎曲和壓縮變形直至斷裂[32-33],秸稈粉碎過程受力如圖11所示。

      注:mg為秸稈重力,N;FN1為粉碎刀對(duì)秸稈的支持力,N;f1為粉碎刀與秸稈之間的摩擦力,N;FN2為鋸盤刀對(duì)秸稈的支持力,N;f2為鋸盤刀與秸稈之間的摩擦力,N;Fce為秸稈離心力,N;vp為機(jī)具前進(jìn)速度,m/s;ω為秸稈旋轉(zhuǎn)角速度,rad/s;ω1為粉碎刀角速度,rad/s;ω2為鋸盤刀角速度,rad/s;ρ為秸稈的回轉(zhuǎn)半徑,mm。

      粉碎刀上的秸稈與鋸盤刀接觸后瞬間被切斷,切碎過程持續(xù)的時(shí)間極短,由于慣性作用,此時(shí)秸稈仍留在粉碎刀表面并保持原來的運(yùn)動(dòng)狀態(tài)。切斷瞬間,秸稈隨粉碎刀運(yùn)動(dòng),加速度為離心加速度。秸稈切斷瞬間的受力可以表示為

      解上述方程得

      式中1為粉碎刀對(duì)秸稈的摩擦系數(shù);2為鋸盤刀對(duì)秸稈的摩擦系數(shù)。

      秸稈受力將直接影響其粉碎效果,由公式(7)得1和2的大小與1、2、、有關(guān),其中,粉碎刀與鋸盤刀均采用鋸齒形,相比于光刃刀增大1和2,提高秸稈與刀的摩擦力,降低秸稈未經(jīng)粉碎即隨粉碎刀拋出的現(xiàn)象。大小主要與粉碎刀的轉(zhuǎn)速有關(guān),與鋸盤刀和粉碎刀之間的相對(duì)位置有關(guān),這2個(gè)因素都是影響秸稈粉碎效果的主要因素。為進(jìn)一步明確粉碎刀轉(zhuǎn)速及其與鋸盤刀間的傾斜角度對(duì)秸稈粉碎效果的影響,確定優(yōu)化參數(shù),本文進(jìn)行二因素三水平田間試驗(yàn)。

      3 田間試驗(yàn)

      3.1 試驗(yàn)條件與測(cè)試指標(biāo)

      進(jìn)行后期整地時(shí),秸稈粉碎長(zhǎng)度過長(zhǎng)容易造成秸稈掩埋不實(shí)及堵塞機(jī)具的現(xiàn)象,本試驗(yàn)選取秸稈粉碎平均長(zhǎng)度及秸稈粉碎長(zhǎng)度合格率作為機(jī)器作業(yè)效果的評(píng)價(jià)指標(biāo)。本試驗(yàn)以農(nóng)業(yè)機(jī)械化管理司最新提出的《主要農(nóng)作物秸稈機(jī)械化還田技術(shù)模式》中要求的東北稻區(qū)秸稈還田需秸稈粉碎長(zhǎng)度小于10 cm為合格[34];秸稈粉碎長(zhǎng)度合格率根據(jù)GB/T 24675.6-2009《保護(hù)性耕作機(jī)械秸稈粉碎還田機(jī)》要求計(jì)算而得[35]。試驗(yàn)地為黑龍江省哈爾濱市民主試驗(yàn)田(126°15′~127°30′E,45°20′~46°20′N),試驗(yàn)時(shí)間為2018年10月14日,收獲后秸稈留茬高度為18.8 cm,秸稈平均長(zhǎng)度為43.5 cm,秸稈含水率為19.2%,秸稈量為8.6 t/hm2,秸稈拋撒不均勻度為75.7%。

      秸稈粉碎長(zhǎng)度合格率的測(cè)試方法:拖拉機(jī)每個(gè)行程在測(cè)區(qū)長(zhǎng)度方向上等間距測(cè)定3點(diǎn),每點(diǎn)隨機(jī)測(cè)定1 m2,收集所有秸稈用振動(dòng)篩清除秸稈里混有的泥土、碎石等雜物并稱質(zhì)量。從中選出粉碎長(zhǎng)度不合格的秸稈(大于10 cm)稱質(zhì)量。計(jì)算每點(diǎn)秸稈粉碎長(zhǎng)度合格率

      式中F為測(cè)點(diǎn)秸稈粉碎長(zhǎng)度合格率,%;M為測(cè)點(diǎn)秸稈總質(zhì)量,kg;M為測(cè)點(diǎn)不合格秸稈質(zhì)量,kg;為測(cè)試點(diǎn)序號(hào)。

      3.2 試驗(yàn)設(shè)計(jì)

      為優(yōu)化秸稈粉碎還田機(jī)參數(shù),得到較好的秸稈粉碎效果,以粉碎刀轉(zhuǎn)速、粉碎刀與鋸盤刀間傾斜角度為試驗(yàn)因素,考察各因素對(duì)秸稈粉碎效果的影響,進(jìn)行二因素三水平的田間試驗(yàn),試驗(yàn)因素水平如表2所示。每組試驗(yàn)重復(fù)3次。田間試驗(yàn)方案和結(jié)果如表3所示。

      表2 田間試驗(yàn)因素水平表

      3.3 田間試驗(yàn)結(jié)果與分析

      應(yīng)用SPSS 22.0軟件對(duì)結(jié)果數(shù)據(jù)進(jìn)行數(shù)理統(tǒng)計(jì)分析,給定顯著性水平0.05,秸稈粉碎平均長(zhǎng)度1和秸稈粉碎長(zhǎng)度合格率2的方差分析如表4所示。

      表3 田間試驗(yàn)方案及結(jié)果

      表4 試驗(yàn)結(jié)果方差分析表

      根據(jù)表3及表4分析可得,傾斜角度對(duì)秸稈粉碎平均長(zhǎng)度1及秸稈粉碎長(zhǎng)度合格率2均有極顯著影響(<0.000 1),在傾斜角度為65°時(shí),秸稈粉碎平均長(zhǎng)度1更短,秸稈粉碎長(zhǎng)度合格率2更高。主要是因?yàn)殡S著傾斜角度的增大,秸稈隨粉碎刀運(yùn)動(dòng)的時(shí)間變長(zhǎng),秸稈受粉碎刀作用力及扇葉風(fēng)力影響,其流動(dòng)速度逐漸變大,所以在傾斜角度大的位置秸稈與鋸盤刀的相對(duì)速度更大,更有助于切削秸稈;但若傾斜角度過大,則秸稈下落趨勢(shì)較明顯,所以本文設(shè)計(jì)選取的優(yōu)化傾斜角度為65°。

      粉碎刀轉(zhuǎn)速對(duì)秸稈粉碎平均長(zhǎng)度1有顯著性影響,對(duì)秸稈粉碎長(zhǎng)度合格率2有極顯著影響。隨著粉碎刀轉(zhuǎn)速的增大,秸稈粉碎平均長(zhǎng)度1逐漸減小,秸稈粉碎長(zhǎng)度合格率2變高。通過表3可得,在傾斜角度為65°,粉碎刀轉(zhuǎn)速為1 800 r/min時(shí),秸稈粉碎平均長(zhǎng)度1已達(dá)到10 cm以下,秸稈粉碎長(zhǎng)度合格率2滿足秸稈粉碎還田機(jī)質(zhì)量要求;在傾斜角度為65°,粉碎刀轉(zhuǎn)速為2100、2 400 r/min時(shí),秸稈粉碎平均長(zhǎng)度1和秸稈粉碎長(zhǎng)度合格率2效果更好,但提高粉碎刀轉(zhuǎn)速會(huì)降低整機(jī)穩(wěn)定性且增加機(jī)具能耗[36]。綜合考慮秸稈粉碎效果、能耗等因素,本文最終選取的優(yōu)化組合為13,即:粉碎刀轉(zhuǎn)速1 800 r/min,傾斜角度65°,此時(shí)相應(yīng)的鋸盤刀轉(zhuǎn)速為600 r/min。

      在優(yōu)化組合為13時(shí),差速鋸切式水稻秸稈粉碎還田機(jī)的作業(yè)效果如圖12所示。試驗(yàn)結(jié)果表明,秸稈粉碎平均長(zhǎng)度為9.58 cm,小于10 cm的秸稈粉碎長(zhǎng)度合格率為93.23%,秸稈拋撒不均勻度為20.89%,滿足GB/T 24675.6-2009《保護(hù)性耕作機(jī)械秸稈粉碎還田機(jī)》對(duì)秸稈粉碎質(zhì)量要求。

      a.作業(yè)條件a. Operation conditionb.作業(yè)效果b. Operation effect

      4 對(duì)比試驗(yàn)

      4.1 試驗(yàn)設(shè)計(jì)與結(jié)果分析

      為檢驗(yàn)差速鋸切式水稻秸稈粉碎還田機(jī)各項(xiàng)性能指標(biāo),將樣機(jī)與黑龍江常見的布谷1JH-150秸稈粉碎還田機(jī)(采用Y型粉碎刀與定刀配合砍切秸稈)共同進(jìn)行田間試驗(yàn),試驗(yàn)地點(diǎn)仍選在黑龍江省哈爾濱市民主試驗(yàn)田,試驗(yàn)條件與上述3.1節(jié)試驗(yàn)條件相同。2臺(tái)秸稈粉碎還田機(jī)的前進(jìn)速度均控制為1 m/s,秸稈粉碎刀轉(zhuǎn)速均設(shè)置為1 800 r/min,分別在2臺(tái)秸稈粉碎還田機(jī)作業(yè)后試驗(yàn)田內(nèi)隨機(jī)選取5個(gè)長(zhǎng)10 m,寬1個(gè)幅寬的測(cè)量區(qū)域,通過上述3.1節(jié)試驗(yàn)指標(biāo)測(cè)試方法計(jì)算出每個(gè)測(cè)量區(qū)秸稈粉碎長(zhǎng)度合格率和拋撒不均勻度,取5次試驗(yàn)結(jié)果的平均值,得到試驗(yàn)結(jié)果如表5所示。

      表5 對(duì)比試驗(yàn)結(jié)果

      該試驗(yàn)對(duì)二者在秸稈粉碎平均長(zhǎng)度、秸稈粉碎長(zhǎng)度合格率以及拋撒不均勻度3個(gè)方面進(jìn)行比較。試驗(yàn)結(jié)果表明:差速鋸切式水稻秸稈粉碎還田機(jī)的秸稈粉碎平均長(zhǎng)度、秸稈粉碎長(zhǎng)度合格率均明顯優(yōu)于普通秸稈粉碎還田機(jī),秸稈拋撒不均勻度方面無明顯差異。

      4.2 不同切割形式秸稈還田對(duì)后期翻耕影響

      秸稈粉碎質(zhì)量影響后期翻耕作業(yè)質(zhì)量,進(jìn)而影響春整地作業(yè)質(zhì)量及插秧質(zhì)量。在2臺(tái)秸稈粉碎還田機(jī)作業(yè)后,采用同一臺(tái)犁進(jìn)行了翻耕作業(yè),翻耕作業(yè)效果如圖13所示。

      a. 差速鋸切式水稻秸稈粉碎還田機(jī)作業(yè)后翻耕a. Plowing after differential sawing rice straw chopperb. 普通秸稈粉碎機(jī)作業(yè)后翻耕b. Plowing after ordinary straw chopper

      經(jīng)取樣測(cè)量,差速鋸切式水稻秸稈粉碎還田機(jī)作業(yè)后翻耕的秸稈掩埋率為98.92%,普通粉碎機(jī)作業(yè)后翻耕的秸稈掩埋率為90.21%。采用差速鋸切式水稻秸稈粉碎還田機(jī)粉碎秸稈,更有利于后期整地作業(yè),進(jìn)而提高春整地作業(yè)質(zhì)量及插秧質(zhì)量[6],為水稻生長(zhǎng)提供好的作業(yè)條件。

      5 結(jié) 論

      1)基于差速鋸切原理,設(shè)計(jì)了一種秸稈粉碎還田機(jī),可實(shí)現(xiàn)鋸盤刀與粉碎刀同向差速配合,達(dá)到有支撐鋸切的效果;提高了秸稈與刀具的摩擦力及切削秸稈的相對(duì)線速度,可有效改善東北稻區(qū)秸稈粉碎效果。

      2)設(shè)計(jì)了一種新型粉碎刀,通過在L型刀兩側(cè)增加扇葉來提高機(jī)具粉碎腔內(nèi)風(fēng)速及秸稈喂入性能,通過Fluent仿真分析,得出正扇葉型粉碎刀的風(fēng)速增大效果最好,為秸稈粉碎還田機(jī)提高粉碎腔內(nèi)風(fēng)速提供一種新方式。

      3)通過二因素三水平田間試驗(yàn),確定優(yōu)化參數(shù)組合為粉碎刀轉(zhuǎn)速1 800 r/min,粉碎刀與鋸盤刀間傾斜角度為65°,此時(shí)秸稈粉碎平均長(zhǎng)度為9.58 cm,秸稈粉碎長(zhǎng)度合格率為93.23%,秸稈拋撒不均勻度為20.89%,各項(xiàng)性能指標(biāo)均滿足相關(guān)標(biāo)準(zhǔn)規(guī)定。

      [1]國(guó)家統(tǒng)計(jì)局. 中國(guó)統(tǒng)計(jì)年鑒[M]. 北京:中國(guó)統(tǒng)計(jì)出版社,2018.

      [2]中華人民共和國(guó)國(guó)家發(fā)展和改革委員會(huì). 國(guó)家發(fā)展改革委辦公廳農(nóng)業(yè)部辦公廳關(guān)于開展農(nóng)作物秸稈綜合利用規(guī)劃終期評(píng)估的通知[EB/OL]. (2015-12-09) [2018-10-09] http://www.ndrc.gov.cn/ zcfb/zcfbtz/201512/t20151216_767695.html.

      [3]陳海濤,張穎,黃振華,等. 含水率對(duì)水稻秸稈流動(dòng)力學(xué)特性的影響[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2013,44(11):90-94.

      Chen Haitao, Zhang Ying, Huang Zhenhua, et al. Effect of different moisture contents on flowability parameters of chopped rice straw[J]. Journal of Northeast Agricultural University, 2013, 44(11): 90-94. (in Chinese with English abstract)

      [4]馬永昌,李慶東,張建軍. 稻秸稈受切特性的試驗(yàn)研究[J]. 農(nóng)機(jī)化研究,2006(8):165-167.

      Ma Yongchang, Li Qingdong, Zhang Jianjun. Experimental study on cutting velocity of straws[J]. Journal of Agricultural Mechanization Research, 2006(8): 165-167. (in Chinese with English abstract)

      [5]王金武,唐漢,王金峰. 東北地區(qū)作物秸稈資源綜合利用現(xiàn)狀與發(fā)展分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(5):1-21.

      Wang Jinwu, Tang Han, Wang Jinfeng. Comprehensive utilization status and development analysis of crop straw resource in northeast China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(5): 1-21. (in Chinese with English abstract)

      [6]孫妮娜,王曉燕,李洪文,等. 東北稻區(qū)不同秸稈還田模式機(jī)具作業(yè)效果研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(增刊1):68-74,154.

      Sun Nina, Wang Xiaoyan, Li Hongwen, et al. Performance of straw returning equipment under different mechanized straw returning pattern in Northeast rice area[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(S1): 68-74, 154. (in Chinese with English abstract)

      [7]陳玉侖,丁為民,方志超,等. 全喂入式聯(lián)合收割機(jī)碎草脫粒裝置的改進(jìn)設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(24):11-16.

      Chen Yulun, Ding Weimin, Fang Zhichao, et al. Improved design of straw-cutting type threshing mechanism of full-feeding combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(24): 11-16. (in Chinese with English abstract)

      [8]陳黎卿,王莉,張家啟,等. 適用于全喂入聯(lián)合收割機(jī)的1JHSX-34型秸稈粉碎機(jī)設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(9):28-32.

      Chen Liqing, Wang Li, Zhang Jiaqi, et al. Design of 1JHSX-34 straw crusher for whole-feeding combine harvesters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(9): 28-32. (in Chinese with English abstract)

      [9]Verma A, Singh A, Singh A, et al. Performance evaluation of tractor operated paddy straw mulcher [J]. Journal of Krishi Vigyan, 2016, 4(2): 70-75.

      [10]Singh A, Dhaliwal I S, Dixit A. Performance evaluation of tractor mounted straw chopper cum spreader for paddy straw management[J]. Indian Journal of Agricultural Research, 2011, 45(1): 21-29.

      [11]邱進(jìn),吳明亮,官春云,等. 動(dòng)定刀同軸水稻秸稈切碎還田裝置結(jié)構(gòu)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(10):11-19.

      Qiu Jin, Wu Mingliang, Guan Chunyun, et al. Design and experiment of chopping device with dynamic fixed knife coaxial for rice straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 11-19. (in Chinese with English abstract)

      [12]趙博,汪小旵,楊四軍,等. 水稻滅茬機(jī)扶茬機(jī)構(gòu)設(shè)計(jì)與試驗(yàn)[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào),2018,39(4):100-104.

      Zhao Bo, Wang Xiaochan, Yang Sijun, et al. Design and experiment of lifting mechanism of rice stubble cleaner[J]. Journal of South China Agricultural University, 2018, 39(4): 100-104. (in Chinese with English abstract)

      [13]廖慶喜. 免耕播種機(jī)防堵與排種裝置試驗(yàn)研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2003.

      Liao Qingxi. Experimental Study on Anti-blocking and Metering Mechanism of No-Tillage Planter[D]. Beijing: China Agricultural University, 2003. (in Chinese with English abstract)

      [14]廖慶喜,高煥文,王世學(xué),等. 免耕播種機(jī)新型鋸切防堵裝置的試驗(yàn)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2003,34(6):91-95.

      Liao Qingxi, Gao Huanwen, Wang Shixue, et al. Experimental study on sawtooth anti-blocking mechanism for no-tillage planter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2003, 34(6): 91-95. (in Chinese with English abstract)

      [15]邢立冉. 鋸盤式秸稈粉碎還田機(jī)研制與試驗(yàn)[D]. 泰安:山東農(nóng)業(yè)大學(xué),2013.

      Xing Liran. Development and Test of Saw Disc of Straw Crushing Returning Machine[D]. Taian: Shandong Agricultural University, 2013. (in Chinese with English abstract)

      [16]賈洪雷,姜鑫銘,郭明卓,等. V-L型秸稈粉碎還田刀片設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(1):28-33.

      Jia Honglei, Jiang Xinming, Guo Mingzhuo, et al. Design and experiment of V-L shaped smashed straw blade[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(1): 28-33. (in Chinese with English abstract)

      [17]章志強(qiáng). 玉米秸稈粉碎拋撒還田機(jī)的設(shè)計(jì)與秸稈運(yùn)動(dòng)特性研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2018.

      Zhang Zhiqiang. Research on Corn Straw Chopping and Spreading Machine Design and Dynamic Characteristic of Straw[D]. Beijing: China Agricultural University, 2018. (in Chinese with English abstract)

      [18]付雪高,李明,盧敬銘,等. 秸稈粉碎還田機(jī)甩刀的研究進(jìn)展[J]. 中國(guó)農(nóng)機(jī)化,2011(1):83-87.

      Fu Xuegao, Li Ming, Lu Jingming, et al. Research on the cutter of straw crushing machine to field[J]. Chinese Agricultural Mechanization, 2011(1): 83-87. (in Chinese with English abstract)

      [19]Lundin G. Chop length capability and wearing qualities for two types of straw chopper knives at combine harvesting[J]. Journal of Agricultural Machinery Science, 2008, 4(1): 99-103.

      [20]郭俊,張慶怡,Muhammad S M,等. 仿鼴鼠足趾排列的旋耕-秸稈粉碎鋸齒刀片的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(6):43-50.

      Guo Jun, Zhang Qingyi, Muhammad S M, et al. Design and experiment of bionic mole’s toe arrangement serrated blade for soil-rototilling and straw-shattering[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(6): 43-50. (in Chinese with English abstract)

      [21]Zhang Zhiqiang, Mchugh A D, Li Hongwen, et al. Global overview of research and development of crop residue management machinery[J]. Applied Engineering in Agriculture, 2017, 33(3): 329-344.

      [22]Li Xianhua, Zhang Shujia, Zhu Baolin, et al. The study of the k-ε turbulence model for numerical simulation of centrifugal pump[C]//Hangzhou: 7th International Conference on Computer-Aided Industrial Design and Conceptual Design, 2006.

      [23]Tutar M, Oguz G. Large eddy simulation of wind flow around parallel buildings with varying configurations[J]. Fluid Dynamics Research, 2002,31: 289-315.

      [24]中國(guó)農(nóng)業(yè)機(jī)械化科學(xué)研究院. 農(nóng)業(yè)機(jī)械設(shè)計(jì)手冊(cè)[M]. 北京:中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社,2007.

      [25]林靜,馬鐵,李寶筏. 1JHL-2 型秸稈深埋還田機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(20):32-40.

      Lin Jing, Ma Tie, Li Baofa. Design and test of 1JHL-2 type straw deep burying and returning machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 32-40. (in Chinese with English abstract)

      [26]薄鴻明,林靜. 玉米秸稈還田機(jī)的設(shè)計(jì)與參數(shù)研究[J]. 農(nóng)機(jī)化研究,2016,38(11):99-103.

      Bao Hongming, Lin Jing. The design and simulation analysis of maize field straw chopper[J]. Journal of Agricultural Mechanization Research, 2016, 38(11): 99-103. (in Chinese with English abstract)

      [27]田陽,林靜,李寶筏,等. 氣力式1JH-2型秸稈深埋還田機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(14):10-18.

      Tian Yang, Lin Jing, Li Baofa, et al. Design and test of pneumatic 1JH-2 style straw deep burying and returning machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 10-18. (in Chinese with English abstract)

      [28]鄭智旗,何進(jìn),李洪文,等. 動(dòng)定刀支撐滑切式秸稈粉碎裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(增刊1):108-116.

      Zheng Zhiqi, He Jin, Li Hongwen, et al. Design and experiment of straw-chopping device with chopping and fixed knife supported slide cutting[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(Supp.1): 108-116. (in Chinese with English abstract)

      [29]薛惠嵐,薛少平,楊青,等. 秸稈粉碎覆蓋與施肥播種聯(lián)合作業(yè)的實(shí)現(xiàn)及機(jī)具設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2003,19(3):104-107.

      Xue Huilan, Xue Shaoping, Yang Qing, et al. Implementation of combined work of straw crushed for mulching and seeding with fertilizer and design of the machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(3): 104-107. (in Chinese with English abstract)

      [30]章志強(qiáng),何進(jìn),李洪文,等. 可調(diào)節(jié)式秸稈粉碎拋撒還田機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(9):76-87.

      Zhang Zhiqiang, He Jin, Li Hongwen, et al. Design and experiment on straw chopper cum spreader with adjustable spreading device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 76-87. (in Chinese with English abstract)

      [31]張佳喜,王學(xué)農(nóng),陳發(fā),等. 秸稈粉碎還田回收機(jī)刀輥工作參數(shù)的研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2007,38(6):82-85,37.

      Zhang Jiaxi, Wang Xuenong, Chen Fa, et al. Study on working parameters of knife roller of field straw chopper for mulching or reclaiming[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(6): 82-85, 37. (in Chinese with English abstract)

      [32]陳海濤,李昂,史乃煜,等. 玉米秸稈殘茬側(cè)向拋出動(dòng)力學(xué)模型建立與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(5):76-83.

      Chen Haitao, Li Ang, Shi Naiyu, et al. Kinetics modeling and experiment of lateral throwing of corn straws[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 76-83. (in Chinese with English abstract)

      [33]賈洪雷,馬成林. 曲面直刃刀切碎與拋送變量的研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2002,33(6):41-43.

      Jia Honglei, Ma Chenglin. Study on chopping and throwing parameters of the chopping knife with curved surface and straight edge[J]. Transactions of the Chinese Society for Agricultural Machinery, 2002, 33(6): 41-43. (in Chinese with English abstract)

      [34]農(nóng)業(yè)機(jī)械化管理司. 主要農(nóng)作物秸稈機(jī)械化還田技術(shù)模式[EB/OL]. (2017-12-22) [2018-09-12] http://www.njhs. moa.gov.cn/keji/201712/t20171227_6129152.htm.

      [35]中華人民共和國(guó)國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局中國(guó)國(guó)家標(biāo)準(zhǔn)化管理委員會(huì). 保護(hù)性耕作機(jī)械秸稈粉碎還田機(jī):GB/T 24675.6-2009[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2009.

      [36]張喜瑞,甘聲豹,鄭侃,等. 滾割喂入式臥軸甩刀香蕉假莖粉碎還田機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(4):33-41.

      Zhang Xirui, Gan Shengbao, Zheng Kan, et al. Design and experiment on cut roll feeding type horizontal shaft flail machine for banana pseudostem crushing and returning[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 33-41. (in Chinese with English abstract)

      Design and experiment of differential sawing rice straw chopper for turning to field

      Sun Nina, Wang Xiaoyan※, Li Hongwen, He Jin, Wang Qingjie, Wang Jiang, Liu Zhengdao, Wang Yingbo

      (,,100083,)

      In the rice area of the Northeast China, the large amount of rice straw with low moisture content is tough to chop. However, the existing method of chopping combined auxiliary slitting could not meet the requirements of chopping under such condition, which could cause some problems such as incomplete straw crushing and unqualified rate of straw crushing. It would affect the subsequent land preparation and transplanting operations and caused problems such as machine blocking, straw floating before transplanting and seedling floating during transplanting. In order to solve these problems, this paper designed a straw chopper based on the principle of differential sawing, which could realize the same direction with different speed between the saw disc blade and the crushing knife to achieve supporting sawing. The friction force and relative linear velocity of crushing straw were increased to improve the crushing effect. Structural parameters of saw disc blade, crushing knife and other key components were designed through theoretical analysis, and the structure and operating parameters of the machine were preliminarily obtained. In order to improve the wind velocity and straw feeding performance of the crushing chamber, three kinds of fan blade forms, namely facade fan blade, reverse fan blade and diverse fan blade, were designed to compare with no fan blade through simulation analysis. Simulation results by Fluent showed that the facade fan blade could improve the wind velocity in the crushing chamber and contributed to improving straw fluidity, and the verification test was in accordance with the simulation results. According to the movement track of crushing knife and saw disc blade, the rotation speeds of them were designed. The rotation speed of crushing knife ranged from 1815 to 2475 r/min, accordingly, and the saw disc blade rotation speed ranged from 605 to 825 r/min, to be specific, the ratio of rotation speed between saw disc blade and crushing knife was 1/3 constantly. The dynamics analysis of straw crushing process showed that rotation speed of crushing knife and the tilt angle between the saw disc blade could affect crushing performance. Therefore, a field experiment of two factors with three levels was designed by using the average length of straw crushing and the crushing qualification rate as an evaluation index. The test results showed that the crushing knife rotation speed and angle of slope had a significant impact on average length of straw crushing and straw crushing qualification rate. Considering straw crushing performance and energy consumption, the optimal combination was determined as follows: The crushing knife rotation speed was 1800 r/min and the angle of slope was 65°, the corresponding saw disc blade rotation speed was 600 r/min. The field test results under the optimized combination conditions were as follows: the average length of straw crushing was 9.58 cm, the proportion of straw under 10 cm was 93.23%, and the scatter unevenness was 20.89%, which met the quality requirements of straw crushing and scattering in the northeast rice region. In the paper, a comparison test between the differential sawing rice straw chopper and the ordinary straw chopper was carried out. The filed test showed that the average length of straw crushing of the ordinary straw chopper was 13.42 cm, and the proportion of straw under 10 cm was 71.5%, which was not as good as the differential sawing rice straw chopper, and there was no obvious difference in the scatter unevenness between them. After the chopping operation, the same plow was used for the plowing operation, and the straw burying rate was 98.92% of the differential sawing rice straw chopper while the ordinary straw chopper was 90.21 %. Its successful implementation could greatly improve the operation effect for chopping rice straw and stubble on one hand, and on the other hand provided better growing surface conditions for rice. The design of the machine provided a basis for the popularization and application of straw mulching technology in northeast China.

      agricultural machinery; straw; design; northeast rice area; saw disc blade; crushing knife; differential sawing; field test

      孫妮娜,王曉燕,李洪文,何 進(jìn),王慶杰,王 將,劉正道,王英博. 差速鋸切式水稻秸稈粉碎還田機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(22):267-276.doi:10.11975/j.issn.1002-6819.2019.22.032 http://www.tcsae.org

      Sun Nina, Wang Xiaoyan, Li Hongwen, He Jin, Wang Qingjie, Wang Jiang, Liu Zhengdao, Wang Yingbo. Design and experiment of differential sawing rice straw chopper for turning to field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 267-276. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.22.032 http://www.tcsae.org

      2019-05-27

      2019-08-27

      “十三五”國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0300909-03);教育部創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃項(xiàng)目(IRT13039)

      孫妮娜,博士生,主要從事保護(hù)性耕作技術(shù)與裝備研究。Email:sunnina92@163.com

      王曉燕,教授,博士生導(dǎo)師,主要從事可持續(xù)機(jī)械化生產(chǎn)和保護(hù)性耕作技術(shù)與裝備研究。Email:xywang@cau.edu.cn

      10.11975/j.issn.1002-6819.2019.22.032

      S244.29

      A

      1002-6819(2019)-22-0267-10

      猜你喜歡
      扇葉稻區(qū)合格率
      河南省粳稻新品種生態(tài)適應(yīng)性分析
      2023年全國(guó)水稻重大病蟲害發(fā)生趨勢(shì)預(yù)報(bào)
      提高肉雞出欄合格率的綜合措施
      互動(dòng)小游戲
      大灰狼(2017年6期)2017-07-12 20:35:02
      風(fēng)的力量
      提高重癥醫(yī)學(xué)科床頭抬高合格率
      我國(guó)生鮮乳連續(xù)7年三聚氰胺抽檢合格率100%
      去年國(guó)抽合格率首次突破90%
      2015年全國(guó)水稻重大病蟲害發(fā)生趨勢(shì)預(yù)報(bào)
      沒有扇葉的風(fēng)扇
      克东县| 曲靖市| 荆州市| 景德镇市| 九江县| 长丰县| 莒南县| 会东县| 吉安市| 开鲁县| 康保县| 上饶县| 若尔盖县| 宣恩县| 宣城市| 建始县| 清原| 呼玛县| 贵州省| 丹阳市| 梁河县| 闽清县| 庆元县| 苍山县| 密云县| 句容市| 师宗县| 当雄县| 左权县| 玉溪市| 山东| 泸溪县| 辽宁省| 尼木县| 台东市| 泸水县| 斗六市| 武城县| 连城县| 宁都县| 广安市|